Skip to main content
EMBO Molecular Medicine logoLink to EMBO Molecular Medicine
. 2015 Apr 16;7(7):904–917. doi: 10.15252/emmm.201404697

Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling

Ivana D'Andrea 1,, Valentina Fardella 1,, Stefania Fardella 1, Fabio Pallante 1, Alessandra Ghigo 2, Roberta Iacobucci 1, Angelo Maffei 1, Emilio Hirsch 2, Giuseppe Lembo 1,3,*, Daniela Carnevale 1,3,**
PMCID: PMC4520656  PMID: 25882071

Abstract

Although PI3Kγ has been extensively investigated in inflammatory and cardiovascular diseases, the exploration of its functions in the brain is just at dawning. It is known that PI3Kγ is present in neurons and that the lack of PI3Kγ in mice leads to impaired synaptic plasticity, suggestive of a role in behavioral flexibility. Several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), involve an impairment of behavioral flexibility. Here, we found a previously unreported expression of PI3Kγ throughout the noradrenergic neurons of the locus coeruleus (LC) in the brainstem, serving as a mechanism that regulates its activity of control on attention, locomotion and sociality. In particular, we show an unprecedented phenotype of PI3Kγ KO mice resembling ADHD symptoms. PI3Kγ KO mice exhibit deficits in the attentive and mnemonic domains, typical hyperactivity, as well as social dysfunctions. Moreover, we demonstrate that the ADHD phenotype depends on a dysregulation of CREB signaling exerted by a kinase-independent PI3Kγ-PDE4D interaction in the noradrenergic neurons of the locus coeruleus, thus uncovering new tools for mechanistic and therapeutic research in ADHD.

Keywords: catecholamine, CREB, mouse model, phosphodiesterases (PDEs), stereotactic surgery


See also: E Darcq & BL Kieffer (July 2015)

Supporting Information

Supplementary Figure S1

emmm0007-0904-sd1.tif (1.1MB, tif)

Supplementary Figure S2

emmm0007-0904-sd2.tif (2.1MB, tif)

Supplementary Figure S3

emmm0007-0904-sd3.tif (1.1MB, tif)

Supplementary Figure S4

emmm0007-0904-sd4.tif (1.4MB, tif)

Supplementary Figure S5

Supplementary Figure S6

emmm0007-0904-sd6.tif (2.3MB, tif)

Supplementary Figure S7

emmm0007-0904-sd7.tif (2.3MB, tif)

Supplementary Figure S8

emmm0007-0904-sd8.tif (916.7KB, tif)

Supplementary Figure S9

emmm0007-0904-sd9.tif (1.4MB, tif)

Supplementary Figure S10

emmm0007-0904-sd10.tif (1.5MB, tif)

Supplementary Figure S11

emmm0007-0904-sd11.tif (1.4MB, tif)

Supplementary Figure S12

emmm0007-0904-sd12.tif (1.3MB, tif)

Supplementary Table S1

emmm0007-0904-sd13.pdf (117.5KB, pdf)

Supplementary Table S2

emmm0007-0904-sd14.pdf (92.5KB, pdf)

Supplementary Table S3

emmm0007-0904-sd15.pdf (101.9KB, pdf)

Review Process File

emmm0007-0904-sd16.pdf (358KB, pdf)

Source Data for Figure 3E

emmm0007-0904-sd17.jpg (204.7KB, jpg)

References

  1. Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230:1273–1276. doi: 10.1126/science.2999977. [DOI] [PubMed] [Google Scholar]
  2. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84. doi: 10.1016/s0165-0173(03)00143-7. [DOI] [PubMed] [Google Scholar]
  3. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry. 1999;46:1234–1242. doi: 10.1016/s0006-3223(99)00192-4. [DOI] [PubMed] [Google Scholar]
  4. Bondeva T, Pirola L, Bulgarelli-Leva G, Rubio I, Wetzker R, Wymann MP. Bifurcation of lipid and protein kinase signals of PI3Kgamma to the protein kinases PKB and MAPK. Science. 1998;282:293–296. doi: 10.1126/science.282.5387.293. [DOI] [PubMed] [Google Scholar]
  5. Cao AH, Yu L, Wang YW, Wang JM, Yang LJ, Lei GF. Effects of methylphenidate on attentional set-shifting in a genetic model of attention-deficit/hyperactivity disorder. Behav Brain Funct. 2012;8:10. doi: 10.1186/1744-9081-8-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cao JL, Vialou VF, Lobo MK, Robison AJ, Neve RL, Cooper DC, Nestler EJ, Han MH. Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons. Proc Natl Acad Sci USA. 2010;107:17011–17016. doi: 10.1073/pnas.1010077107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carnevale D, Lembo G. PI3Kgamma in hypertension: a novel therapeutic target controlling vascular myogenic tone and target organ damage. Cardiovasc Res. 2012;95:403–408. doi: 10.1093/cvr/cvs166. [DOI] [PubMed] [Google Scholar]
  8. Colacicco G, Welzl H, Lipp HP, Wurbel H. Attentional set-shifting in mice: modification of a rat paradigm, and evidence for strain-dependent variation. Behav Brain Res. 2002;132:95–102. doi: 10.1016/s0166-4328(01)00391-6. [DOI] [PubMed] [Google Scholar]
  9. Damilano F, Franco I, Perrino C, Schaefer K, Azzolino O, Carnevale D, Cifelli G, Carullo P, Ragona R, Ghigo A, et al. Distinct effects of leukocyte and cardiac phosphoinositide 3-kinase gamma activity in pressure overload-induced cardiac failure. Circulation. 2011;123:391–399. doi: 10.1161/CIRCULATIONAHA.110.950543. [DOI] [PubMed] [Google Scholar]
  10. D'Andrea I, Alleva E, Branchi I. Communal nesting, an early social enrichment, affects social competences but not learning and memory abilities at adulthood. Behav Brain Res. 2007;183:60–66. doi: 10.1016/j.bbr.2007.05.029. [DOI] [PubMed] [Google Scholar]
  11. Franklin KBJ, Paxinos G. The Mouse Brain in Sterotaxic Coordinates. San Diego, CA: Academic Press; 1996. [Google Scholar]
  12. Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF. Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci. 2002;22:8771–8777. doi: 10.1523/JNEUROSCI.22-19-08771.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghigo A, Perino A, Mehel H, Zahradníková A, Jr, Morello F, Leroy J, Nikolaev VO, Damilano F, Cimino J, De Luca E, et al. PI3Kgamma protects against catecholamine-induced ventricular arrhythmia through PKA-mediated regulation of distinct phosphodiesterases. Circulation. 2012;126:2073–2083. doi: 10.1161/CIRCULATIONAHA.112.114074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gray JD, Punsoni M, Tabori NE, Melton JT, Fanslow V, Ward MJ, Zupan B, Menzer D, Rice J, Drake CT, et al. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J Neurosci. 2007;27:7196–7207. doi: 10.1523/JNEUROSCI.0109-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Han MH, Bolaños CA, Green TA, Olson VG, Neve RL, Liu RJ, Aghajanian GK, Nestler EJ. Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors. J Neurosci. 2006;26:4624–4629. doi: 10.1523/JNEUROSCI.4701-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS, Park SW, Kwak C. PI3Kgamma is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci. 2011;201114:1447–1454. doi: 10.1038/nn.2937. [DOI] [PubMed] [Google Scholar]
  17. Kleppisch T. Phosphodiesterases in the central nervous system. Handb Exp Pharmacol. 2009;191:71–92. doi: 10.1007/978-3-540-68964-5_5. [DOI] [PubMed] [Google Scholar]
  18. Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem. 2010;114:259–270. doi: 10.1111/j.1471-4159.2010.06750.x. [DOI] [PubMed] [Google Scholar]
  19. Kok K, Geering B, Vanhaesebroeck B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci. 2009;34:115–127. doi: 10.1016/j.tibs.2009.01.003. [DOI] [PubMed] [Google Scholar]
  20. Kratz CP, Emerling BM, Bonifas J, Wang W, Green ED, Le Beau MM, Shannon KM. Genomic structure of the PIK3CG gene on chromosome band 7q22 and evaluation as a candidate myeloid tumor suppressor. Blood. 2002;99:372–374. doi: 10.1182/blood.v99.1.372. [DOI] [PubMed] [Google Scholar]
  21. Laughlin RE, Grant TL, Williams RW, Jentsch JD. Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry. 2011;69:1109–1116. doi: 10.1016/j.biopsych.2011.01.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mazei-Robison MS, Nestler EJ. Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med. 2012;2:a012070. doi: 10.1101/cshperspect.a012070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mehta MA, Goodyer IM, Sahakian BJ. Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry. 2004;45:293–305. doi: 10.1111/j.1469-7610.2004.00221.x. [DOI] [PubMed] [Google Scholar]
  24. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science. 1997;278:58–63. doi: 10.1126/science.278.5335.58. [DOI] [PubMed] [Google Scholar]
  25. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004;37:449–471. doi: 10.1016/j.yjmcc.2004.05.015. [DOI] [PubMed] [Google Scholar]
  26. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell. 2004;118:375–387. doi: 10.1016/j.cell.2004.07.017. [DOI] [PubMed] [Google Scholar]
  27. Perino A, Beretta M, Kilic A, Ghigo A, Carnevale D, Repetto IE, Braccini L, Longo D, Liebig-Gonglach M, Zaglia T, et al. Combined inhibition of PI3Kß and PI3K? reduces fat mass by enhancing a-MSH-dependent sympathetic drive. Sci Signal. 2014;7:ra110. doi: 10.1126/scisignal.2005485. [DOI] [PubMed] [Google Scholar]
  28. Perino A, Ghigo A, Ferrero E, Morello F, Santulli G, Baillie GS, Damilano F, Dunlop AJ, Pawson C, Walser R, et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell. 2011;42:84–95. doi: 10.1016/j.molcel.2011.01.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH. Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism. J Med Genet. 2003;40:e119. doi: 10.1136/jmg.40.11.e119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nürnberg B, et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995;269:690–693. doi: 10.1126/science.7624799. [DOI] [PubMed] [Google Scholar]
  31. Thapar A, O'Donovan M, Owen MJ. The genetics of attention deficit hyperactivity disorder. Hum mol gen. 2005;14:R275–R282. doi: 10.1093/hmg/ddi263. Spec No. 2, [DOI] [PubMed] [Google Scholar]
  32. Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997;387:673–676. doi: 10.1038/42648. [DOI] [PubMed] [Google Scholar]
  33. Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci. 2004;7:939–946. doi: 10.1038/nn1300. [DOI] [PubMed] [Google Scholar]
  34. Won H, Mah W, Kim E, Kim JW, Hahm EK, Kim MH, Cho S, Kim J, Jang H, Cho SC, et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat Med. 2011;17:566–572. doi: 10.1038/nm.2330. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Figure S1

emmm0007-0904-sd1.tif (1.1MB, tif)

Supplementary Figure S2

emmm0007-0904-sd2.tif (2.1MB, tif)

Supplementary Figure S3

emmm0007-0904-sd3.tif (1.1MB, tif)

Supplementary Figure S4

emmm0007-0904-sd4.tif (1.4MB, tif)

Supplementary Figure S5

Supplementary Figure S6

emmm0007-0904-sd6.tif (2.3MB, tif)

Supplementary Figure S7

emmm0007-0904-sd7.tif (2.3MB, tif)

Supplementary Figure S8

emmm0007-0904-sd8.tif (916.7KB, tif)

Supplementary Figure S9

emmm0007-0904-sd9.tif (1.4MB, tif)

Supplementary Figure S10

emmm0007-0904-sd10.tif (1.5MB, tif)

Supplementary Figure S11

emmm0007-0904-sd11.tif (1.4MB, tif)

Supplementary Figure S12

emmm0007-0904-sd12.tif (1.3MB, tif)

Supplementary Table S1

emmm0007-0904-sd13.pdf (117.5KB, pdf)

Supplementary Table S2

emmm0007-0904-sd14.pdf (92.5KB, pdf)

Supplementary Table S3

emmm0007-0904-sd15.pdf (101.9KB, pdf)

Review Process File

emmm0007-0904-sd16.pdf (358KB, pdf)

Source Data for Figure 3E

emmm0007-0904-sd17.jpg (204.7KB, jpg)

Articles from EMBO Molecular Medicine are provided here courtesy of Nature Publishing Group

RESOURCES