Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 6;71(Pt 9):o634. doi: 10.1107/S2056989015013432

Crystal structure of 4,5-di­nitro-1H-imidazole

G Kenneth Windler a, Brian L Scott b, Neil C Tomson b, Philip W Leonard a,*
PMCID: PMC4555365  PMID: 26396875

Abstract

The title compound, C3H2N4O4, forms crystals with two mol­ecules in the asymmetric unit which are conformationally similar. With the exception of the O atoms of the nitro groups, the mol­ecules are essentially planar. In the crystal, adjacent mol­ecules are associated by N—H⋯N hydrogen bonds involving the imidazole N—H donors and N-atom acceptors of the unsaturated nitro­gen of neighboring rings, forming layers parallel to (010).

Keywords: crystal structure; 4,5-di­nitro-1H-imidazole; hydrogen bonding

Related literature  

For background to imidazoles and the title compound, see: Windaus & Vogt (1907); Cooper (1996); Epishina et al. (1967). For the preparation, see: Novikov et al. (1970). For similar structures, see: Parrish et al. (2015); Windler et al. (2015).graphic file with name e-71-0o634-scheme1.jpg

Experimental  

Crystal data  

  • C3H2N4O4

  • M r = 158.09

  • Monoclinic, Inline graphic

  • a = 11.4797 (9) Å

  • b = 8.8205 (7) Å

  • c = 11.802 (1) Å

  • β = 107.827 (1)°

  • V = 1137.65 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.12 × 0.06 × 0.06 mm

Data collection  

  • Bruker D8 Quest with CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.971, T max = 0.995

  • 25837 measured reflections

  • 4868 independent reflections

  • 4216 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.118

  • S = 1.60

  • 4868 reflections

  • 211 parameters

  • All H-atom parameters refined

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2014).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015013432/zs2338sup1.cif

e-71-0o634-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015013432/zs2338Isup2.hkl

e-71-0o634-Isup2.hkl (238.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015013432/zs2338Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989015013432/zs2338Isup4.cml

. DOI: 10.1107/S2056989015013432/zs2338fig1.tif

The mol­ecular structure of the title compound with atom labeling. Ellipsoids are drawn at the 50% probability level and the hydrogen atoms are drawn as spheres of arbitrary size.

b . DOI: 10.1107/S2056989015013432/zs2338fig2.tif

A crystal packing diagram for the title compound viewed along the b axis. The N—H⋯N hydrogen bonds are shown as dashed lines.

CCDC reference: 1412685

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H2N7i 0.90(2) 1.96(2) 2.836(1) 163(2)
N8H4N4ii 0.92(2) 1.89(2) 2.807(1) 179(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Nuclear Security Administration Science Campaign 2 and performed at Los Alamos National Laboratory under DE-AC52-06 N A25396. LA-UR-15-23929

supplementary crystallographic information

S1. Comment

In addition to more mundane uses as pharmaceuticals (Windaus & Vogt, 1907), imidazoles make quality backbones for energetic materials (Epishina et al., 1967) because of their nitrogen content. The dinitro-bearing title compound, C3H2N4O4, is of interest because of its better oxygen balance (Cooper, 1996), contributing to its effectiveness as an explosive. To better understand the nature of explosive sensitivity as it relates to intermolecular forces, the title compound (Fig. 1) was of interest for comparison with other imidazoles previously studied (Parrish et al., 2015; Windler et al., 2015).

In the title compound, the two independent molecules (A, defined by C1–N3 and B, defined by C4–N7) in the asymmetric unit (Fig. 1) are conformationally similar with the nitro groups being variously rotated out of the imidazole planes: in A [torsion angles N3—C1—N1—O2, -174.29 (9)° and N4—C3—N2—O3, 163.63 (7)°] and in B [torsion angles N7—C4—N5—O6, 156.95 (8)° and N6—C6—N6—O7, 163.63 (7)°].

In the crystal, intermolecular N—H···N hydrogen bonding interactions N3—H···N7 and N8—H···N4 between the A and B molecules (Table 1), generate layered structures lying roughly parallel to (010) (Fig. 2).

S2. Experimental

Caution! The title compound is an explosive and should only be handled with appropriate safety equipment in small quantities by an experienced explosive handler.

The title compound was prepared by literature methods (Novikov et al., 1970). Crystals were obtained by slow evaporation of a concentrated solution in ethyl acetate.

S3. Refinement

All hydrogen atoms was located in a difference-Fourier and the positional parameters were fully refined, with Uiso(H) set invariant at 0.08.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labeling. Ellipsoids are drawn at the 50% probability level and the hydrogen atoms are drawn as spheres of arbitrary size.

Fig. 2.

Fig. 2.

A crystal packing diagram for the title compound viewed along the b axis. The N—H···N hydrogen bonds are shown as dashed lines.

Crystal data

C3H2N4O4 F(000) = 640
Mr = 158.09 Dx = 1.846 Mg m3
Monoclinic, P21/n Melting point = 460–461 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 11.4797 (9) Å Cell parameters from 4868 reflections
b = 8.8205 (7) Å θ = 2.9–35.4°
c = 11.802 (1) Å µ = 0.17 mm1
β = 107.827 (1)° T = 100 K
V = 1137.65 (16) Å3 Block, colorless
Z = 8 0.12 × 0.06 × 0.06 mm

Data collection

Bruker D8 Quest with CMOS diffractometer 4868 independent reflections
Radiation source: fine-focus sealed tube 4216 reflections with I > 2σ(I)
Bruker Triumph curved graphite monochromator Rint = 0.024
ω scans θmax = 35.4°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→18
Tmin = 0.971, Tmax = 0.995 k = −14→13
25837 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 All H-atom parameters refined
S = 1.60 w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3
4868 reflections (Δ/σ)max = 0.001
211 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.29370 (6) 0.50168 (8) 0.81909 (6) 0.01298 (13)
N2 0.15331 (6) 0.38337 (8) 1.01582 (6) 0.01315 (13)
N3 0.11402 (6) 0.37089 (8) 0.70000 (6) 0.01075 (12)
N4 0.01562 (6) 0.30341 (8) 0.82719 (6) 0.01203 (13)
N5 0.51594 (6) 0.79131 (8) 0.14048 (6) 0.01209 (13)
N6 0.33377 (6) 0.62492 (8) 0.27135 (6) 0.01158 (12)
N7 0.31591 (6) 0.85813 (8) 0.01033 (6) 0.01174 (12)
N8 0.19372 (6) 0.75974 (8) 0.10560 (6) 0.01083 (12)
O1 0.31536 (6) 0.52596 (8) 0.72497 (6) 0.02044 (14)
O2 0.35443 (7) 0.54920 (9) 0.91643 (6) 0.02736 (17)
O3 0.25949 (6) 0.41102 (8) 1.07370 (6) 0.01982 (14)
O4 0.06957 (6) 0.36304 (9) 1.05882 (6) 0.02084 (14)
O5 0.55956 (6) 0.80860 (9) 0.05851 (6) 0.02079 (14)
O6 0.57642 (6) 0.78190 (8) 0.24607 (5) 0.01798 (13)
O7 0.43309 (5) 0.56137 (7) 0.30593 (6) 0.01585 (12)
O8 0.24913 (6) 0.60769 (8) 0.31361 (6) 0.01785 (13)
C1 0.18544 (7) 0.41388 (8) 0.81011 (6) 0.01016 (13)
C2 0.01380 (7) 0.30381 (9) 0.71412 (7) 0.01240 (14)
C3 0.12271 (7) 0.37018 (8) 0.88769 (6) 0.01062 (13)
C4 0.38434 (7) 0.78740 (8) 0.11035 (6) 0.01003 (13)
C5 0.20090 (7) 0.83961 (9) 0.01039 (7) 0.01204 (14)
C6 0.31069 (7) 0.72465 (8) 0.17067 (6) 0.00992 (13)
H1 −0.044 (2) 0.259 (3) 0.651 (2) 0.080*
H2 0.129 (2) 0.386 (3) 0.630 (2) 0.080*
H3 0.133 (2) 0.875 (3) −0.045 (2) 0.080*
H4 0.125 (2) 0.740 (3) 0.1274 (19) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0108 (3) 0.0118 (3) 0.0163 (3) −0.0018 (2) 0.0041 (2) −0.0016 (2)
N2 0.0163 (3) 0.0130 (3) 0.0101 (3) 0.0017 (2) 0.0039 (2) 0.0008 (2)
N3 0.0099 (3) 0.0133 (3) 0.0102 (3) −0.0015 (2) 0.0047 (2) −0.0021 (2)
N4 0.0110 (3) 0.0151 (3) 0.0109 (3) −0.0013 (2) 0.0047 (2) −0.0008 (2)
N5 0.0099 (3) 0.0128 (3) 0.0138 (3) −0.0012 (2) 0.0039 (2) 0.0000 (2)
N6 0.0119 (3) 0.0126 (3) 0.0100 (3) −0.0010 (2) 0.0031 (2) 0.0009 (2)
N7 0.0108 (3) 0.0154 (3) 0.0098 (3) 0.0015 (2) 0.0042 (2) 0.0018 (2)
N8 0.0089 (3) 0.0147 (3) 0.0096 (3) 0.0004 (2) 0.0038 (2) 0.0005 (2)
O1 0.0205 (3) 0.0243 (3) 0.0221 (3) −0.0084 (2) 0.0147 (2) −0.0065 (2)
O2 0.0271 (4) 0.0329 (4) 0.0170 (3) −0.0173 (3) −0.0009 (3) −0.0019 (3)
O3 0.0195 (3) 0.0229 (3) 0.0135 (3) −0.0047 (2) −0.0003 (2) −0.0017 (2)
O4 0.0197 (3) 0.0315 (4) 0.0139 (3) 0.0045 (3) 0.0091 (2) 0.0044 (2)
O5 0.0135 (3) 0.0340 (4) 0.0182 (3) −0.0032 (2) 0.0097 (2) −0.0037 (2)
O6 0.0123 (3) 0.0222 (3) 0.0156 (3) −0.0039 (2) −0.0014 (2) 0.0056 (2)
O7 0.0114 (2) 0.0170 (3) 0.0171 (3) 0.0014 (2) 0.0013 (2) 0.0044 (2)
O8 0.0166 (3) 0.0229 (3) 0.0173 (3) 0.0010 (2) 0.0099 (2) 0.0062 (2)
C1 0.0093 (3) 0.0104 (3) 0.0113 (3) −0.0006 (2) 0.0039 (2) −0.0013 (2)
C2 0.0105 (3) 0.0162 (3) 0.0118 (3) −0.0022 (2) 0.0053 (2) −0.0021 (2)
C3 0.0111 (3) 0.0118 (3) 0.0093 (3) 0.0004 (2) 0.0037 (2) −0.0004 (2)
C4 0.0086 (3) 0.0120 (3) 0.0097 (3) 0.0000 (2) 0.0031 (2) −0.0006 (2)
C5 0.0109 (3) 0.0157 (3) 0.0100 (3) 0.0021 (2) 0.0040 (2) 0.0016 (2)
C6 0.0095 (3) 0.0121 (3) 0.0080 (3) 0.0000 (2) 0.0025 (2) 0.0005 (2)

Geometric parameters (Å, º)

O1—N1 1.2291 (10) N4—C3 1.3530 (11)
O2—N1 1.2211 (10) N3—H2 0.90 (2)
O3—N2 1.2256 (10) N5—C4 1.4426 (11)
O4—N2 1.2299 (10) N6—C6 1.4364 (10)
O5—N5 1.2274 (10) N7—C5 1.3306 (11)
O6—N5 1.2297 (9) N7—C4 1.3535 (10)
O7—N6 1.2230 (10) N8—C6 1.3628 (11)
O8—N6 1.2299 (10) N8—C5 1.3500 (11)
N1—C1 1.4404 (11) N8—H4 0.92 (2)
N2—C3 1.4486 (10) C1—C3 1.3817 (11)
N3—C1 1.3610 (10) C2—H1 0.92 (2)
N3—C2 1.3487 (11) C4—C6 1.3771 (11)
N4—C2 1.3282 (10) C5—H3 0.91 (2)
O1—N1—O2 125.12 (8) C6—N8—H4 125.6 (14)
O1—N1—C1 115.84 (7) N1—C1—C3 135.58 (7)
O2—N1—C1 119.01 (7) N3—C1—C3 105.73 (7)
O3—N2—O4 124.66 (7) N1—C1—N3 118.30 (6)
O3—N2—C3 118.67 (7) N3—C2—N4 111.94 (7)
O4—N2—C3 116.66 (7) N2—C3—C1 131.32 (7)
C1—N3—C2 106.95 (7) N4—C3—C1 110.21 (6)
C2—N4—C3 105.15 (7) N2—C3—N4 118.47 (7)
C1—N3—H2 127.2 (15) N3—C2—H1 121.3 (15)
C2—N3—H2 125.9 (15) N4—C2—H1 126.7 (15)
O5—N5—C4 117.25 (7) N7—C4—C6 110.60 (7)
O6—N5—C4 118.16 (7) N5—C4—N7 119.23 (7)
O5—N5—O6 124.55 (8) N5—C4—C6 130.13 (7)
O8—N6—C6 116.27 (7) N7—C5—N8 112.21 (7)
O7—N6—C6 118.28 (7) N8—C6—C4 105.81 (6)
O7—N6—O8 125.42 (7) N6—C6—N8 120.37 (7)
C4—N7—C5 104.72 (7) N6—C6—C4 133.38 (7)
C5—N8—C6 106.67 (7) N7—C5—H3 126.3 (15)
C5—N8—H4 127.5 (14) N8—C5—H3 121.5 (15)
O1—N1—C1—N3 −2.71 (11) O7—N6—C6—N8 159.07 (7)
O1—N1—C1—C3 −174.29 (9) O7—N6—C6—C4 −12.11 (12)
O2—N1—C1—N3 175.41 (8) O8—N6—C6—N8 −18.96 (10)
O2—N1—C1—C3 3.83 (14) O8—N6—C6—C4 169.86 (8)
O3—N2—C3—N4 163.63 (7) C4—N7—C5—N8 −0.32 (9)
O3—N2—C3—C1 −15.76 (12) C5—N7—C4—N5 −177.47 (7)
O4—N2—C3—N4 −15.16 (11) C5—N7—C4—C6 0.55 (9)
O4—N2—C3—C1 165.45 (8) C5—N8—C6—N6 −173.00 (7)
C2—N3—C1—N1 −174.24 (7) C5—N8—C6—C4 0.35 (8)
C2—N3—C1—C3 −0.35 (8) C6—N8—C5—N7 −0.02 (9)
C1—N3—C2—N4 1.06 (9) N3—C1—C3—N4 −0.44 (9)
C3—N4—C2—N3 −1.31 (9) N1—C1—C3—N2 −8.71 (15)
C2—N4—C3—N2 −178.45 (7) N1—C1—C3—N4 171.86 (8)
C2—N4—C3—C1 1.06 (9) N3—C1—C3—N2 178.98 (8)
O6—N5—C4—C6 −25.25 (12) N5—C4—C6—N6 −10.74 (14)
O5—N5—C4—N7 −25.48 (11) N5—C4—C6—N8 177.17 (7)
O5—N5—C4—C6 156.95 (8) N7—C4—C6—N6 171.53 (8)
O6—N5—C4—N7 152.33 (7) N7—C4—C6—N8 −0.57 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H2···N7i 0.90 (2) 1.96 (2) 2.836 (1) 163 (2)
N8—H4···N4ii 0.92 (2) 1.89 (2) 2.807 (1) 179 (3)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2338).

References

  1. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cambridge Soft (2014). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  3. Cooper, P. W. (1996). In Explosives Engineering. New York: Wiley-VCH.
  4. Epishina, L. V., Slovetskii, V. I., Osipov, V. G., Lebedev, O. V., Khmel’nitskii, L. I., Sevost’yanova, V. V. & Novikova, T. S. (1967). Khim. Geterotsikl. Soedin. 4, 716–723.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Novikov, S. S., Khmel’nitskii, L. I., Lebedev, O. V., Epishina, L. V. & Sevost’yanova, V. V. (1970). Khim. Geterotsikl. Soedin. 5, 664–668.
  8. Parrish, D. A., Kramer, S., Windler, G. K., Chavez, D. E. & Leonard, P. W. (2015). Acta Cryst. E71, o491. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Windaus, A. & Vogt, W. (1907). Ber. Dtsch. Chem. Ges. 40, 3691–3695.
  12. Windler, G. K., Scott, B. L., Tomson, N. C. & Leonard, P. W. (2015). Acta Cryst. E71, o633. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015013432/zs2338sup1.cif

e-71-0o634-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015013432/zs2338Isup2.hkl

e-71-0o634-Isup2.hkl (238.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015013432/zs2338Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989015013432/zs2338Isup4.cml

. DOI: 10.1107/S2056989015013432/zs2338fig1.tif

The mol­ecular structure of the title compound with atom labeling. Ellipsoids are drawn at the 50% probability level and the hydrogen atoms are drawn as spheres of arbitrary size.

b . DOI: 10.1107/S2056989015013432/zs2338fig2.tif

A crystal packing diagram for the title compound viewed along the b axis. The N—H⋯N hydrogen bonds are shown as dashed lines.

CCDC reference: 1412685

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES