Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Dec 20;91(26):12887–12891. doi: 10.1073/pnas.91.26.12887

Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

H M Hoffmann 1, K M Catron 1, A J van Wijnen 1, L R McCabe 1, J B Lian 1, G S Stein 1, J L Stein 1
PMCID: PMC45545  PMID: 7809141

Abstract

The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

Full text

PDF
12887

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abate C., Luk D., Gentz R., Rauscher F. J., 3rd, Curran T. Expression and purification of the leucine zipper and DNA-binding domains of Fos and Jun: both Fos and Jun contact DNA directly. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1032–1036. doi: 10.1073/pnas.87.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akam M. The molecular basis for metameric pattern in the Drosophila embryo. Development. 1987 Sep;101(1):1–22. [PubMed] [Google Scholar]
  3. Baker A. R., Hollingshead P. G., Pitts-Meek S., Hansen S., Taylor R., Stewart T. A. Osteoblast-specific expression of growth hormone stimulates bone growth in transgenic mice. Mol Cell Biol. 1992 Dec;12(12):5541–5547. doi: 10.1128/mcb.12.12.5541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bortell R., Owen T. A., Bidwell J. P., Gavazzo P., Breen E., van Wijnen A. J., DeLuca H. F., Stein J. L., Lian J. B., Stein G. S. Vitamin D-responsive protein-DNA interactions at multiple promoter regulatory elements that contribute to the level of rat osteocalcin gene expression. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6119–6123. doi: 10.1073/pnas.89.13.6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bortell R., Owen T. A., Shalhoub V., Heinrichs A., Aronow M. A., Rochette-Egly C., Lutz Y., Stein J. L., Lian J. B., Stein G. S. Constitutive transcription of the osteocalcin gene in osteosarcoma cells is reflected by altered protein-DNA interactions at promoter regulatory elements. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2300–2304. doi: 10.1073/pnas.90.6.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catron K. M., Iler N., Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol. 1993 Apr;13(4):2354–2365. doi: 10.1128/mcb.13.4.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Demay M. B., Roth D. A., Kronenberg H. M. Regions of the rat osteocalcin gene which mediate the effect of 1,25-dihydroxyvitamin D3 on gene transcription. J Biol Chem. 1989 Feb 5;264(4):2279–2282. [PubMed] [Google Scholar]
  9. Gehring W. J. Homeo boxes in the study of development. Science. 1987 Jun 5;236(4806):1245–1252. doi: 10.1126/science.2884726. [DOI] [PubMed] [Google Scholar]
  10. Hauschka P. V., Lian J. B., Cole D. E., Gundberg C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989 Jul;69(3):990–1047. doi: 10.1152/physrev.1989.69.3.990. [DOI] [PubMed] [Google Scholar]
  11. Heinrichs A. A., Banerjee C., Bortell R., Owen T. A., Stein J. L., Stein G. S., Lian J. B. Identification and characterization of two proximal elements in the rat osteocalcin gene promoter that may confer species-specific regulation. J Cell Biochem. 1993 Nov;53(3):240–250. doi: 10.1002/jcb.240530309. [DOI] [PubMed] [Google Scholar]
  12. Hodgkinson J. E., Davidson C. L., Beresford J., Sharpe P. T. Expression of a human homeobox-containing gene is regulated by 1,25(OH)2D3 in bone cells. Biochim Biophys Acta. 1993 Jul 18;1174(1):11–16. doi: 10.1016/0167-4781(93)90086-s. [DOI] [PubMed] [Google Scholar]
  13. Ingham P. W. The molecular genetics of embryonic pattern formation in Drosophila. Nature. 1988 Sep 1;335(6185):25–34. doi: 10.1038/335025a0. [DOI] [PubMed] [Google Scholar]
  14. Jabs E. W., Müller U., Li X., Ma L., Luo W., Haworth I. S., Klisak I., Sparkes R., Warman M. L., Mulliken J. B. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 1993 Nov 5;75(3):443–450. doi: 10.1016/0092-8674(93)90379-5. [DOI] [PubMed] [Google Scholar]
  15. Kerner S. A., Scott R. A., Pike J. W. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4455–4459. doi: 10.1073/pnas.86.12.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kesterson R. A., Stanley L., DeMayo F., Finegold M., Pike J. W. The human osteocalcin promoter directs bone-specific vitamin D-regulatable gene expression in transgenic mice. Mol Endocrinol. 1993 Mar;7(3):462–467. doi: 10.1210/mend.7.3.8483481. [DOI] [PubMed] [Google Scholar]
  17. Lian J. B., Stein G. S. Transcriptional control of vitamin D-regulated proteins. J Cell Biochem. 1992 May;49(1):37–45. doi: 10.1002/jcb.240490108. [DOI] [PubMed] [Google Scholar]
  18. Lian J., Stewart C., Puchacz E., Mackowiak S., Shalhoub V., Collart D., Zambetti G., Stein G. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1143–1147. doi: 10.1073/pnas.86.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Majeska R. J., Rodan S. B., Rodan G. A. Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology. 1980 Nov;107(5):1494–1503. doi: 10.1210/endo-107-5-1494. [DOI] [PubMed] [Google Scholar]
  20. Morrison N. A., Shine J., Fragonas J. C., Verkest V., McMenemy M. L., Eisman J. A. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 1989 Dec 1;246(4934):1158–1161. doi: 10.1126/science.2588000. [DOI] [PubMed] [Google Scholar]
  21. Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B., Stein G. S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990 Jun;143(3):420–430. doi: 10.1002/jcp.1041430304. [DOI] [PubMed] [Google Scholar]
  22. Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B., Stein G. S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990 Jun;143(3):420–430. doi: 10.1002/jcp.1041430304. [DOI] [PubMed] [Google Scholar]
  23. Owen T. A., Bortell R., Shalhoub V., Heinrichs A., Stein J. L., Stein G. S., Lian J. B. Postproliferative transcription of the rat osteocalcin gene is reflected by vitamin D-responsive developmental modifications in protein-DNA interactions at basal and enhancer promoter elements. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1503–1507. doi: 10.1073/pnas.90.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Partridge N. C., Frampton R. J., Eisman J. A., Michelangeli V. P., Elms E., Bradley T. R., Martin T. J. Receptors for 1,25(OH)2-vitamin D3 enriched in cloned osteoblast-like rat osteogenic sarcoma cells. FEBS Lett. 1980 Jun 16;115(1):139–142. doi: 10.1016/0014-5793(80)80744-7. [DOI] [PubMed] [Google Scholar]
  25. Satokata I., Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994 Apr;6(4):348–356. doi: 10.1038/ng0494-348. [DOI] [PubMed] [Google Scholar]
  26. Schepmoes G., Breen E., Owen T. A., Aronow M. A., Stein G. S., Lian J. B. Influence of dexamethasone on the vitamin D-mediated regulation of osteocalcin gene expression. J Cell Biochem. 1991 Oct;47(2):184–196. doi: 10.1002/jcb.240470212. [DOI] [PubMed] [Google Scholar]
  27. Scott M. P., Tamkun J. W., Hartzell G. W., 3rd The structure and function of the homeodomain. Biochim Biophys Acta. 1989 Jul 28;989(1):25–48. doi: 10.1016/0304-419x(89)90033-4. [DOI] [PubMed] [Google Scholar]
  28. Stein G. S., Lian J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993 Aug;14(4):424–442. doi: 10.1210/edrv-14-4-424. [DOI] [PubMed] [Google Scholar]
  29. Sternberg P. W., Horvitz H. R. The genetic control of cell lineage during nematode development. Annu Rev Genet. 1984;18:489–524. doi: 10.1146/annurev.ge.18.120184.002421. [DOI] [PubMed] [Google Scholar]
  30. Towler D. A., Bennett C. D., Rodan G. A. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs. Mol Endocrinol. 1994 May;8(5):614–624. doi: 10.1210/mend.8.5.7914673. [DOI] [PubMed] [Google Scholar]
  31. Yoon K. G., Rutledge S. J., Buenaga R. F., Rodan G. A. Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1,25-dihydroxyvitamin D3. Biochemistry. 1988 Nov 15;27(23):8521–8526. doi: 10.1021/bi00423a003. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES