Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Aug 6;3(4):e00766-15. doi: 10.1128/genomeA.00766-15

Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients

Ruhi A M Bloodworth a, Carrie Selin a, Maria Agustina López De Volder b, Pavel Drevinek c, Laura Galanternik d, José Degrossi b, Silvia T Cardona a,e,
PMCID: PMC4541265  PMID: 26251482

Abstract

Burkholderia contaminans belongs to the Burkholderia cepacia complex (BCC), a group of bacteria that are ubiquitous in the environment and capable of infecting the immunocompromised and people with cystic fibrosis. We report here draft genome sequences for the B. contaminans type strain LMG 23361 and an Argentinian cystic fibrosis sputum isolate.

GENOME ANNOUNCEMENT

Burkholderia contaminans (1) is a species of the Burkholderia cepacia complex (BCC), a group of at least 17 species that infect immunocompromised individuals, in particular those with cystic fibrosis (CF) (2, 3). While B. cenocepacia and Burkholderia multivorans are more prevalent in CF patients in the United States and Canada (4), B. contaminans is highly represented in Argentina and Portugal (5, 6), and its incidence is increasing in Spain (7). B. contaminans (1) received its species name in reference to the contamination of a Sargasso Sea DNA sample (8) with the so-called Burkholderia SAR-1 metagenome (9). Intriguingly, B. contaminans has also been found as a contaminant of pharmaceutical products (10, 11). Thus, genome sequence analysis is expected to shed light on whether B. contaminans has an enhanced capacity to survive in harsh environments in comparison with other BCC species that are also isolated from man-made products (12). Here, we used single-molecule real-time (SMRT) sequencing to sequence the genomes of B. contaminans LMG 23361 (1), the type strain for the species, and B. contaminans FFH2055, an isolate from the sputum from a CF patient in Buenos Aires, Argentina.

Cultures were grown in LB, and genomic DNA was isolated using phenol-chloroform, as per Sambrook and Russell (13). Sequencing-ready libraries were prepared at the Duke University Genome Sequencing & Analysis Core Resource. DNA sequencing was performed using the PacBio RS II system and yielded 237,907 reads with a mean length of 8.7 kb for LMG23361, and 256,171 reads with a mean read length of 7 kb for FFH2055. The reads were assembled using HGAP (14) (PacBio SMRT Analysis software version 2.3), followed by polishing using Quiver (PacBio). The assembly of LMG23361 consisted of 17 contigs containing 9.2 Mb of sequence, while the FFH2055 assembly contained 8.2 Mb organized into 8 contigs. Species in the genus Burkholderia are known for having large multipart genomes, and the sizes of our assemblies fell within the range of 7.4 to 9.73 Mb seen in previously sequenced genomes (15). Annotation of the assemblies with RAST (16) identified 8,674 and 7,641 open reading frames in LMG23361 and FFH2055, respectively, which fall within the range previously seen in BCC species. LMG23361 contained the complete core genome conserved across the order Burkholderiales (17), while FFH2055 was missing 8 conserved genes.

To our knowledge, the draft genome sequence of FFH2055 is the first produced for a B. contaminans strain isolated from a cystic fibrosis patient. This provides a starting point for investigating the emerging prevalence of this new BCC pathogen.

Nucleotide sequence accession numbers.

The B. contaminans LMG23361 and B. contaminans FFH2055 draft genomes have been deposited at DDBJ/EMBL/GenBank under the accession numbers LASD00000000 and LASC00000000, respectively. The versions described in this paper are the first versions, LASD01000000 and LASC01000000.

ACKNOWLEDGMENTS

This work was made possible by funding from the Canadian International Development Research Centre (IDRC) Canada-Latin America and the Caribbean Research Exchange grants program (314933) and a University of Manitoba research grant (315366).

We thank John J. LiPuma for kindly providing B. cenocepacia LMG23361 and Hospital de Niños Ricardo Gutierrez, Buenos Aires, for kindly providing B. cenocepacia FFH2055.

Footnotes

Citation Bloodworth RAM, Selin C, López De Volder MA, Drevinek P, Galanternik L, Degrossi J, Cardona ST. 2015. Draft genome sequences of Burkholderia contaminans, a Burkholderia cepacia complex species that is increasingly recovered from cystic fibrosis patients. Genome Announc 3(4):e00766-15. doi:10.1128/genomeA.00766-15.

REFERENCES

  • 1.Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P. 2009. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111. doi: 10.1099/ijs.0.001123-0. [DOI] [PubMed] [Google Scholar]
  • 2.Mahenthiralingam E, Urban TA, Goldberg JB. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. doi: 10.1038/nrmicro1085. [DOI] [PubMed] [Google Scholar]
  • 3.Vandamme P, Dawyndt P. 2011. Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 34:87–95. doi: 10.1016/j.syapm.2010.10.002. [DOI] [PubMed] [Google Scholar]
  • 4.Drevinek P, Mahenthiralingam E. 2010. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830. doi: 10.1111/j.1469-0691.2010.03237.x. [DOI] [PubMed] [Google Scholar]
  • 5.Martina P, Bettiol M, Vescina C, Montanaro P, Mannino MC, Prieto CI, Vay C, Naumann D, Schmitt J, Yantorno O, Lagares A, Bosch A. 2013. Genetic diversity of Burkholderia contaminans isolates from cystic fibrosis patients in Argentina. J Clin Microbiol 51:339–344. doi: 10.1128/JCM.02500-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Coutinho CP, Barreto C, Pereira L, Lito L, Melo Cristino J, Sá-Correia I.. 22 May 2015. Incidence of Burkholderia contaminans at a cystic fibrosis center with an unusually high representation of Burkholderia cepacia during 15 years of epidemiological surveillance. J Med Microbiol. doi: 10.1099/jmm.0.000094. [DOI] [PubMed] [Google Scholar]
  • 7.Medina-Pascual MJ, Valdezate S, Carrasco G, Villalón P, Garrido N, Saéz-Nieto JA. 2015. Increase in isolation of Burkholderia contaminans from Spanish patients with cystic fibrosis. Clin Microbiol Infect 21:150–156. doi: 10.1016/j.cmi.2014.07.014. [DOI] [PubMed] [Google Scholar]
  • 8.Mahenthiralingam E, Baldwin A, Drevinek P, Vanlaere E, Vandamme P, LiPuma JJ, Dowson CG. 2006. Multilocus sequence typing breathes life into a microbial metagenome. PLoS One 1:e17. doi: 10.1371/journal.pone.0000017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi: 10.1126/science.1093857. [DOI] [PubMed] [Google Scholar]
  • 10.Martin M, Christiansen B, Caspari G, Hogardt M, von Thomsen AJ, Ott E, Mattner F. 2011. Hospital-wide outbreak of Burkholderia contaminans caused by prefabricated moist washcloths. J Hosp Infect 77:267–270. doi: 10.1016/j.jhin.2010.10.004. [DOI] [PubMed] [Google Scholar]
  • 11.Moehring RW, Lewis SS, Isaacs PJ, Schell WA, Thomann WR, Althaus MM, Hazen KC, Dicks KV, Lipuma JJ, Chen LF, Sexton DJ. 2014. Outbreak of bacteremia due to Burkholderia contaminans linked to intravenous fentanyl from an institutional compounding pharmacy. JAMA Intern Med 174:606–612. doi: 10.1001/jamainternmed.2013.13768. [DOI] [PubMed] [Google Scholar]
  • 12.Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D. 2011. Burkholderia cepacia: this decision is overdue. PDA J Pharm Sci Technol 65:535–543. doi: 10.5731/pdajpst.2011.00793. [DOI] [PubMed] [Google Scholar]
  • 13.Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. [Google Scholar]
  • 14.Chin C, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 15.Ussery DW, Kiil K, Lagesen K, Sicheritz-Ponten T, Bohlin J, Wassenaar TM. 2009. The genus Burkholderia: analysis of 56 genomic sequences. Genome Dyn 6:140–157. doi: 10.1159/000235768. [DOI] [PubMed] [Google Scholar]
  • 16.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75-2164-9-75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Juhas M, Stark M, von Mering C, Lumjiaktase P, Crook DW, Valvano MA, Eberl L. 2012. High confidence prediction of essential genes in Burkholderia cenocepacia. PLoS One 7:e40064. doi: 10.1371/journal.pone.0040064. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES