Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1991 Mar;10(3):593–598. doi: 10.1002/j.1460-2075.1991.tb07986.x

Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae.

H Jakubowski 1
PMCID: PMC452689  PMID: 2001674

Abstract

Homocysteine thiolactone is a product of an error-editing reaction, catalyzed by Escherichia coli methionyl-tRNA synthetase, which prevents incorporation of homocysteine into tRNA and protein, both in vitro and in vivo. Here, the thiolactone is also shown to occur in cultures of the yeast Saccharomyces cerevisiae. In yeast, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 500 molecules of methionine incorporated into protein. Homocysteine, added exogenously to the medium or overproduced by some yeast mutants, is detrimental to cell growth. The cost of homocysteine editing in yeast is minimized by the presence of a pathway leading from homocysteine to cysteine, which keeps intracellular homocysteine at low levels. These results not only directly demonstrate that editing of errors in amino acid selection by methionyl-tRNA synthetase operates in vivo in yeast but also establish the importance of proofreading mechanisms in a eukaryotic organism.

Full text

PDF
593

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin A. N., Berg P. Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem. 1966 Feb 25;241(4):839–845. [PubMed] [Google Scholar]
  2. Eldred E. W., Schimmel P. R. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J Biol Chem. 1972 May 10;247(9):2961–2964. [PubMed] [Google Scholar]
  3. Englisch S., Englisch U., von der Haar F., Cramer F. The proofreading of hydroxy analogues of leucine and isoleucine by leucyl-tRNA synthetases from E. coli and yeast. Nucleic Acids Res. 1986 Oct 10;14(19):7529–7539. doi: 10.1093/nar/14.19.7529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fasiolo F., Bonnet J., Lacroute F. Cloning of the yeast methionyl-tRNA synthetase gene. J Biol Chem. 1981 Mar 10;256(5):2324–2328. [PubMed] [Google Scholar]
  5. Fersht A. R., Dingwall C. Establishing the misacylation/deacylation of the tRNA pathway for the editing mechanism of prokaryotic and eukaryotic valyl-tRNA synthetases. Biochemistry. 1979 Apr 3;18(7):1238–1245. doi: 10.1021/bi00574a019. [DOI] [PubMed] [Google Scholar]
  6. Fersht A. R. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry. 1977 Mar 8;16(5):1025–1030. doi: 10.1021/bi00624a034. [DOI] [PubMed] [Google Scholar]
  7. Fersht A. R., Kaethner M. M. Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry. 1976 Jul 27;15(15):3342–3346. doi: 10.1021/bi00660a026. [DOI] [PubMed] [Google Scholar]
  8. Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hopfield J. J. The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5248–5252. doi: 10.1073/pnas.77.9.5248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jakubowski H., Fersht A. R. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res. 1981 Jul 10;9(13):3105–3117. doi: 10.1093/nar/9.13.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jakubowski H. Incomplete aminoacylation of tRNALeu catalyzed in vitro by leucyl-tRNA synthetase from Escherichia coli B. Biochim Biophys Acta. 1978 Apr 27;518(2):345–350. doi: 10.1016/0005-2787(78)90191-0. [DOI] [PubMed] [Google Scholar]
  12. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4504–4508. doi: 10.1073/pnas.87.12.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jakubowski H. Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase. Biochemistry. 1980 Oct 28;19(22):5071–5078. doi: 10.1021/bi00563a021. [DOI] [PubMed] [Google Scholar]
  14. Jakubowski H. Valyl-tRNA synthetase from yellow lupin seeds. Instability of enzyme-bound noncognate adenylates versus cognate adenylate. FEBS Lett. 1978 Nov 15;95(2):235–238. doi: 10.1016/0014-5793(78)81001-1. [DOI] [PubMed] [Google Scholar]
  15. NORRIS A. T., BERG P. MECHANISM OF AMINOACYL RNA SYNTHESIS: STUDIES WITH ISOLATED AMINOACYL ADENYLATE COMPLEXES OF ISOLEUCYL RNA SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Aug;52:330–337. doi: 10.1073/pnas.52.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ninio J. Kinetic amplification of enzyme discrimination. Biochimie. 1975;57(5):587–595. doi: 10.1016/s0300-9084(75)80139-8. [DOI] [PubMed] [Google Scholar]
  17. Ono B., Shirahige Y., Nanjoh A., Andou N., Ohue H., Ishino-Arao Y. Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine beta-synthase deficiency. J Bacteriol. 1988 Dec;170(12):5883–5889. doi: 10.1128/jb.170.12.5883-5889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walter P., Gangloff J., Bonnet J., Boulanger Y., Ebel J. P., Fasiolo F. Primary structure of the Saccharomyces cerevisiae gene for methionyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1983 May;80(9):2437–2441. doi: 10.1073/pnas.80.9.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walter P., Weygand-Durasevic I., Sanni A., Ebel J. P., Fasiolo F. Deletion analysis in the amino-terminal extension of methionyl-tRNA synthetase from Saccharomyces cerevisiae shows that a small region is important for the activity and stability of the enzyme. J Biol Chem. 1989 Oct 15;264(29):17126–17130. [PubMed] [Google Scholar]
  20. Yarus M. Phenylalanyl-tRNA synthetase and isoleucyl-tRNA Phe : a possible verification mechanism for aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1915–1919. doi: 10.1073/pnas.69.7.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES