Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1991 Sep;10(9):2419–2424. doi: 10.1002/j.1460-2075.1991.tb07781.x

Axonal transport of neuropeptide encoding mRNAs within the hypothalamo-hypophyseal tract of rats.

E Mohr 1, S Fehr 1, D Richter 1
PMCID: PMC452937  PMID: 1868830

Abstract

Hypothalamic vasopressin and oxytocin transcripts have been detected in the posterior pituitary suggesting either transcription of the respective genes in pituicytes or axonal mRNA transport from the hypothalamus to the nerve terminals of the posterior pituitary. The concept of axonal mRNA transport is supported firstly, by Northern blot and in situ hybridization analysis indicating that vasopressin and oxytocin mRNAs are also present in the neural stalk; secondly, by intron analysis and transcription run on experiments demonstrating the absence of primary vasopressin and oxytocin transcripts in non-neuronal cells of the posterior pituitary; thirdly, by embryonic developmental studies showing that appearance of vasopressin transcripts in the hypothalamus and the pituitary anlage is correlated. Furthermore, during axonal transport the respective mRNAs are subject to specific modification at the poly(A) tails.

Full text

PDF
2419

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capano C. P., Giuditta A., Castigli E., Kaplan B. B. Occurrence and sequence complexity of polyadenylated RNA in squid axoplasm. J Neurochem. 1987 Sep;49(3):698–704. doi: 10.1111/j.1471-4159.1987.tb00950.x. [DOI] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Dellmann H. D., Castel M., Linner J. G. Ultrastructure of peptidergic neurosecretory axons in the developing neural lobe of the rat. Gen Comp Endocrinol. 1978 Dec;36(4):477–486. doi: 10.1016/0016-6480(78)90086-2. [DOI] [PubMed] [Google Scholar]
  4. Dirks R. W., Raap A. K., Van Minnen J., Vreugdenhil E., Smit A. B., Van der Ploeg M. Detection of mRNA molecules coding for neuropeptide hormones of the pond snail Lymnaea stagnalis by radioactive and non-radioactive in situ hybridization: a model study for mRNA detection. J Histochem Cytochem. 1989 Jan;37(1):7–14. doi: 10.1177/37.1.2642295. [DOI] [PubMed] [Google Scholar]
  5. Fehr S., Ivell R., Koll R., Schams D., Fields M., Richter D. Expression of the oxytocin gene in the large cells of the bovine corpus luteum. FEBS Lett. 1987 Jan 1;210(1):45–50. doi: 10.1016/0014-5793(87)81295-4. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Giuditta A., Metafora S., Felsani A., Del Rio A. Factors for protein synthesis in the axoplasm of squid giant axons. J Neurochem. 1977 Jun;28(6):1393–1395. doi: 10.1111/j.1471-4159.1977.tb12339.x. [DOI] [PubMed] [Google Scholar]
  8. Gordon-Weeks P. R. RNA transport in dendrites. Trends Neurosci. 1988 Aug;11(8):342–343. doi: 10.1016/0166-2236(88)90054-9. [DOI] [PubMed] [Google Scholar]
  9. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  10. Ivell R., Richter D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2006–2010. doi: 10.1073/pnas.81.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jirikowski G. F., Sanna P. P., Bloom F. E. mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7400–7404. doi: 10.1073/pnas.87.19.7400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  13. McCabe J. T., Lehmann E., Chastrette N., Hänze J., Lang R. E., Ganten D., Pfaff D. W. Detection of vasopressin mRNA in the neurointermediate lobe of the rat pituitary. Brain Res Mol Brain Res. 1990 Oct;8(4):325–329. doi: 10.1016/0169-328x(90)90046-g. [DOI] [PubMed] [Google Scholar]
  14. Mohr E., Zhou A., Thorn N. A., Richter D. Rats with physically disconnected hypothalamo-pituitary tracts no longer contain vasopressin-oxytocin gene transcripts in the posterior pituitary lobe. FEBS Lett. 1990 Apr 24;263(2):332–336. doi: 10.1016/0014-5793(90)81407-f. [DOI] [PubMed] [Google Scholar]
  15. Murphy D., Carter D. Vasopressin gene expression in the rodent hypothalamus: transcriptional and posttranscriptional responses to physiological stimulation. Mol Endocrinol. 1990 Jul;4(7):1051–1059. doi: 10.1210/mend-4-7-1051. [DOI] [PubMed] [Google Scholar]
  16. Murphy D., Levy A., Lightman S., Carter D. Vasopressin RNA in the neural lobe of the pituitary: dramatic accumulation in response to salt loading. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9002–9005. doi: 10.1073/pnas.86.22.9002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 1985 Oct 25;13(20):7207–7221. doi: 10.1093/nar/13.20.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rehbein M., Hillers M., Mohr E., Ivell R., Morley S., Schmale H., Richter D. The neurohypophyseal hormones vasopressin and oxytocin. Precursor structure, synthesis and regulation. Biol Chem Hoppe Seyler. 1986 Aug;367(8):695–704. doi: 10.1515/bchm3.1986.367.2.695. [DOI] [PubMed] [Google Scholar]
  19. Rentrop M., Knapp B., Winter H., Schweizer J. Aminoalkylsilane-treated glass slides as support for in situ hybridization of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem J. 1986 May;18(5):271–276. doi: 10.1007/BF01676237. [DOI] [PubMed] [Google Scholar]
  20. Schmale H., Heinsohn S., Richter D. Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor. EMBO J. 1983;2(5):763–767. doi: 10.1002/j.1460-2075.1983.tb01497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmale H., Ivell R., Breindl M., Darmer D., Richter D. The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J. 1984 Dec 20;3(13):3289–3293. doi: 10.1002/j.1460-2075.1984.tb02291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zinn K., DiMaio D., Maniatis T. Identification of two distinct regulatory regions adjacent to the human beta-interferon gene. Cell. 1983 Oct;34(3):865–879. doi: 10.1016/0092-8674(83)90544-5. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES