Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1991 Dec;10(13):4011–4016. doi: 10.1002/j.1460-2075.1991.tb04976.x

The surface-exposed tyrosine residue Tyr83 of pea plastocyanin is involved in both binding and electron transfer reactions with cytochrome f.

S He 1, S Modi 1, D S Bendall 1, J C Gray 1
PMCID: PMC453148  PMID: 1756713

Abstract

Site-directed mutants of the pea plastocyanin gene in which the codon for the surface-exposed Tyr83 has been changed to codons for Phe83 and Leu83 have been expressed in transgenic tobacco plants. The mutant proteins have been purified to homogeneity and their conformations shown not to differ significantly from the wild-type plastocyanin by 1H-NMR and CD. Overall rate constants for electron transfer (k2) from cytochrome f to plastocyanin have been measured by stopped-flow spectrophotometry and rate constants for binding (ka) and association constants (KA) have been measured from the enhanced Soret absorption of cytochrome f on binding plastocyanin. These measurements allow the calculation of the intrinsic rate of electron transfer in the binary complex. An 8-fold decrease in the overall rate of electron transfer to the Phe83 mutant is due entirely to a decreased association constant for cytochrome f, whereas the 40-fold decrease in the overall rate of electron transfer to the Leu83 mutant is due to weaker binding and a lower intrinsic rate of electron transfer. This indicates that Tyr83 is involved in binding to cytochrome f and forms part of the main route of electron transfer.

Full text

PDF
4011

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Anderson G. P., Draheim J. E., Gross E. L. Plastocyanin conformation: the effect of the oxidation state on the pKa of nitrotyrosine-83. Biochim Biophys Acta. 1985 Nov 27;810(2):123–131. doi: 10.1016/0005-2728(85)90127-6. [DOI] [PubMed] [Google Scholar]
  3. Anderson G. P., Sanderson D. G., Lee C. H., Durell S., Anderson L. B., Gross E. L. The effect of ethylenediamine chemical modification of plastocyanin on the rate of cytochrome f oxidation and P-700+ reduction. Biochim Biophys Acta. 1987 Dec 17;894(3):386–398. doi: 10.1016/0005-2728(87)90117-4. [DOI] [PubMed] [Google Scholar]
  4. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chazin W. J., Rance M., Wright P. E. Complete assignment of the 1H nuclear magnetic resonance spectrum of French bean plastocyanin. Application of an integrated approach to spin system identification in proteins. J Mol Biol. 1988 Aug 5;202(3):603–622. doi: 10.1016/0022-2836(88)90290-2. [DOI] [PubMed] [Google Scholar]
  6. Chazin W. J., Wright P. E. Complete assignment of the 1H nuclear magnetic resonance spectrum of French bean plastocyanin. Sequential resonance assignments, secondary structure and global fold. J Mol Biol. 1988 Aug 5;202(3):623–636. doi: 10.1016/0022-2836(88)90291-4. [DOI] [PubMed] [Google Scholar]
  7. Christensen H. E., Ulstrup J., Sykes A. G. Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with inorganic redox partners [Fe(CN)6]3-/4- and [Co(phen)3]3+/2+. Biochim Biophys Acta. 1990 May 31;1039(1):94–102. doi: 10.1016/0167-4838(90)90231-4. [DOI] [PubMed] [Google Scholar]
  8. Collyer C. A., Guss J. M., Sugimura Y., Yoshizaki F., Freeman H. C. Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera. J Mol Biol. 1990 Feb 5;211(3):617–632. doi: 10.1016/0022-2836(90)90269-R. [DOI] [PubMed] [Google Scholar]
  9. Cookson D. J., Hayes M. T., Wright P. E. NMR study of the interaction of plastocyanin with chromium(II) analogues of inorganic electron transfer reagents. Biochim Biophys Acta. 1980 Jun 10;591(1):162–176. doi: 10.1016/0005-2728(80)90230-3. [DOI] [PubMed] [Google Scholar]
  10. Driscoll P. C., Hill H. A., Redfield C. 1H-NMR sequential assignments and cation-binding studies of spinach plastocyanin. Eur J Biochem. 1987 Dec 30;170(1-2):279–292. doi: 10.1111/j.1432-1033.1987.tb13697.x. [DOI] [PubMed] [Google Scholar]
  11. Erman J. E., Vitello L. B. The binding of cytochrome c peroxidase and ferricytochrome c. A spectrophotometric determination of the equilibrium association constant as a function of ionic strength. J Biol Chem. 1980 Jul 10;255(13):6224–6227. [PubMed] [Google Scholar]
  12. Farver O., Pecht I. Identification of an electron transfer locus in plastocyanin by chromium(II) affinity labeling. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4190–4193. doi: 10.1073/pnas.78.7.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gray J. C. Purification and properties of monomeric cytochrome f from charlock, Sinapis arvensis L. Eur J Biochem. 1978 Jan 2;82(1):133–141. doi: 10.1111/j.1432-1033.1978.tb12004.x. [DOI] [PubMed] [Google Scholar]
  14. Gross E. L., Curtiss A. The interaction of nitrotyrosine-83 plastocyanin with cytochromes f and c: pH dependence and the effect of an additional negative charge on plastocyanin. Biochim Biophys Acta. 1991 Jan 22;1056(2):166–172. doi: 10.1016/s0005-2728(05)80283-x. [DOI] [PubMed] [Google Scholar]
  15. Guss J. M., Freeman H. C. Structure of oxidized poplar plastocyanin at 1.6 A resolution. J Mol Biol. 1983 Sep 15;169(2):521–563. doi: 10.1016/s0022-2836(83)80064-3. [DOI] [PubMed] [Google Scholar]
  16. Guss J. M., Harrowell P. R., Murata M., Norris V. A., Freeman H. C. Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. J Mol Biol. 1986 Nov 20;192(2):361–387. doi: 10.1016/0022-2836(86)90371-2. [DOI] [PubMed] [Google Scholar]
  17. Kelly J., Ambler R. P. The amino acid sequence of plastocyanin from Chlorella fusca. Biochem J. 1974 Dec;143(3):681–690. doi: 10.1042/bj1430681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. King G. C., Binstead R. A., Wright P. E. NMR and kinetic characterization of the interaction between French bean plastocyanin and horse cytochrome c. Biochim Biophys Acta. 1985 Feb 22;806(2):262–271. doi: 10.1016/0005-2728(85)90104-5. [DOI] [PubMed] [Google Scholar]
  19. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  21. Last D. I., Gray J. C. Synthesis and accumulation of pea plastocyanin in transgenic tobacco plants. Plant Mol Biol. 1990 Feb;14(2):229–238. doi: 10.1007/BF00018563. [DOI] [PubMed] [Google Scholar]
  22. Mauk M. R., Reid L. S., Mauk A. G. Spectrophotometric analysis of the interaction between cytochrome b5 and cytochrome c. Biochemistry. 1982 Apr 13;21(8):1843–1846. doi: 10.1021/bi00537a021. [DOI] [PubMed] [Google Scholar]
  23. Messerschmidt A., Rossi A., Ladenstein R., Huber R., Bolognesi M., Gatti G., Marchesini A., Petruzzelli R., Finazzi-Agró A. X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol. 1989 Apr 5;206(3):513–529. doi: 10.1016/0022-2836(89)90498-1. [DOI] [PubMed] [Google Scholar]
  24. Moore J. M., Case D. A., Chazin W. J., Gippert G. P., Havel T. F., Powls R., Wright P. E. Three-dimensional solution structure of plastocyanin from the green alga Scenedesmus obliquus. Science. 1988 Apr 15;240(4850):314–317. doi: 10.1126/science.3353725. [DOI] [PubMed] [Google Scholar]
  25. Moore J. M., Chazin W. J., Powls R., Wright P. E. 1H NMR studies of plastocyanin from Scenedesmus obliquus: complete sequence-specific assignment, secondary structure analysis, and global fold. Biochemistry. 1988 Oct 4;27(20):7806–7816. doi: 10.1021/bi00420a033. [DOI] [PubMed] [Google Scholar]
  26. Niwa S., Ishikawa H., Nikai S., Takabe T. Electron transfer reactions between cytochrome f and plastocyanin from Brassica komatsuna. J Biochem. 1980 Oct;88(4):1177–1183. doi: 10.1093/oxfordjournals.jbchem.a133072. [DOI] [PubMed] [Google Scholar]
  27. Ooms G., Hooykaas P. J., Moolenaar G., Schilperoort R. A. Grown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene. 1981 Jun-Jul;14(1-2):33–50. doi: 10.1016/0378-1119(81)90146-3. [DOI] [PubMed] [Google Scholar]
  28. Plesnicar M., Bendall D. S. The plastocyanin content of chloroplasts from some higher plants estimated by a sensitive enzymatic assay. Biochim Biophys Acta. 1970 Aug 4;216(1):192–199. doi: 10.1016/0005-2728(70)90170-2. [DOI] [PubMed] [Google Scholar]
  29. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  30. Rush J. D., Levine F., Koppenol W. H. The electron-transfer site of spinach plastocyanin. Biochemistry. 1988 Aug 9;27(16):5876–5884. doi: 10.1021/bi00416a009. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shen W. J., Forde B. G. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res. 1989 Oct 25;17(20):8385–8385. doi: 10.1093/nar/17.20.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Waye M. M., Verhoeyen M. E., Jones P. T., Winter G. EcoK selection vectors for shotgun cloning into M13 and deletion mutagenesis. Nucleic Acids Res. 1985 Dec 9;13(23):8561–8571. doi: 10.1093/nar/13.23.8561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 1983;100:468–500. doi: 10.1016/0076-6879(83)00074-9. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES