Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1988 Jan;7(1):69–75. doi: 10.1002/j.1460-2075.1988.tb02784.x

Alpha-helix in the carboxy-terminal domains of histones H1 and H5.

D J Clark 1, C S Hill 1, S R Martin 1, J O Thomas 1
PMCID: PMC454216  PMID: 3359996

Abstract

Although the carboxy-terminal domains of histones H1 and H5 exist as random-coil in aqueous solution, secondary structure prediction suggests that this region has a high potential for alpha-helix formation. We have measured CD spectra in various conditions known to stabilize alpha-helices, to determine whether this potential can be realized in an appropriate environment. Trifluoroethanol increases the helix contents of H1, H5 and their carboxy-terminal fragments, presumably through promotion of axial hydrogen bonding. Sodium perchlorate is also effective and better than sodium chloride, suggesting stabilization by binding of bulky perchlorate ions rather than simple charge screening. Extrapolating from these measurements in solution, and taking into account the occurrence of proline residues throughout the carboxy-terminal domain, we propose that binding to DNA stabilizes helical segments in the carboxy-terminal domains of histones H1 and H5, and that it is this structured form of the domain that is functionally important in chromatin.

Full text

PDF
69

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J., Hartman P. G., Crane-Robinson C., Aviles F. X. The structure of histone H1 and its location in chromatin. Nature. 1980 Dec 25;288(5792):675–679. doi: 10.1038/288675a0. [DOI] [PubMed] [Google Scholar]
  2. Allan J., Mitchell T., Harborne N., Bohm L., Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol. 1986 Feb 20;187(4):591–601. doi: 10.1016/0022-2836(86)90337-2. [DOI] [PubMed] [Google Scholar]
  3. Aviles F. J., Chapman G. E., Kneale G. G., Crane-Robinson C., Bradbury E. M. The conformation of histone H5. Isolation and characterisation of the globular segment. Eur J Biochem. 1978 Aug 1;88(2):363–371. doi: 10.1111/j.1432-1033.1978.tb12457.x. [DOI] [PubMed] [Google Scholar]
  4. Banks R. D., Blake C. C., Evans P. R., Haser R., Rice D. W., Hardy G. W., Merrett M., Phillips A. W. Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature. 1979 Jun 28;279(5716):773–777. doi: 10.1038/279773a0. [DOI] [PubMed] [Google Scholar]
  5. Barbero J. L., Franco L., Montero F., Morán F. Structural studies on histones H1. Circular dichroism and difference spectroscopy of the histones H1 and their trypsin-resistant cores from calf thymus and from the fruit fly Ceratitis capitata. Biochemistry. 1980 Aug 19;19(17):4080–4087. doi: 10.1021/bi00558a027. [DOI] [PubMed] [Google Scholar]
  6. Bates D. L., Butler P. J., Pearson E. C., Thomas J. O. Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem. 1981 Oct;119(3):469–476. doi: 10.1111/j.1432-1033.1981.tb05631.x. [DOI] [PubMed] [Google Scholar]
  7. Boublík M. Optical rotatory dispersion and nuclear magnetic resonance. Studies of helix coil transitions in poly-L-arginine, poly-L-lysine and histones. Eur J Biochem. 1970 Feb;12(2):258–263. doi: 10.1111/j.1432-1033.1970.tb00845.x. [DOI] [PubMed] [Google Scholar]
  8. Bradbury E. M., Cary P. D., Chapman G. E., Crane-Robinson C., Danby S. E., Rattle H. W., Boublik M., Palau J., Aviles F. J. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The conformation of histone H1. Eur J Biochem. 1975 Apr 1;52(3):605–613. doi: 10.1111/j.1432-1033.1975.tb04032.x. [DOI] [PubMed] [Google Scholar]
  9. Briand G., Kmiecik D., Sautiere P., Wouters D., Borie-Loy O., Biserte G., Mazen A., Champagne M. Chicken erythrocyte histone H5. IV. Sequence of the carboxy-termined half of the molecule (96 residues) and complete sequence. FEBS Lett. 1980 Apr 7;112(2):147–151. doi: 10.1016/0014-5793(80)80167-0. [DOI] [PubMed] [Google Scholar]
  10. Buehner M., Ford G. C., Olsen K. W., Moras D., Rossman M. G. Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1974 Nov 25;90(1):25–49. doi: 10.1016/0022-2836(74)90254-x. [DOI] [PubMed] [Google Scholar]
  11. Butler P. J. A defined structure of the 30 nm chromatin fibre which accommodates different nucleosomal repeat lengths. EMBO J. 1984 Nov;3(11):2599–2604. doi: 10.1002/j.1460-2075.1984.tb02180.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carroll D. Complexes of polylysine with polyuridylic acid and other polynucleotides. Biochemistry. 1972 Feb 1;11(3):426–433. doi: 10.1021/bi00753a020. [DOI] [PubMed] [Google Scholar]
  13. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  14. Clark D. J., Thomas J. O. Salt-dependent co-operative interaction of histone H1 with linear DNA. J Mol Biol. 1986 Feb 20;187(4):569–580. doi: 10.1016/0022-2836(86)90335-9. [DOI] [PubMed] [Google Scholar]
  15. Clore G. M., Gronenborn A. M., Nilges M., Sukumaran D. K., Zarbock J. The polypeptide fold of the globular domain of histone H5 in solution. A study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 1987 Jun;6(6):1833–1842. doi: 10.1002/j.1460-2075.1987.tb02438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Coles L. S., Robins A. J., Madley L. K., Wells J. R. Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate H1 protein sequences. J Biol Chem. 1987 Jul 15;262(20):9656–9663. [PubMed] [Google Scholar]
  17. Compton J. L., Bellard M., Chambon P. Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4382–4386. doi: 10.1073/pnas.73.12.4382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Crane-Robinson C., Dancy S. E., Bradbury E. M., Garel A., Kovacs A. M., Champagne M., Daune M. Structural studies of chicken erythrocyte histone H5. Eur J Biochem. 1976 Aug 16;67(2):379–388. doi: 10.1111/j.1432-1033.1976.tb10702.x. [DOI] [PubMed] [Google Scholar]
  19. De Petrocellis L., Quagliarotti G., Tomei L., Geraci G. Structuring of H1 histone. Evidence of high-affinity binding sites for phosphate ions. Eur J Biochem. 1986 Apr 1;156(1):143–148. doi: 10.1111/j.1432-1033.1986.tb09559.x. [DOI] [PubMed] [Google Scholar]
  20. Dupressoir T., Sautiere P. Isolation and characterization of five subfractions of chicken erythrocyte histone H1. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1136–1145. doi: 10.1016/0006-291x(84)91210-5. [DOI] [PubMed] [Google Scholar]
  21. Garel A., Kovacs A. M., Champagne M., Daune M. Comparison between histones FV and F2a2 of chicken erythrocyte. I. Structure, stability and conformation of the free proteins. Biochim Biophys Acta. 1975 Jun 2;395(1):5–15. doi: 10.1016/0005-2787(75)90228-2. [DOI] [PubMed] [Google Scholar]
  22. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  23. Giancotti V., Russo E., Cosimi S., Cary P. D., Crane-Robinson C. Secondary and tertiary structural differences between histone H1 molecules from calf thymus and sea-urchin (Sphaerechinus granularis) sperm. Biochem J. 1981 Sep 1;197(3):655–660. doi: 10.1042/bj1970655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Greenfield N., Davidson B., Fasman G. D. The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry. 1967 Jun;6(6):1630–1637. doi: 10.1021/bi00858a009. [DOI] [PubMed] [Google Scholar]
  25. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  26. Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liao L. W., Cole R. D. Differences among subfractions of H1 histone in their interactions with linear and superhelical DNA. Circular dichroism. J Biol Chem. 1981 Jul 10;256(13):6751–6755. [PubMed] [Google Scholar]
  28. Mirzabekov A. D., San'ko D. F., Kolchinsky A. M., Melnikova A. F. Protein arrangement in the DNA grooves in chromatin and nucleoprotamine in vitro and in vivo revealed by methylation. Eur J Biochem. 1977 May 16;75(2):379–389. doi: 10.1111/j.1432-1033.1977.tb11539.x. [DOI] [PubMed] [Google Scholar]
  29. Morris N. R. A comparison of the structure of chicken erythrocyte and chicken liver chromatin. Cell. 1976 Dec;9(4 Pt 1):627–632. doi: 10.1016/0092-8674(76)90045-3. [DOI] [PubMed] [Google Scholar]
  30. Morán F., Montero F., Azorín F., Suau P. Condensation of DNA by the C-terminal domain of histone H1. A circular dichroism study. Biophys Chem. 1985 Jun;22(1-2):125–129. doi: 10.1016/0301-4622(85)80033-8. [DOI] [PubMed] [Google Scholar]
  31. NEELIN J. M., CALLAHAN P. X., LAMB D. C., MURRAY K. THE HISTONES OF CHICKEN ERYTHROCYTE NUCLEI. Can J Biochem. 1964 Dec;42:1743–1752. doi: 10.1139/o64-185. [DOI] [PubMed] [Google Scholar]
  32. Poccia D. L., Simpson M. V., Green G. R. Transitions in histone variants during sea urchin spermatogenesis. Dev Biol. 1987 Jun;121(2):445–453. doi: 10.1016/0012-1606(87)90181-3. [DOI] [PubMed] [Google Scholar]
  33. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  34. Rifkind J. M. Helix--coil transition of poly-L-arginine: a comparison with other basic polypeptides. Biopolymers. 1969;8(5):685–688. doi: 10.1002/bip.1969.360080510. [DOI] [PubMed] [Google Scholar]
  35. Shannon M. F., Wells J. R. Characterization of the six chicken histone H1 proteins and alignment with their respective genes. J Biol Chem. 1987 Jul 15;262(20):9664–9668. [PubMed] [Google Scholar]
  36. Shimidzu M., Shindo H., Matsumoto U., Mita K., Zama M. Distinction and similarity in the structure of histones H1 and H5 as indicated by 13C nuclear-magnetic-resonance spectroscopy. Eur J Biochem. 1985 May 2;148(3):431–436. doi: 10.1111/j.1432-1033.1985.tb08857.x. [DOI] [PubMed] [Google Scholar]
  37. Strickland W. N., Strickland M., Brandt W. F., Von Holt C., Lehmann A., Wittmann-Liebold B. The primary structure of histone H1 from sperm of the sea urchin Parechinus angulosus. 2. Sequence of the C-terminal CNBr peptide and the entire primary structure. Eur J Biochem. 1980 Mar;104(2):567–578. doi: 10.1111/j.1432-1033.1980.tb04460.x. [DOI] [PubMed] [Google Scholar]
  38. Sugarman B. J., Dodgson J. B., Engel J. D. Genomic organization, DNA sequence, and expression of chicken embryonic histone genes. J Biol Chem. 1983 Jul 25;258(14):9005–9016. [PubMed] [Google Scholar]
  39. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thomas J. O., Kornberg R. D. The study of histone--histone associations by chemical cross-linking. Methods Cell Biol. 1978;18:429–440. [PubMed] [Google Scholar]
  41. Thomas J. O., Rees C., Butler P. J. Salt-induced folding of sea urchin sperm chromatin. Eur J Biochem. 1986 Jan 15;154(2):343–348. doi: 10.1111/j.1432-1033.1986.tb09403.x. [DOI] [PubMed] [Google Scholar]
  42. Tinoco I., Jr, Bustamante C., Maestre M. F. The optical activity of nucleic acids and their aggregates. Annu Rev Biophys Bioeng. 1980;9:107–141. doi: 10.1146/annurev.bb.09.060180.000543. [DOI] [PubMed] [Google Scholar]
  43. Wagner T. E., Hartford J. B., Serra M., Vandegrift V., Sung M. T. Phosphorylation and dephosphorylation of histone (V (H5): controlled condensation of avian erythrocyte chromatin. Appendix: Phosphorylation and dephosphorylation of histone H5. II. Circular dichroic studies. Biochemistry. 1977 Jan 25;16(2):286–290. doi: 10.1021/bi00621a020. [DOI] [PubMed] [Google Scholar]
  44. Warrant R. W., Kim S. H. alpha-Helix-double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model. Nature. 1978 Jan 12;271(5641):130–135. doi: 10.1038/271130a0. [DOI] [PubMed] [Google Scholar]
  45. Widom J., Finch J. T., Thomas J. O. Higher-order structure of long repeat chromatin. EMBO J. 1985 Dec 1;4(12):3189–3194. doi: 10.1002/j.1460-2075.1985.tb04064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van Helden P. D. A theoretical consideration of the lysine-rich histones: H1 from a mammal and an echinoderm, H5 from erythrocytes. J Theor Biol. 1982 Jun 7;96(3):327–336. doi: 10.1016/0022-5193(82)90113-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES