Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Dec 20;91(26):12828–12831. doi: 10.1073/pnas.91.26.12828

Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore.

J E Gouaux 1, O Braha 1, M R Hobaugh 1, L Song 1, S Cheley 1, C Shustak 1, H Bayley 1
PMCID: PMC45533  PMID: 7809129

Abstract

Elucidation of the accurate subunit stoichiometry of oligomeric membrane proteins is fraught with complexities. The interpretations of chemical cross-linking, analytical ultracentrifugation, gel filtration, and low-resolution electron microscopy studies are often ambiguous. Staphylococcal alpha-hemolysin (alpha HL), a homooligomeric toxin that forms channels in cell membranes, was believed to possess six subunits arranged around a sixfold axis of symmetry. Here, we report that analysis of x-ray diffraction data and chemical modification experiments indicate that the alpha HL oligomer is a heptamer. Self-rotation functions calculated using x-ray diffraction data from single crystals of alpha HL oligomers show a sevenfold axis of rotational symmetry. The alpha HL pore formed on rabbit erythrocyte membranes was determined to be a heptamer by electrophoretic separation of alpha HL heteromers formed from subunits with the charge of wild-type alpha HL and subunits with additional negative charge generated by targeted chemical modification of a single-cysteine mutant. These data establish the heptameric oligomerization state of the alpha HL transmembrane pore both in three-dimensional crystals and on a biological membrane.

Full text

PDF
12828

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbuthnott J. P., Freer J. H., Bernheimer A. W. Physical states of staphylococcal alpha-toxin. J Bacteriol. 1967 Oct;94(4):1170–1177. doi: 10.1128/jb.94.4.1170-1177.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baron C., Thompson T. E. Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoyl phosphatidylcholine. Biochim Biophys Acta. 1975 Mar 25;382(3):276–285. doi: 10.1016/0005-2736(75)90270-9. [DOI] [PubMed] [Google Scholar]
  3. Bhakdi S., Füssle R., Tranum-Jensen J. Staphylococcal alpha-toxin: oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5475–5479. doi: 10.1073/pnas.78.9.5475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brzozowski A. M. Crystallization of a Humicola lanuginosa lipase-inhibitor complex with the use of polyethylene glycol monomethyl ether. Acta Crystallogr D Biol Crystallogr. 1993 May 1;49(Pt 3):352–354. doi: 10.1107/S0907444993000952. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E. Counting integral numbers of amino acid residues per polypeptide chain. Nature. 1980 Apr 3;284(5755):487–489. doi: 10.1038/284487a0. [DOI] [PubMed] [Google Scholar]
  7. Forst D., Schülein K., Wacker T., Diederichs K., Kreutz W., Benz R., Welte W. Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J Mol Biol. 1993 Jan 5;229(1):258–262. doi: 10.1006/jmbi.1993.1028. [DOI] [PubMed] [Google Scholar]
  8. Füssle R., Bhakdi S., Sziegoleit A., Tranum-Jensen J., Kranz T., Wellensiek H. J. On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Cell Biol. 1981 Oct;91(1):83–94. doi: 10.1083/jcb.91.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garavito R. M., Rosenbusch J. P. Three-dimensional crystals of an integral membrane protein: an initial x-ray analysis. J Cell Biol. 1980 Jul;86(1):327–329. doi: 10.1083/jcb.86.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green M. J., Buckley J. T. Site-directed mutagenesis of the hole-forming toxin aerolysin: studies on the roles of histidines in receptor binding and oligomerization of the monomer. Biochemistry. 1990 Feb 27;29(8):2177–2180. doi: 10.1021/bi00460a031. [DOI] [PubMed] [Google Scholar]
  11. Hebert H., Olofsson A., Thelestam M., Skriver E. Oligomer formation of staphylococcal alpha-toxin analyzed by electron microscopy and image processing. FEMS Microbiol Immunol. 1992 Sep;5(1-3):5–12. doi: 10.1111/j.1574-6968.1992.tb05880.x. [DOI] [PubMed] [Google Scholar]
  12. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  13. Ikigai H., Nakae T. Conformational alteration in alpha-toxin from Staphylococcus aureus concomitant with the transformation of the water-soluble monomer to the membrane oligomer. Biochem Biophys Res Commun. 1985 Jul 16;130(1):175–181. doi: 10.1016/0006-291x(85)90398-5. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Ludwig D. S., Ribi H. O., Schoolnik G. K., Kornberg R. D. Two-dimensional crystals of cholera toxin B-subunit-receptor complexes: projected structure at 17-A resolution. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8585–8588. doi: 10.1073/pnas.83.22.8585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  17. McNiven A. C., Owen P., Arbuthnott J. P. Multiple forms of staphylococcal alpha-toxin. J Med Microbiol. 1972 Feb;5(1):113–122. doi: 10.1099/00222615-5-1-113. [DOI] [PubMed] [Google Scholar]
  18. Michel H., Oesterhelt D. Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1283–1285. doi: 10.1073/pnas.77.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Michel H. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1982 Jul 5;158(3):567–572. doi: 10.1016/0022-2836(82)90216-9. [DOI] [PubMed] [Google Scholar]
  20. Musil L. S., Goodenough D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993 Sep 24;74(6):1065–1077. doi: 10.1016/0092-8674(93)90728-9. [DOI] [PubMed] [Google Scholar]
  21. Olofsson A., Kavéus U., Thelestam M., Hebert H. The projection structure of alpha-toxin from Staphylococcus aureus in human platelet membranes as analyzed by electron microscopy and image processing. J Ultrastruct Mol Struct Res. 1988 Aug;100(2):194–200. doi: 10.1016/0889-1605(88)90026-2. [DOI] [PubMed] [Google Scholar]
  22. Olofsson A., Kavéus U., Thelestam M., Hebert H. The three-dimensional structure of trypsin-treated Staphylococcus aureus alpha-toxin. J Struct Biol. 1992 May-Jun;108(3):238–244. doi: 10.1016/1047-8477(92)90024-5. [DOI] [PubMed] [Google Scholar]
  23. Spangler B. D., Westbrook E. M. Crystallization of isoelectrically homogeneous cholera toxin. Biochemistry. 1989 Feb 7;28(3):1333–1340. doi: 10.1021/bi00429a059. [DOI] [PubMed] [Google Scholar]
  24. Tobkes N., Wallace B. A., Bayley H. Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry. 1985 Apr 9;24(8):1915–1920. doi: 10.1021/bi00329a017. [DOI] [PubMed] [Google Scholar]
  25. Unwin P. N., Ennis P. D. Two configurations of a channel-forming membrane protein. Nature. 1984 Feb 16;307(5952):609–613. doi: 10.1038/307609a0. [DOI] [PubMed] [Google Scholar]
  26. Walker B., Bayley H. A pore-forming protein with a protease-activated trigger. Protein Eng. 1994 Jan;7(1):91–97. doi: 10.1093/protein/7.1.91. [DOI] [PubMed] [Google Scholar]
  27. Walker B., Kasianowicz J., Krishnasastry M., Bayley H. A pore-forming protein with a metal-actuated switch. Protein Eng. 1994 May;7(5):655–662. doi: 10.1093/protein/7.5.655. [DOI] [PubMed] [Google Scholar]
  28. Walker B., Krishnasastry M., Bayley H. Functional complementation of staphylococcal alpha-hemolysin fragments. Overlaps, nicks, and gaps in the glycine-rich loop. J Biol Chem. 1993 Mar 5;268(7):5285–5292. [PubMed] [Google Scholar]
  29. Walker B., Krishnasastry M., Zorn L., Bayley H. Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J Biol Chem. 1992 Oct 25;267(30):21782–21786. [PubMed] [Google Scholar]
  30. Walker B., Krishnasastry M., Zorn L., Kasianowicz J., Bayley H. Functional expression of the alpha-hemolysin of Staphylococcus aureus in intact Escherichia coli and in cell lysates. Deletion of five C-terminal amino acids selectively impairs hemolytic activity. J Biol Chem. 1992 May 25;267(15):10902–10909. [PubMed] [Google Scholar]
  31. Ward R. J., Leonard K. The Staphylococcus aureus alpha-toxin channel complex and the effect of Ca2+ ions on its interaction with lipid layers. J Struct Biol. 1992 Sep-Oct;109(2):129–141. doi: 10.1016/1047-8477(92)90044-b. [DOI] [PubMed] [Google Scholar]
  32. Ward R. J., Palmer M., Leonard K., Bhakdi S. Identification of a putative membrane-inserted segment in the alpha-toxin of Staphylococcus aureus. Biochemistry. 1994 Jun 14;33(23):7477–7484. doi: 10.1021/bi00189a056. [DOI] [PubMed] [Google Scholar]
  33. Wilmsen H. U., Leonard K. R., Tichelaar W., Buckley J. T., Pattus F. The aerolysin membrane channel is formed by heptamerization of the monomer. EMBO J. 1992 Jul;11(7):2457–2463. doi: 10.1002/j.1460-2075.1992.tb05310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van der Goot F. G., Ausio J., Wong K. R., Pattus F., Buckley J. T. Dimerization stabilizes the pore-forming toxin aerolysin in solution. J Biol Chem. 1993 Aug 25;268(24):18272–18279. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES