Abstract
In the present work, we announce the draft genomes for three new strains (U160, U164, and U233) of Leptospira santarosai, isolated from urine samples from asymptomatic cattle in Rio de Janeiro, Brazil.
GENOME ANNOUNCEMENT
The Leptospira genus comprises at least 22 species, of which 15 are classified as pathogenic, including L. interrogans, L. borgpetersenii, and L. santarosai (1–3). Leptospirosis is a reemerging worldwide-distributed zoonosis and may occur as asymptomatic or in an acute form (4–6). There is a lack of information about the host-pathogen interactions during leptospirosis (7). Therefore, the availability of new genomic sequences, covering different species, hosts, and manifestations of the disease, may provide very useful data to carry out comparative genomics and for better understanding the pathogen (8).
In the present work, we performed whole-genome sequencing of the strains U160 (serogroup Sarmin), U164 (serogroup Tarassovi), and U233 (serogroup Grippotyphosa) of Leptospira santarosai, isolated from urine samples of asymptomatic cattle in Rio de Janeiro, Brazil, previously described by Hamond et al. (9). The whole-genome shotgun sequencing was performed using the Illumina MiSeq platform with a paired-end library at Macrogen. All three genomes were de novo assembled using A5 (10), SGA (11), Ray (12), and CISA (13). For the genome annotation, open reading frames (ORFs) found by Prodigal (14) were aligned against a data set of proteins from the Leptospira genus from Uniprot (http://www.uniprot.org) using BLAST (15, 16) and against the AntiFam database (17) using HMMER (18). The tRNAs and rRNAs were predicted using tRNAscan-SE (19) and RNAmmer (20), respectively. For the prediction of other noncoding RNAs (ncRNAs) and regulatory sequences, a combination of BLASTn and Infernal (21) searches using the Rfam database (22) was used. A multilocus sequence typing (MLST) analysis was performed using BLASTn searches against the Leptospira MLST repository (http://leptospira.mlst.net).
The assembly resulted in 204 scaffolds (length, 4.2 Mb; N50, 40,346) for U160, 169 scaffolds (length, 4.1 Mb; N50; 72,508) for U164, and 152 scaffolds (length, 4.0 Mb; N50, 79,752) for U233. Using our annotation pipeline it was possible to identify 3,955 coding sequences (CDSs), 38 tRNAs, 4 rRNAs, 1 ncRNA, and 1 riboswitch on U160, 3,799 CDSs, 37 tRNAs, 4 rRNAs, 2 ncRNAs, and 2 riboswitches on U164, and 3,634 CDSs, 37 tRNAs, 6 rRNAs, 6 ncRNAs, and 2 riboswitches on U233. In the MLST analysis, U160 showed unique alleles for all the 7 loci, while U233 showed for only one locus and U164 had a perfect match for all loci. All isolates have unique allelic patterns if compared to the reference database, although a nearest-match search identified both U164 and U233 as close to the L. santarosai strain Aa 3. The uniqueness observed in these isolates might provide new information about the molecular variability and distribution of L. santarosai in South America.
Nucleotide sequence accession numbers.
These whole-genome shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accession numbers LAYP00000000 for U160, LAZM00000000 for U164, and LAZN00000000 for U233. The versions described in this paper are LAYP01000000, LAZM01000000, and LAZN01000000, respectively.
ACKNOWLEDGMENTS
We are grateful to Comissão Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) for the financial support.
Footnotes
Citation Kremer FS, Eslabão MR, Provisor M, Woloski RDS, Ramires OV, Moreno LZ, Moreno AM, Hamond C, Lilenbaum W, Dellagostin OA. 2015. Draft genome sequences of Leptospira santarosai strains U160, U164, and U233, isolated from asymptomatic cattle. Genome Announc 3(4):e00910-15. doi:10. 10.1128/genomeA.00910-15.
REFERENCES
- 1.Kmety E, Dikken H. 1993. Arrangement of serogroups and serovars, p 7–17. In Classification of the species Leptospira interrogans and history of its serovars. University Press; Groningen, Ithaca. [Google Scholar]
- 2.Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Bailey MS, Holden MT, Zhang C, Jiang X, Koizumi N, Taylor K, Galloway R, Hoffmaster AR, Craig S, Smythe LD, Hartskeerl RA, Day NP, Chantratita N, Feil EJ, Aanensen DM, Spratt BG, Peacock SJ. 2013. A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species. PLoS Negl Trop Dis 7:e1954. doi: 10.1371/journal.pntd.0001954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Bourhy P, Collet L, Brisse S, Picardeau M. 2014. Leptospira mayottensis sp. nov., a pathogenic species of the genus Leptospira isolated from humans. Int J Syst Evol Microbiol 64:4061–4067. doi: 10.1099/ijs.0.066597-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lilenbaum W, Martins G. 2014. Leptospirosis in cattle: a challenging scenario for the understanding of the epidemiology. Transbound Emerg Dis 61:63–68. doi: 10.1111/tbed.12233. [DOI] [PubMed] [Google Scholar]
- 5.Haake DA, Levett PN. 2015. Leptospirosis in humans. Curr Top Microbiol Immunol 387:65–97. doi: 10.1007/978-3-662-45059-8_5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Ellis WA. 2015. Animal leptospirosis. Curr Top Microbiol Immunol 387:99–137. doi: 10.1007/978-3-662-45059-8_6. [DOI] [PubMed] [Google Scholar]
- 7.Murray GL. 2015. The molecular basis of leptospiral pathogenesis. Curr Top Microbiol Immunol 387:139–185. doi: 10.1007/978-3-662-45059-8_7. [DOI] [PubMed] [Google Scholar]
- 8.Lehmann JS, Matthias MA, Vinetz JM, Fouts DE. 2014. Leptospiral pathogenomics. Pathogens 3:280–308. doi: 10.3390/pathogens3020280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Hamond C, Pinna M, Medeiros MA, Bourhy P, Lilenbaum W, Picardeau M. 2015. A multilocus variable number tandem repeat analysis assay provides high discrimination for genotyping Leptospira santarosai strains. J Med Microbiol 64:507–512. doi: 10.1099/jmm.0.000045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 7:e42304. doi: 10.1371/journal.pone.0042304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Simpson JT, Durbin R. 2012. Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22:549–556. doi: 10.1101/gr.126953.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 17:1519–1533. doi: 10.1089/cmb.2009.0238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lin S-H, Liao Y-C. 2013. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 8:e60843. doi: 10.1371/journal.pone.0060843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- 16.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi: 10.1186/1471-2105-10-421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Eberhardt RY, Haft DH, Punta M, Martin M, O’Donovan C, Bateman A. 2012. AntiFam: a tool to help identify spurious ORFs in protein annotation. Database (Oxford) 2012:bas003. doi: 10.1093/database/bas003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi: 10.1371/journal.pcbi.1002195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. doi: 10.1093/nar/25.5.0955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi: 10.1093/nar/gkm160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337. doi: 10.1093/bioinformatics/btp157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. 2003. Rfam: an RNA family database. Nucleic Acids Res 31:439–441. doi: 10.1093/nar/gkg006. [DOI] [PMC free article] [PubMed] [Google Scholar]