Abstract
A brain nucleus that is important for the generation of song in the adult male zebra finch (Poephila guttata), the robust nucleus of the archistriatum (RA), receives dual inputs from two other telencephalic song nuclei: the hyperstriatum ventrale pars caudale (HVc) and the lateral magnocellular nucleus of the anterior neostriatum (L-MAN). We lesioned each of these afferent inputs to the RA early in development, either by themselves or both at the same time in the same side of the brain, to determine what influences each of these nuclei exerts on the normal development of the RA into adulthood. We found that lesioning the HVc in a 20-day-old male zebra finch prevents the later increase in RA volume and soma size that would normally occur around 35 days post-hatching. MAN lesions at this same early age, on the other hand, had a large effect on reducing the volume and cell number of RA neurons, without affecting soma size. Lesioning both inputs early in development induced considerable RA neuronal cell death and atrophy of the nucleus. This study shows that the development of the RA is affected differently by each of its two input nuclei.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bottjer S. W., Halsema K. A., Brown S. A., Miesner E. A. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J Comp Neurol. 1989 Jan 8;279(2):312–326. doi: 10.1002/cne.902790211. [DOI] [PubMed] [Google Scholar]
- Bottjer S. W., Miesner E. A., Arnold A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science. 1984 May 25;224(4651):901–903. doi: 10.1126/science.6719123. [DOI] [PubMed] [Google Scholar]
- Catsicas M., Péquignot Y., Clarke P. G. Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development. J Neurosci. 1992 Dec;12(12):4642–4650. doi: 10.1523/JNEUROSCI.12-12-04642.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrmann K., Arnold A. P. The development of afferent projections to the robust archistriatal nucleus in male zebra finches: a quantitative electron microscopic study. J Neurosci. 1991 Jul;11(7):2063–2074. doi: 10.1523/JNEUROSCI.11-07-02063.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi M., Akutagawa E. A critical period for estrogen action on neurons of the song control system in the zebra finch. Proc Natl Acad Sci U S A. 1988 Sep;85(18):7006–7007. doi: 10.1073/pnas.85.18.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi M., Akutagawa E. Hormonal control of cell death in a sexually dimorphic song nucleus in the zebra finch. Ciba Found Symp. 1987;126:173–185. doi: 10.1002/9780470513422.ch11. [DOI] [PubMed] [Google Scholar]
- Konishi M., Akutagawa E. Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch brain. Nature. 1985 May 9;315(6015):145–147. doi: 10.1038/315145a0. [DOI] [PubMed] [Google Scholar]
- Mooney R. Synaptic basis for developmental plasticity in a birdsong nucleus. J Neurosci. 1992 Jul;12(7):2464–2477. doi: 10.1523/JNEUROSCI.12-07-02464.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordeen E. J., Grace A., Burek M. J., Nordeen K. W. Sex-dependent loss of projection neurons involved in avian song learning. J Neurobiol. 1992 Aug;23(6):671–679. doi: 10.1002/neu.480230606. [DOI] [PubMed] [Google Scholar]
- Nottebohm F., Arnold A. P. Sexual dimorphism in vocal control areas of the songbird brain. Science. 1976 Oct 8;194(4261):211–213. doi: 10.1126/science.959852. [DOI] [PubMed] [Google Scholar]
- Nottebohm F., Stokes T. M., Leonard C. M. Central control of song in the canary, Serinus canarius. J Comp Neurol. 1976 Feb 15;165(4):457–486. doi: 10.1002/cne.901650405. [DOI] [PubMed] [Google Scholar]
- Okado N., Oppenheim R. W. Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs. J Neurosci. 1984 Jun;4(6):1639–1652. doi: 10.1523/JNEUROSCI.04-06-01639.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuhata S., Saito N. Synaptic connections of thalamo-cerebral vocal nuclei of the canary. Brain Res Bull. 1987 Jan;18(1):35–44. doi: 10.1016/0361-9230(87)90031-1. [DOI] [PubMed] [Google Scholar]
- Oppenheim R. W., Yin Q. W., Prevette D., Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature. 1992 Dec 24;360(6406):755–757. doi: 10.1038/360755a0. [DOI] [PubMed] [Google Scholar]
- Scharff C., Nottebohm F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci. 1991 Sep;11(9):2896–2913. doi: 10.1523/JNEUROSCI.11-09-02896.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sohrabji F., Nordeen E. J., Nordeen K. W. Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol. 1990 Jan;53(1):51–63. doi: 10.1016/0163-1047(90)90797-a. [DOI] [PubMed] [Google Scholar]
- Stryker M. P., Harris W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci. 1986 Aug;6(8):2117–2133. doi: 10.1523/JNEUROSCI.06-08-02117.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veenman C. L., Reiner A., Honig M. G. Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods. 1992 Mar;41(3):239–254. doi: 10.1016/0165-0270(92)90089-v. [DOI] [PubMed] [Google Scholar]