Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Nov 1;15(21):5804–5811.

Protein secretion in gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding.

S Létoffé 1, P Delepelaire 1, C Wandersman 1
PMCID: PMC452328  PMID: 8918458

Abstract

One of the strategies used by Gram-negative bacteria to secrete proteins across the two membranes which delimit the cells, is sec independent and dedicated to proteins lacking an N-terminal signal peptide. It depends on ABC protein-mediated exporters, which consist of three cell envelope proteins, two inner membrane proteins, an ATPase (the ABC protein), a membrane fusion protein (MFP) and an outer membrane polypeptide. Erwinia chrysanthemi metalloproteases B and C and Serratia marcescens hemoprotein HasA are secreted by such homologous pathways and interact with the ABC protein. Using as protein substrates HasA and GST-PrtC, a chimeric protein which has a glutathione S-transferase moiety fused to a large C-terminal domain of protease C, we developed a simple system to identify proteins bound to the substrate based on substrate affinity-chromatography using heme- or glutathione-agarose. We show an ordered association between the protein substrates and the three exporter components: the substrate recognizes the ABC protein which interacts with the MFP which in turn binds the outer membrane component. Substrate binding is required for assembly of the three components.

Full text

PDF
5804

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binet R., Wandersman C. Protein secretion by hybrid bacterial ABC-transporters: specific functions of the membrane ATPase and the membrane fusion protein. EMBO J. 1995 May 15;14(10):2298–2306. doi: 10.1002/j.1460-2075.1995.tb07224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delepelaire P. PrtD, the integral membrane ATP-binding cassette component of the Erwinia chrysanthemi metalloprotease secretion system, exhibits a secretion signal-regulated ATPase activity. J Biol Chem. 1994 Nov 11;269(45):27952–27957. [PubMed] [Google Scholar]
  3. Delepelaire P., Wandersman C. Characterization, localization and transmembrane organization of the three proteins PrtD, PrtE and PrtF necessary for protease secretion by the gram-negative bacterium Erwinia chrysanthemi. Mol Microbiol. 1991 Oct;5(10):2427–2434. doi: 10.1111/j.1365-2958.1991.tb02088.x. [DOI] [PubMed] [Google Scholar]
  4. Denzin L. K., Cresswell P. HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell. 1995 Jul 14;82(1):155–165. doi: 10.1016/0092-8674(95)90061-6. [DOI] [PubMed] [Google Scholar]
  5. Dinh T., Paulsen I. T., Saier M. H., Jr A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol. 1994 Jul;176(13):3825–3831. doi: 10.1128/jb.176.13.3825-3831.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glick B., Schatz G. Import of proteins into mitochondria. Annu Rev Genet. 1991;25:21–44. doi: 10.1146/annurev.ge.25.120191.000321. [DOI] [PubMed] [Google Scholar]
  7. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  8. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  9. Hughes C., Issartel J. P., Hardie K., Stanley P., Koronakis E., Koronakis V. Activation of Escherichia coli prohemolysin to the membrane-targetted toxin by HlyC-directed ACP-dependent fatty acylation. FEMS Microbiol Immunol. 1992 Sep;5(1-3):37–43. doi: 10.1111/j.1574-6968.1992.tb05884.x. [DOI] [PubMed] [Google Scholar]
  10. Koronakis V., Hughes C., Koronakis E. ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Mol Microbiol. 1993 Jun;8(6):1163–1175. doi: 10.1111/j.1365-2958.1993.tb01661.x. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Létoffé S., Delepelaire P., Wandersman C. Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin. EMBO J. 1990 May;9(5):1375–1382. doi: 10.1002/j.1460-2075.1990.tb08252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Létoffé S., Ghigo J. M., Wandersman C. Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9876–9880. doi: 10.1073/pnas.91.21.9876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Létoffé S., Ghigo J. M., Wandersman C. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol. 1994 Sep;176(17):5372–5377. doi: 10.1128/jb.176.17.5372-5377.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mackman N., Nicaud J. M., Gray L., Holland I. B. Secretion of haemolysin by Escherichia coli. Curr Top Microbiol Immunol. 1986;125:159–181. doi: 10.1007/978-3-642-71251-7_10. [DOI] [PubMed] [Google Scholar]
  16. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  18. Skare J. T., Ahmer B. M., Seachord C. L., Darveau R. P., Postle K. Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem. 1993 Aug 5;268(22):16302–16308. [PubMed] [Google Scholar]
  19. Townsend A., Ohlén C., Bastin J., Ljunggren H. G., Foster L., Kärre K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature. 1989 Aug 10;340(6233):443–448. doi: 10.1038/340443a0. [DOI] [PubMed] [Google Scholar]
  20. Wandersman C., Delepelaire P. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4776–4780. doi: 10.1073/pnas.87.12.4776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wandersman C., Létoffé S. Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol. 1993 Jan;7(1):141–150. doi: 10.1111/j.1365-2958.1993.tb01105.x. [DOI] [PubMed] [Google Scholar]
  22. Zhang F., Sheps J. A., Ling V. Complementation of transport-deficient mutants of Escherichia coli alpha-hemolysin by second-site mutations in the transporter hemolysin B. J Biol Chem. 1993 Sep 15;268(26):19889–19895. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES