Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Nov 22;91(24):11338–11342. doi: 10.1073/pnas.91.24.11338

Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice.

K M Champion 1, R J Cook 1, S L Tollaksen 1, C S Giometti 1
PMCID: PMC45226  PMID: 7972060

Abstract

During the analysis of liver protein expression in the offspring of male mice irradiated with fission-spectrum neutrons, one offspring displayed a heritable 50% decrease in the abundance of two proteins. Homozygous mice lacking detectable quantities of these proteins were obtained through breeding. Characterization of this protein deficiency has identified these liver proteins as forms of the enzyme 10-formyltetrahydrofolate dehydrogenase (10-formyl-THF DH; 10-formyltetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.6). NH2-terminal sequence analysis demonstrated that both proteins share identical sequences in the first 25 residues, and this sequence matches (96% identity) that of rat and human 10-formyl-THF DH. In addition, these proteins showed cross-reactivity to polyclonal antiserum raised against purified rat 10-formyl-THF DH. Southern (DNA) blot analysis revealed a restriction fragment length polymorphism consistent with a deletion mutation in the 10-formyl-THF DH structural gene in homozygous mice. Results of Northern (RNA) blot analysis demonstrated the absence of 10-formyl-THF DH mRNA in mice lacking 10-formyl-THF DH protein. Furthermore, liver cytosolic 10-formyl-THF DH enzymatic activity was undetectable in homozygotes. Measurement of hepatic folate pools showed that in homozygotes the total folate pool is decreased and the level of tetrahydrofolate is markedly depleted.

Full text

PDF
11338

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson N. G., Anderson N. L. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem. 1978 Apr;85(2):331–340. doi: 10.1016/0003-2697(78)90229-4. [DOI] [PubMed] [Google Scholar]
  2. Anderson N. L., Anderson N. G. Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem. 1978 Apr;85(2):341–354. doi: 10.1016/0003-2697(78)90230-0. [DOI] [PubMed] [Google Scholar]
  3. Appling D. R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991 Sep;5(12):2645–2651. doi: 10.1096/fasebj.5.12.1916088. [DOI] [PubMed] [Google Scholar]
  4. Case G. L., Kaisaki P. J., Steele R. D. Resolution of rat liver 10-formyltetrahydrofolate dehydrogenase/hydrolase activities. J Biol Chem. 1988 Jul 25;263(21):10204–10207. [PubMed] [Google Scholar]
  5. Cook R. J., Lloyd R. S., Wagner C. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 1991 Mar 15;266(8):4965–4973. [PubMed] [Google Scholar]
  6. Cook R. J., Wagner C. Purification and partial characterization of rat liver folate binding protein: cytosol I. Biochemistry. 1982 Aug 31;21(18):4427–4434. doi: 10.1021/bi00261a036. [DOI] [PubMed] [Google Scholar]
  7. Giometti C. S., Gemmell M. A., Nance S. L., Tollaksen S. L., Taylor J. Detection of heritable mutations as quantitative changes in protein expression. J Biol Chem. 1987 Sep 15;262(26):12764–12767. [PubMed] [Google Scholar]
  8. Giometti C. S., Tollaksen S. L., Grahn D. Altered protein expression detected in the F1 offspring of male mice exposed to fission neutrons. Mutat Res. 1994 Jan;320(1-2):75–85. doi: 10.1016/0165-1218(94)90061-2. [DOI] [PubMed] [Google Scholar]
  9. Horne D. W., Patterson D., Cook R. J. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver. Arch Biochem Biophys. 1989 May 1;270(2):729–733. doi: 10.1016/0003-9861(89)90556-0. [DOI] [PubMed] [Google Scholar]
  10. Horne D. W., Patterson D. Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin Chem. 1988 Nov;34(11):2357–2359. [PubMed] [Google Scholar]
  11. Johlin F. C., Swain E., Smith C., Tephly T. R. Studies on the mechanism of methanol poisoning: purification and comparison of rat and human liver 10-formyltetrahydrofolate dehydrogenase. Mol Pharmacol. 1989 Jun;35(6):745–750. [PubMed] [Google Scholar]
  12. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  13. Metting N. F., Palayoor S. T., Macklis R. M., Atcher R. W., Liber H. L., Little J. B. Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts. Radiat Res. 1992 Dec;132(3):339–345. [PubMed] [Google Scholar]
  14. Min H., Shane B., Stokstad E. L. Identification of 10-formyltetrahydrofolate dehydrogenase-hydrolase as a major folate binding protein in liver cytosol. Biochim Biophys Acta. 1988 Dec 15;967(3):348–353. doi: 10.1016/0304-4165(88)90097-9. [DOI] [PubMed] [Google Scholar]
  15. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  16. Pearson T., Anderson L. Analytical techniques for cell fractions. XXVIII. Dissection of complex antigenic mixtures using monoclonal antibodies and two-dimensional gel electrophoresis. Anal Biochem. 1980 Jan 15;101(2):377–386. doi: 10.1016/0003-2697(80)90203-1. [DOI] [PubMed] [Google Scholar]
  17. Rios-Orlandi E. M., Zarkadas C. G., MacKenzie R. E. Formyltetrahydrofolate dehydrogenase-hydrolase from pig liver: simultaneous assay of the activities. Biochim Biophys Acta. 1986 May 12;871(1):24–35. doi: 10.1016/0167-4838(86)90129-9. [DOI] [PubMed] [Google Scholar]
  18. Schwartz J. L., Giovanazzi S. M., Karrison T., Jones C., Grdina D. J. 2-[(Aminopropyl)amino] ethanethiol-mediated reductions in 60Co gamma-ray and fission-spectrum neutron-induced chromosome damage in V79 cells. Radiat Res. 1988 Jan;113(1):145–154. [PubMed] [Google Scholar]
  19. Smith G. E., Summers M. D. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem. 1980 Nov 15;109(1):123–129. doi: 10.1016/0003-2697(80)90019-6. [DOI] [PubMed] [Google Scholar]
  20. Zamierowski M. M., Wagner C. Identification of folate binding proteins in rat liver. J Biol Chem. 1977 Feb 10;252(3):933–938. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES