Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1991 May;10(5):1075–1081. doi: 10.1002/j.1460-2075.1991.tb08047.x

Mammalian genes expressed in Drosophila: a transgenic model for the study of mechanisms of chemical mutagenesis and metabolism.

T Jowett 1, M F Wajidi 1, E Oxtoby 1, C R Wolf 1
PMCID: PMC452760  PMID: 1708721

Abstract

Mammalian cytochrome P450s provide our first line of defence against the toxic effects of environmental chemicals. Ironically these enzymes also convert some compounds to their ultimate toxic or mutagenic species. Our knowledge of these mammalian enzymes and the role they play in chemical toxicity and mutagenesis has stemmed mostly from in vitro studies. In order to establish the role of specific enzymes in the toxicological response in vivo we have generated transgenic Drosophila which express mammalian cytochrome CYP2B1, which is a member of a large gene family encoding several important drug metabolising enzymes. The gene was fused to a Drosophila promoter which confers expression in the larval fat body. Using the Somatic Mutation And Recombination Test (SMART) we have demonstrated that transgenic larvae expressing the P450 are hypersensitive to the anticancer drug cyclophosphamide, a procarcinogenic substrate which is activated by the enzyme. This work demonstrates the potential of such transgenic Drosophila strains as an in vivo model for studying the role of specific mammalian drug metabolising enzymes in the pathways and metabolic cascades associated with the action of cytotoxic and carcinogenic chemicals, and also the chemical properties of specific classes of mutagen to be determined.

Full text

PDF
1075

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Atchison M. Genes for cytochrome P-450 and their regulation. CRC Crit Rev Biochem. 1986;19(3):247–305. doi: 10.3109/10409238609084657. [DOI] [PubMed] [Google Scholar]
  2. Ballinger D. G., Benzer S. Targeted gene mutations in Drosophila. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9402–9406. doi: 10.1073/pnas.86.23.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black S. M., Ellard S., Meehan R. R., Parry J. M., Adesnik M., Beggs J. D., Wolf C. R. The expression of cytochrome P450IIB1 in Saccharomyces cerevisiae results in an increased mutation frequency when exposed to cyclophosphamide. Carcinogenesis. 1989 Nov;10(11):2139–2143. doi: 10.1093/carcin/10.11.2139. [DOI] [PubMed] [Google Scholar]
  4. Burke M. D., Mayer R. T. Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos. 1974 Nov-Dec;2(6):583–588. [PubMed] [Google Scholar]
  5. Clarke L., Waxman D. J. Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res. 1989 May 1;49(9):2344–2350. [PubMed] [Google Scholar]
  6. Clements J., Howe D., Lowry A., Phillips M. The effects of a range of anti-cancer drugs in the white-ivory somatic mutation test in Drosophila. Mutat Res. 1990 Feb;228(2):171–176. doi: 10.1016/0027-5107(90)90073-d. [DOI] [PubMed] [Google Scholar]
  7. Clements J., Phillips M., Todd N. Mutagenicity of adriamycin in Drosophila melanogaster. Mutat Res. 1984 Mar;135(3):175–179. doi: 10.1016/0165-1218(84)90118-6. [DOI] [PubMed] [Google Scholar]
  8. Delaney S. J., Sunkel C. E., Genova-Seminova G. K., Davies J. E., Glover D. M. Cis-acting sequences sufficient for correct tissue and temporal specificity of larval serum protein 1 genes of Drosophila. EMBO J. 1987 Dec 1;6(12):3849–3854. doi: 10.1002/j.1460-2075.1987.tb02722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doehmer J., Dogra S., Friedberg T., Monier S., Adesnik M., Glatt H., Oesch F. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5769–5773. doi: 10.1073/pnas.85.16.5769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frölich A., Würgler F. E. New tester strains with improved bioactivation capacity for the Drosophila wing-spot test. Mutat Res. 1989 Jun;216(3):179–187. doi: 10.1016/0165-1161(89)90003-4. [DOI] [PubMed] [Google Scholar]
  11. Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
  12. Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
  13. Graf U., Juon H., Katz A. J., Frei H. J., Würgler F. E. A pilot study on a new Drosophila spot test. Mutat Res. 1983 Jun;120(4):233–239. doi: 10.1016/0165-7992(83)90095-7. [DOI] [PubMed] [Google Scholar]
  14. Graf U., Würgler F. E., Katz A. J., Frei H., Juon H., Hall C. B., Kale P. G. Somatic mutation and recombination test in Drosophila melanogaster. Environ Mutagen. 1984;6(2):153–188. doi: 10.1002/em.2860060206. [DOI] [PubMed] [Google Scholar]
  15. Hällström I., Grafström R. the metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster. II. Enzyme induction and metabolism of benzo[a]pyrene. Chem Biol Interact. 1981 Mar 1;34(2):145–159. doi: 10.1016/0009-2797(81)90127-7. [DOI] [PubMed] [Google Scholar]
  16. Hällstöm I., Blanck A., Atuma S. Comparison of cytochrome P-450-dependent metabolism in different developmental stages of Drosophila melanogaster. Chem Biol Interact. 1983 Aug 15;46(1):39–54. doi: 10.1016/0009-2797(83)90005-4. [DOI] [PubMed] [Google Scholar]
  17. Jowett T. The regulatory domain of a larval serum protein gene in Drosophila melanogaster. EMBO J. 1985 Dec 30;4(13B):3789–3795. doi: 10.1002/j.1460-2075.1985.tb04149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaiser K., Goodwin S. F. "Site-selected" transposon mutagenesis of Drosophila. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1686–1690. doi: 10.1073/pnas.87.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mismer D., Rubin G. M. Analysis of the promoter of the ninaE opsin gene in Drosophila melanogaster. Genetics. 1987 Aug;116(4):565–578. doi: 10.1093/genetics/116.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nau H., Spielmann H., Lo Turco Mortler C. M., Winckler K., Riedel L., Obe G. Mutagenic, teratogenic and pharmacokinetic properties of cyclophosphamide and some of its deuterated derivatives. Mutat Res. 1982 Aug;95(2-3):105–118. doi: 10.1016/0027-5107(82)90250-0. [DOI] [PubMed] [Google Scholar]
  21. Nebert D. W., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B., Levin W. The P450 gene superfamily: recommended nomenclature. DNA. 1987 Feb;6(1):1–11. doi: 10.1089/dna.1987.6.1. [DOI] [PubMed] [Google Scholar]
  22. Nebert D. W., Gonzalez F. J. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987;56:945–993. doi: 10.1146/annurev.bi.56.070187.004501. [DOI] [PubMed] [Google Scholar]
  23. Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 1989 Jan-Feb;8(1):1–13. doi: 10.1089/dna.1.1989.8.1. [DOI] [PubMed] [Google Scholar]
  24. Nebert D. W., Nelson D. R., Feyereisen R. Evolution of the cytochrome P450 genes. Xenobiotica. 1989 Oct;19(10):1149–1160. doi: 10.3109/00498258909043167. [DOI] [PubMed] [Google Scholar]
  25. Rodrigues A. D., Gibson G. G., Ioannides C., Parke D. V. Interactions of imidazole antifungal agents with purified cytochrome P-450 proteins. Biochem Pharmacol. 1987 Dec 15;36(24):4277–4281. doi: 10.1016/0006-2952(87)90670-8. [DOI] [PubMed] [Google Scholar]
  26. Szabad J. A genetic assay for the detection of aneuploidy in the germ-line cells of Drosophila melanogaster. Mutat Res. 1986 Oct;164(5):305–326. doi: 10.1016/0165-1161(86)90002-6. [DOI] [PubMed] [Google Scholar]
  27. Szabad J., Soós I., Polgár G., Héjja G. Testing the mutagenicity of malondialdehyde and formaldehyde by the Drosophila mosaic and the sex-linked recessive lethal tests. Mutat Res. 1983 Apr;113(2):117–133. doi: 10.1016/0165-1161(83)90224-8. [DOI] [PubMed] [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wolf C. R., Miles J. S., Seilman S., Burke M. D., Rospendowski B. N., Kelly K., Smith W. E. Evidence that the catalytic differences of two structurally homologous forms of cytochrome P-450 relate to their heme environment. Biochemistry. 1988 Mar 8;27(5):1597–1603. doi: 10.1021/bi00405a031. [DOI] [PubMed] [Google Scholar]
  30. Wolf C. R., Seilman S., Oesch F., Mayer R. T., Burke M. D. Multiple forms of cytochrome P-450 related to forms induced marginally by phenobarbital. Differences in structure and in the metabolism of alkoxyresorufins. Biochem J. 1986 Nov 15;240(1):27–33. doi: 10.1042/bj2400027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zijlstra J. A., Vogel E. W., Breimer D. D. Strain-differences and inducibility of microsomal oxidative enzymes in Drosophila melanogaster flies. Chem Biol Interact. 1984 Mar;48(3):317–338. doi: 10.1016/0009-2797(84)90143-1. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES