Abstract
The molecular mechanisms responsible for the remodeling of entire somatic erythrocyte nuclei in Xenopus laevis egg cytoplasm have been examined. These transitions in chromosomal composition are associated with the capacity to activate new patterns of gene expression and the re-acquisition of replication competence. Somatic linker histone variants H1 and H1 (0) are released from chromatin in egg cytoplasm, whereas the oocyte-specific linker histone B4 and HMG1 are efficiently incorporated into remodeled chromatin. Histone H1 (0) is released from chromatin preferentially in comparison with histone H1. Core histones H2A and H4 in the somatic nucleus are phosphorylated during this remodeling process. These transitions recapitulate the chromosomal environment found within the nuclei of the early Xenopus embryo. Phosphorylation of somatic linker histone variants is demonstrated not to direct their release from chromatin, nor does direct competition with cytoplasmic stores of linker histone B4 determine their release. However, the molecular chaperone nucleoplasmin does have an important role in the selective removal of linker histones from somatic nuclei. For Xenopus erythrocyte nuclei, this disruption of chromatin structure leads to activation of the 5S rRNA genes. These results provide a molecular explanation for the remodeling of chromatin in Xenopus egg cytoplasm and indicate the capacity of molecular chaperones to disrupt a natural chromosomal environment, thereby facilitating transcription.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blank T., Trendelenburg M., Kleinschmidt J. A. Reactivation of DNA replication in erythrocyte nuclei by Xenopus egg extract involves energy-dependent chromatin decondensation and changes in histone phosphorylation. Exp Cell Res. 1992 Oct;202(2):224–232. doi: 10.1016/0014-4827(92)90069-k. [DOI] [PubMed] [Google Scholar]
- Blow J. J., Laskey R. A. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell. 1986 Nov 21;47(4):577–587. doi: 10.1016/0092-8674(86)90622-7. [DOI] [PubMed] [Google Scholar]
- Bouvet P., Dimitrov S., Wolffe A. P. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 1994 May 15;8(10):1147–1159. doi: 10.1101/gad.8.10.1147. [DOI] [PubMed] [Google Scholar]
- Bouvet P., Wolffe A. P. A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell. 1994 Jun 17;77(6):931–941. doi: 10.1016/0092-8674(94)90141-4. [DOI] [PubMed] [Google Scholar]
- Chen H., Li B., Workman J. L. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 1994 Jan 15;13(2):380–390. doi: 10.1002/j.1460-2075.1994.tb06272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho H., Wolffe A. P. Xenopus laevis B4, an intron-containing oocyte-specific linker histone-encoding gene. Gene. 1994 Jun 10;143(2):233–238. doi: 10.1016/0378-1119(94)90102-3. [DOI] [PubMed] [Google Scholar]
- Consonni G., Viotti A., Dellaporta S. L., Tonelli C. cDNA nucleotide sequence of Sn, a regulatory gene in maize. Nucleic Acids Res. 1992 Jan 25;20(2):373–373. doi: 10.1093/nar/20.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppock D. L., Lue R. A., Wangh L. J. Replication of Xenopus erythrocyte nuclei in a homologous egg extract requires prior proteolytic treatment. Dev Biol. 1989 Jan;131(1):102–110. doi: 10.1016/s0012-1606(89)80041-7. [DOI] [PubMed] [Google Scholar]
- Dasso M., Dimitrov S., Wolffe A. P. Nuclear assembly is independent of linker histones. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12477–12481. doi: 10.1073/pnas.91.26.12477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dasso M., Nishitani H., Kornbluth S., Nishimoto T., Newport J. W. RCC1, a regulator of mitosis, is essential for DNA replication. Mol Cell Biol. 1992 Aug;12(8):3337–3345. doi: 10.1128/mcb.12.8.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilworth S. M., Black S. J., Laskey R. A. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell. 1987 Dec 24;51(6):1009–1018. doi: 10.1016/0092-8674(87)90587-3. [DOI] [PubMed] [Google Scholar]
- Dimitrov S. I., Russanova V. R., Pashev I. G. The globular domain of histone H5 is internally located in the 30 nm chromatin fiber: an immunochemical study. EMBO J. 1987 Aug;6(8):2387–2392. doi: 10.1002/j.1460-2075.1987.tb02516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimitrov S., Almouzni G., Dasso M., Wolffe A. P. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev Biol. 1993 Nov;160(1):214–227. doi: 10.1006/dbio.1993.1299. [DOI] [PubMed] [Google Scholar]
- Dimitrov S., Dasso M. C., Wolffe A. P. Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly. J Cell Biol. 1994 Aug;126(3):591–601. doi: 10.1083/jcb.126.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dworkin-Rastl E., Kandolf H., Smith R. C. The maternal histone H1 variant, H1M (B4 protein), is the predominant H1 histone in Xenopus pregastrula embryos. Dev Biol. 1994 Feb;161(2):425–439. doi: 10.1006/dbio.1994.1042. [DOI] [PubMed] [Google Scholar]
- GURDON J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962 Dec;10:622–640. [PubMed] [Google Scholar]
- Hayes J. J., Pruss D., Wolffe A. P. Contacts of the globular domain of histone H5 and core histones with DNA in a "chromatosome". Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7817–7821. doi: 10.1073/pnas.91.16.7817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. J., Wolffe A. P. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6415–6419. doi: 10.1073/pnas.90.14.6415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill C. S., Rimmer J. M., Green B. N., Finch J. T., Thomas J. O. Histone-DNA interactions and their modulation by phosphorylation of -Ser-Pro-X-Lys/Arg- motifs. EMBO J. 1991 Jul;10(7):1939–1948. doi: 10.1002/j.1460-2075.1991.tb07720.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiyoshi H., Uno S., Yokota T., Katagiri C., Nishida H., Takai M., Agata K., Eguchi G., Abé S. Isolation of cDNA for a Xenopus sperm-specific basic nuclear protein (SP4) and evidence for expression of SP4 mRNA in primary spermatocytes. Exp Cell Res. 1991 May;194(1):95–99. doi: 10.1016/0014-4827(91)90135-h. [DOI] [PubMed] [Google Scholar]
- Hock R., Moorman A., Fischer D., Scheer U. Absence of somatic histone H1 in oocytes and preblastula embryos of Xenopus laevis. Dev Biol. 1993 Aug;158(2):510–522. doi: 10.1006/dbio.1993.1209. [DOI] [PubMed] [Google Scholar]
- Kay B. K. Xenopus laevis: Practical uses in cell and molecular biology. Injections of oocytes and embryos. Methods Cell Biol. 1991;36:663–669. [PubMed] [Google Scholar]
- Khochbin S., Wolffe A. P. Developmental regulation and butyrate-inducible transcription of the Xenopus histone H1(0) promoter. Gene. 1993 Jun 30;128(2):173–180. doi: 10.1016/0378-1119(93)90560-p. [DOI] [PubMed] [Google Scholar]
- Khochbin S., Wolffe A. P. Developmentally regulated expression of linker-histone variants in vertebrates. Eur J Biochem. 1994 Oct 15;225(2):501–510. doi: 10.1111/j.1432-1033.1994.00501.x. [DOI] [PubMed] [Google Scholar]
- Kingston R. E., Bunker C. A., Imbalzano A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996 Apr 15;10(8):905–920. doi: 10.1101/gad.10.8.905. [DOI] [PubMed] [Google Scholar]
- Kobel H. R., Brun R. B., Fischberg M. Nuclear transplantation with melanophores, ciliated epidermal cells, and the established cell-line A-8 in Xenopus laevis. J Embryol Exp Morphol. 1973 Jun;29(3):539–547. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Earnshaw W. C. Nucleosome assembly. Nature. 1980 Aug 21;286(5775):763–767. doi: 10.1038/286763a0. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978 Oct 5;275(5679):416–420. doi: 10.1038/275416a0. [DOI] [PubMed] [Google Scholar]
- Leno G. H., Laskey R. A. DNA replication in cell-free extracts from Xenopus laevis. Methods Cell Biol. 1991;36:561–579. doi: 10.1016/s0091-679x(08)60297-6. [DOI] [PubMed] [Google Scholar]
- Leno G. H., Mills A. D., Philpott A., Laskey R. A. Hyperphosphorylation of nucleoplasmin facilitates Xenopus sperm decondensation at fertilization. J Biol Chem. 1996 Mar 29;271(13):7253–7256. doi: 10.1074/jbc.271.13.7253. [DOI] [PubMed] [Google Scholar]
- Lohka M. J., Masui Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science. 1983 May 13;220(4598):719–721. doi: 10.1126/science.6601299. [DOI] [PubMed] [Google Scholar]
- Merriam R. W. Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J Cell Sci. 1969 Sep;5(2):333–349. doi: 10.1242/jcs.5.2.333. [DOI] [PubMed] [Google Scholar]
- Mills A. D., Laskey R. A., Black P., De Robertis E. M. An acidic protein which assembles nucleosomes in vitro is the most abundant protein in Xenopus oocyte nuclei. J Mol Biol. 1980 May 25;139(3):561–568. doi: 10.1016/0022-2836(80)90148-5. [DOI] [PubMed] [Google Scholar]
- Nelson T., Wiegand R., Brutlag D. Ribonucleic acid and other polyanions facilitate chromatin assembly in vitro. Biochemistry. 1981 Apr 28;20(9):2594–2601. doi: 10.1021/bi00512a035. [DOI] [PubMed] [Google Scholar]
- Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell. 1987 Jan 30;48(2):205–217. doi: 10.1016/0092-8674(87)90424-7. [DOI] [PubMed] [Google Scholar]
- Nightingale K., Dimitrov S., Reeves R., Wolffe A. P. Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J. 1996 Feb 1;15(3):548–561. [PMC free article] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. The heterogeneity of histones. I. A quantitative analysis of calf histones in very long polyacrylamide gels. Biochemistry. 1969 Oct;8(10):3972–3979. doi: 10.1021/bi00838a013. [DOI] [PubMed] [Google Scholar]
- Patterton D., Wolffe A. P. Developmental roles for chromatin and chromosomal structure. Dev Biol. 1996 Jan 10;173(1):2–13. doi: 10.1006/dbio.1996.0002. [DOI] [PubMed] [Google Scholar]
- Philpott A., Leno G. H., Laskey R. A. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell. 1991 May 17;65(4):569–578. doi: 10.1016/0092-8674(91)90089-h. [DOI] [PubMed] [Google Scholar]
- Philpott A., Leno G. H. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell. 1992 May 29;69(5):759–767. doi: 10.1016/0092-8674(92)90288-n. [DOI] [PubMed] [Google Scholar]
- Roth S. Y., Allis C. D. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem Sci. 1992 Mar;17(3):93–98. doi: 10.1016/0968-0004(92)90243-3. [DOI] [PubMed] [Google Scholar]
- Russanova V., Stephanova E., Pashev I., Tsanev R. Histone variants in mouse centromeric chromatin. Mol Cell Biochem. 1989 Oct 5;90(1):1–7. doi: 10.1007/BF00225215. [DOI] [PubMed] [Google Scholar]
- Russanova V., Venkov C., Tsanev R. A comparison of histone variants in different rat tissues. Cell Differ. 1980 Dec;9(6):339–350. doi: 10.1016/0045-6039(80)90033-0. [DOI] [PubMed] [Google Scholar]
- Rutledge R. G., Neelin J. M., Seligy V. L. Isolation and expression of cDNA clones coding for two sequence variants of Xenopus laevis histone H5. Gene. 1988 Oct 15;70(1):117–126. doi: 10.1016/0378-1119(88)90110-2. [DOI] [PubMed] [Google Scholar]
- Sealy L., Cotten M., Chalkley R. Xenopus nucleoplasmin: egg vs. oocyte. Biochemistry. 1986 May 20;25(10):3064–3072. doi: 10.1021/bi00358a049. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Jackson I. J., Brown D. D. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell. 1984 Jun;37(2):645–652. doi: 10.1016/0092-8674(84)90396-9. [DOI] [PubMed] [Google Scholar]
- Smith R. C., Dworkin-Rastl E., Dworkin M. B. Expression of a histone H1-like protein is restricted to early Xenopus development. Genes Dev. 1988 Oct;2(10):1284–1295. doi: 10.1101/gad.2.10.1284. [DOI] [PubMed] [Google Scholar]
- Ura K., Hayes J. J., Wolffe A. P. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 1995 Aug 1;14(15):3752–3765. doi: 10.1002/j.1460-2075.1995.tb00045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ura K., Nightingale K., Wolffe A. P. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 1996 Sep 16;15(18):4959–4969. [PMC free article] [PubMed] [Google Scholar]
- Varga-Weisz P. D., Blank T. A., Becker P. B. Energy-dependent chromatin accessibility and nucleosome mobility in a cell-free system. EMBO J. 1995 May 15;14(10):2209–2216. doi: 10.1002/j.1460-2075.1995.tb07215.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varga-Weisz P., Zlatanova J., Leuba S. H., Schroth G. P., van Holde K. Binding of histones H1 and H5 and their globular domains to four-way junction DNA. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3525–3529. doi: 10.1073/pnas.91.9.3525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wall G., Varga-Weisz P. D., Sandaltzopoulos R., Becker P. B. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J. 1995 Apr 18;14(8):1727–1736. doi: 10.1002/j.1460-2075.1995.tb07162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wangh L. J., DeGrace D., Sanchez J. A., Gold A., Yeghiazarians Y., Wiedemann K., Daniels S. Efficient reactivation of Xenopus erythrocyte nuclei in Xenopus egg extracts. J Cell Sci. 1995 Jun;108(Pt 6):2187–2196. doi: 10.1242/jcs.108.6.2187. [DOI] [PubMed] [Google Scholar]
- West M. H., Bonner W. M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 1980 Oct 24;8(20):4671–4680. doi: 10.1093/nar/8.20.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolffe A. P. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. EMBO J. 1989 Feb;8(2):527–537. doi: 10.1002/j.1460-2075.1989.tb03407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolffe A. P. Replication timing and Xenopus 5S RNA gene transcription in vitro. Dev Biol. 1993 May;157(1):224–231. doi: 10.1006/dbio.1993.1126. [DOI] [PubMed] [Google Scholar]
- Wolffe A. P. Transcriptional activation of Xenopus class III genes in chromatin isolated from sperm and somatic nuclei. Nucleic Acids Res. 1989 Jan 25;17(2):767–780. doi: 10.1093/nar/17.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worcel A., Han S., Wong M. L. Assembly of newly replicated chromatin. Cell. 1978 Nov;15(3):969–977. doi: 10.1016/0092-8674(78)90280-5. [DOI] [PubMed] [Google Scholar]
- Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]