Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Jul 15;15(14):3566–3578.

Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation.

A Scheer 1, F Fanelli 1, T Costa 1, P G De Benedetti 1, S Cotecchia 1
PMCID: PMC451960  PMID: 8670860

Abstract

Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors.

Full text

PDF
3566

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnis S., Fahmy K., Hofmann K. P., Sakmar T. P. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem. 1994 Sep 30;269(39):23879–23881. [PubMed] [Google Scholar]
  2. Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnbaumer M. Mutations and diseases of G protein coupled receptors. J Recept Signal Transduct Res. 1995 Jan-Mar;15(1-4):131–160. doi: 10.3109/10799899509045213. [DOI] [PubMed] [Google Scholar]
  4. Blüml K., Mutschler E., Wess J. Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors. J Biol Chem. 1994 Jul 22;269(29):18870–18876. [PubMed] [Google Scholar]
  5. Cohen G. B., Yang T., Robinson P. R., Oprian D. D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry. 1993 Jun 15;32(23):6111–6115. doi: 10.1021/bi00074a024. [DOI] [PubMed] [Google Scholar]
  6. Cotecchia S., Exum S., Caron M. G., Lefkowitz R. J. Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2896–2900. doi: 10.1073/pnas.87.8.2896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duerson K., Carroll R., Clapham D. Alpha-helical distorting substitution disrupt coupling between m3 muscarinic receptor and G proteins. FEBS Lett. 1993 Jun 7;324(1):103–108. doi: 10.1016/0014-5793(93)81541-7. [DOI] [PubMed] [Google Scholar]
  8. Fanelli F., Menziani M. C., De Benedetti P. G. Computer simulations of signal transduction mechanism in alpha 1B-adrenergic and m3-muscarinic receptors. Protein Eng. 1995 Jun;8(6):557–564. doi: 10.1093/protein/8.6.557. [DOI] [PubMed] [Google Scholar]
  9. Fanelli F., Menziani M. C., De Benedetti P. G. Molecular dynamics simulations of m3-muscarinic receptor activation and QSAR analysis. Bioorg Med Chem. 1995 Nov;3(11):1465–1477. doi: 10.1016/0968-0896(95)00131-y. [DOI] [PubMed] [Google Scholar]
  10. Farahbakhsh Z. T., Ridge K. D., Khorana H. G., Hubbell W. L. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry. 1995 Jul 11;34(27):8812–8819. doi: 10.1021/bi00027a033. [DOI] [PubMed] [Google Scholar]
  11. Findlay J., Eliopoulos E. Three-dimensional modelling of G protein-linked receptors. Trends Pharmacol Sci. 1990 Dec;11(12):492–499. doi: 10.1016/0165-6147(90)90050-i. [DOI] [PubMed] [Google Scholar]
  12. Franke R. R., König B., Sakmar T. P., Khorana H. G., Hofmann K. P. Rhodopsin mutants that bind but fail to activate transducin. Science. 1990 Oct 5;250(4977):123–125. doi: 10.1126/science.2218504. [DOI] [PubMed] [Google Scholar]
  13. Jung H., Windhaber R., Palm D., Schnackerz K. D. NMR and circular dichroism studies of synthetic peptides derived from the third intracellular loop of the beta-adrenoceptor. FEBS Lett. 1995 Jan 23;358(2):133–136. doi: 10.1016/0014-5793(94)01409-t. [DOI] [PubMed] [Google Scholar]
  14. Khorana H. G. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J Biol Chem. 1992 Jan 5;267(1):1–4. [PubMed] [Google Scholar]
  15. Kjelsberg M. A., Cotecchia S., Ostrowski J., Caron M. G., Lefkowitz R. J. Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem. 1992 Jan 25;267(3):1430–1433. [PubMed] [Google Scholar]
  16. MaloneyHuss K., Lybrand T. P. Three-dimensional structure for the beta 2 adrenergic receptor protein based on computer modeling studies. J Mol Biol. 1992 Jun 5;225(3):859–871. doi: 10.1016/0022-2836(92)90406-a. [DOI] [PubMed] [Google Scholar]
  17. Oliveira L., Paiva A. C., Sander C., Vriend G. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci. 1994 Jun;15(6):170–172. doi: 10.1016/0165-6147(94)90137-6. [DOI] [PubMed] [Google Scholar]
  18. Ren Q., Kurose H., Lefkowitz R. J., Cotecchia S. Constitutively active mutants of the alpha 2-adrenergic receptor. J Biol Chem. 1993 Aug 5;268(22):16483–16487. [PubMed] [Google Scholar]
  19. Rosenthal W., Antaramian A., Gilbert S., Birnbaumer M. Nephrogenic diabetes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J Biol Chem. 1993 Jun 25;268(18):13030–13033. [PubMed] [Google Scholar]
  20. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  22. Rost B., Sander C., Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994 Feb;10(1):53–60. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  23. Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem. 1993 Mar 5;268(7):4625–4636. [PubMed] [Google Scholar]
  25. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  26. Savarese T. M., Fraser C. M. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J. 1992 Apr 1;283(Pt 1):1–19. doi: 10.1042/bj2830001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schertler G. F., Villa C., Henderson R. Projection structure of rhodopsin. Nature. 1993 Apr 22;362(6422):770–772. doi: 10.1038/362770a0. [DOI] [PubMed] [Google Scholar]
  28. Tiberi M., Caron M. G. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J Biol Chem. 1994 Nov 11;269(45):27925–27931. [PubMed] [Google Scholar]
  29. Trumpp-Kallmeyer S., Hoflack J., Bruinvels A., Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem. 1992 Sep 18;35(19):3448–3462. doi: 10.1021/jm00097a002. [DOI] [PubMed] [Google Scholar]
  30. Unger V. M., Schertler G. F. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J. 1995 May;68(5):1776–1786. doi: 10.1016/S0006-3495(95)80354-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang D., Weinstein H. Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands. J Med Chem. 1993 Apr 2;36(7):934–938. doi: 10.1021/jm00059a021. [DOI] [PubMed] [Google Scholar]
  32. Zhu S. Z., Wang S. Z., Hu J., el-Fakahany E. E. An arginine residue conserved in most G protein-coupled receptors is essential for the function of the m1 muscarinic receptor. Mol Pharmacol. 1994 Mar;45(3):517–523. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES