Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 26;71(Pt 9):1085–1088. doi: 10.1107/S2056989015015650

Crystal structure of 2,4-di­nitro­phenyl 4-methyl­benzene­sulfonate: a new polymorph

Tyler A Cooley a, Sean Riley a, Shannon M Biros a, Richard J Staples b, Felix N Ngassa a,*
PMCID: PMC4555369  PMID: 26396855

The title compound, C13H10N2O7S, was solved in the ortho­rhom­bic space group Pna21. The aromatic substituents on the sulfonate group are oriented gauche to one another with a C—O—S—C torsion angle of −62.0 (3)°. The supra­molecular features that contribute to the crystal lattice are offset π-π and multiple C—H⋯O inter­actions.

Keywords: crystal structure, aryl sulfonate, π–π inter­actions, C—H⋯O inter­actions, p-toluene­sulfonyl chloride

Abstract

The title compound, C13H10N2O7S, was synthesized via a nucleophilic substitution reaction between 2,4-di­nitro­phenol and p-toluene­sulfonyl chloride. This crystal structure is a polymorph of CSD entry WUVYUH [Vembu et al. (2003). Acta Cryst, E59, o378–380]. The aromatic substituents on the sulfonate group are oriented gauche to one another with a C—O—S—C torsion angle of −62.0 (3)°. The supra­molecular features that contribute to the crystal stability are offset π–π [centroid–centroid distance = 3.729 (2) Å] and multiple C—H⋯O inter­actions.

Chemical context  

Nucleophilic substitution reactions at the carbonyl carbon atom are an important class of reactions in biological processes. Analogous to the carbonyl group, nucleophilic substitution reactions of sulfonyl derivatives have also been reported (Castro et al., 2003; Terrier et al., 2003; Um et al., 2004, 2013; Qrareya et al., 2014). The mechanism of nucleophilic substitution reactions at the carbonyl group is well understood (Stefanidis et al., 1993; Lee et al., 2002). However, the mechanism for nucleophilic substitution reactions at the sulfonyl group is not fully understood (Morales-Rojas & Moss, 2002; Um et al., 2013).graphic file with name e-71-01085-scheme1.jpg

A review of the current literature lends credence to both a concerted mechanism and a non-concerted mechanism (Guthrie, 1991; Colthurst & Williams, 1997; Spillane et al., 2001; Um et al., 2003, 2004, 2013). Using primary and secondary amines as nucleophiles, the factors influencing regioselectivity of nucleophilic substitution reactions at the sulfonyl group have been reported (Um et al., 2004). It has been demonstrated that the regioselectivity and S—O bond-fission mechanism depends on the basicity of the amine and the electronic nature of the sulfonyl substituent. Based on the current state of knowledge in the field, we have sought to capitalize on the chemistry learned on the mechanistic insight of S—O vs C—O bond fission by investigating the effect of different substituents on the reactivity of sulfonates. In our work, we are inter­ested in using various sulfonate analogues (Fig. 1) as electrophilic substrates in nucleophilic aromatic substitution (SNAr) reactions similar to those reported by others (Qrareya et al., 2014). As the title compound is of inter­est in our ongoing effort on probing the mechanism of SNAr reactions with sulfonate derivatives, we report here on the synthesis and crystal structure of a new polymorph of 2,4-di­nitro­phenyl 4-methyl­benzene­sulfonate (Fig. 2).

Figure 1.

Figure 1

General structure of sulfonate analogues. R represents electron-donating and electron-withdrawing substituents.

Figure 2.

Figure 2

(a) The asymmetric unit of the title compound along with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level; (b) the structure and atom-numbering scheme of a polymorph of the title compound WUVYUH (Vembu, et al., 2003a ). All hydrogen atoms have been omitted for clarity.

Structural commentary  

The central sulfur atom (S1) is tetra­hedral with S=O bond lengths of 1.415 (3) and 1.414 (3) Å, and an S—O bond length of 1.634 (3) Å (Fig. 2 a). The bond angle between the S=O groups (O1—S1—O2) is 121.20 (17)°, while that of the aromatic substituents (O3—S1—C5) is 103.27 (15)°. The two aromatic rings are in a gauche orientation about the O3—S1 bond with a torsion angle (C8—O3—S1—C5) of −62.0 (3)°.

For comparison, the polymorph WUVYUH (Vembu et al., 2003a ) has S=O bond lengths of 1.4204 (10) and 1.4246 (10) Å, and the S—O bond length is 1.6195 (9) Å (Fig. 2 b). While the bond lengths of the two polymorphs agree within 0.01 Å of each other, there are some differences between bond angles. The aromatic rings in WUVYUH are in an anti orientation along the S—O bond, with a torsion angle of 141.02 (9)°. The bond angle between the S=O groups (O1—S1—O2) is 119.80 (6)°, while that of the aromatic substituents (O3—S1—C5) is 98.17 (5)°.

Supra­molecular features  

There are no classical hydrogen-bonding inter­actions in this crystal. There are, however, several inter­molecular C—H⋯O inter­actions with DA distances less than 3.5 Å and D—H⋯A angles greater than 120° (Table 1, Fig. 3). An offset π–π stacking inter­action is present between the relatively electron-poor ring C8–C13 and the relatively electron-rich ring C2–C7v (Fig. 4). The centroid–centroid distance is 3.729 (2) Å, the C2–C7 ring is offset by 1.529 (5) Å and tilted 5.74 (12)° out of the plane defined by the C8–C13 ring [symmetry code: (v) Inline graphic − x, −Inline graphic + y, −Inline graphic + z].

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C3H3O2i 0.95 2.42 3.273(5) 149
C4H4O6ii 0.95 2.57 3.486(5) 162
C7H7O7iii 0.95 2.75 3.499(5) 137
C10H10O7iv 0.95 2.51 3.233(5) 133
C12H12O4v 0.95 2.34 3.087(5) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

A drawing of a selection of the C—H⋯O inter­actions present in the crystal lattice using a ball and stick model. Symmetry codes: (i) −x + 1, −y + 1, z + Inline graphic; (ii) −x + Inline graphic, y + Inline graphic, z − Inline graphic; (iii) −x + 2, −y + 2, z − Inline graphic.

Figure 4.

Figure 4

A drawing of the inter­molecular π–π stacking and nitro–sulfonic ester inter­actions present in the crystal using a ball and stick model. Symmetry code (v) −x + Inline graphic, y − Inline graphic, z + Inline graphic.

One nitro group (N2,O6,O7) is in proximity to the sulfonic ester of the C2–C7v ring of a nearby π–π dimer. Fig. 4 also shows that the atoms of these two functional groups are oriented to align the electron-poor N2(nitro) with the electron-rich O1(sulfonic ester), and the electron-poor S1(sulfonic ester) with the electron-rich O7(nitro). Inter­atomic distances are N2(nitro)⋯O17v(sulfonic ester) = 3.379 (4) Å, and O7(nitro)⋯S1v(sulfonic ester) = 3.877 (3) Å. The relatively short inter­molecular distance between N2 and O17 suggests the presence of favorable N⋯O inter­actions in the crystal (Daszkiewicz, 2013).

Database survey  

The Cambridge Structural Database (CSD, version 5.36, May 2015: Groom and Allen, 2014) contains 171 aromatic 4-toluene­sulfonic esters. Of these, there are 14 structures where the aromatic ring bears substituents at both the 2- and 4-positions. One of these structures is quite similar to the title compound (GOFTIF: Ji et al., 2008) where the ortho-substit­uent is a nitro group and the para-position bears a second tosyl­ate group. The remaining entries have various electron-rich groups in the ortho-position including meth­oxy (e.g. FEMROF: Ichikawa et al., 2004), eth­oxy (e.g. HIRHOG: Ramachandran et al., 2007), chlorine (OJENEW: Vembu et al., 2003b ) and alkyl amine (PERFEZ: Zhao et al., 2013).

The CSD contains three additional structures where the position ortho to the sulfonic ester bears a nitro group. In FAYBAJ (Manivannan et al., 2005), this o-nitro group is the only substituent. The aromatic ring in XIYZIP is part of a naphthalene system and also bears a 4-nitro group (Ramachandran et al., 2008). The third structure in this set is a polymorph of the title compound (WUVYUH: Vembu et al., 2003a ) that was solved in the ortho­rhom­bic space group Pbca. One significant difference between WUVYUH and the title compound is the orientation of the groups around the S—O bond (see the Structural commentary section for more details).

Synthesis and crystallization  

The title compound was prepared by stirring 2,4-di­nitro­phenol (5 mmol), p-toluene­sulfonyl chloride (5 mmol) and pyridine (3 mmol) in 10 mL of di­chloro­methane for 30 minutes at room temperature. The reaction was heated to 353 K for 30 minutes in a microwave reactor, then cooled to room temperature and stirred overnight in a fume hood. The reaction mixture was transferred to a scintillation vial where the pale yellow product crystallized upon standing after several days and was filtered from the mother liquor (m.p. 393.4–394.7 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C) for CH groups and U iso(H) = 1.5 U eq(C) for methyl groups.

Table 2. Experimental details.

Crystal data
Chemical formula C13H10N2O7S
M r 338.29
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 173
a, b, c () 14.7716(12), 12.6403(11), 7.6734(6)
V (3) 1432.8(2)
Z 4
Radiation type Mo K
(mm1) 0.27
Crystal size (mm) 0.27 0.21 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.686, 0.745
No. of measured, independent and observed [I > 2(I)] reflections 11432, 2624, 2326
R int 0.036
(sin /)max (1) 0.603
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.034, 0.088, 1.05
No. of reflections 2624
No. of parameters 209
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.18, 0.18
Absolute structure Flack x determined using 970 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.02(4)

Computer programs: APEX2 and SAINT (Bruker, 2013), XS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015650/pk2562sup1.cif

e-71-01085-sup1.cif (227.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015650/pk2562Isup2.hkl

e-71-01085-Isup2.hkl (144.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015650/pk2562Isup3.cml

CCDC reference: 1419864

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 FT–NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

supplementary crystallographic information

Crystal data

C13H10N2O7S Dx = 1.568 Mg m3
Mr = 338.29 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 5781 reflections
a = 14.7716 (12) Å θ = 2.8–25.4°
b = 12.6403 (11) Å µ = 0.27 mm1
c = 7.6734 (6) Å T = 173 K
V = 1432.8 (2) Å3 Chunk, yellow
Z = 4 0.27 × 0.21 × 0.20 mm
F(000) = 696

Data collection

Bruker APEXII CCD diffractometer 2624 independent reflections
Radiation source: sealed tube 2326 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 8 pixels mm-1 θmax = 25.4°, θmin = 2.1°
φ and ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −15→15
Tmin = 0.686, Tmax = 0.745 l = −9→9
11432 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2683P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.18 e Å3
2624 reflections Δρmin = −0.18 e Å3
209 parameters Absolute structure: Flack x determined using 970 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraint Absolute structure parameter: −0.02 (4)

Special details

Experimental. SADABS (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0928 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.9202. The λ/2 correction factor is 0.00150.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.84591 (5) 0.72917 (7) 0.62435 (14) 0.0377 (2)
O1 0.92559 (18) 0.7834 (2) 0.5749 (4) 0.0520 (8)
O2 0.84576 (18) 0.6573 (2) 0.7657 (4) 0.0480 (8)
O3 0.82059 (18) 0.6622 (2) 0.4489 (3) 0.0393 (6)
O4 0.7331 (2) 0.7555 (3) 0.1741 (4) 0.0698 (10)
O5 0.6041 (2) 0.8003 (2) 0.2866 (5) 0.0622 (9)
O6 0.43774 (19) 0.4573 (2) 0.3474 (4) 0.0569 (8)
O7 0.5026 (2) 0.3344 (2) 0.4987 (4) 0.0552 (8)
N1 0.6675 (2) 0.7407 (3) 0.2684 (5) 0.0447 (8)
N2 0.5033 (2) 0.4212 (3) 0.4265 (4) 0.0409 (7)
C1 0.5319 (3) 1.0307 (3) 0.6779 (6) 0.0526 (11)
H1A 0.4769 0.9950 0.6376 0.079*
H1B 0.5436 1.0927 0.6047 0.079*
H1C 0.5240 1.0531 0.7991 0.079*
C2 0.6109 (2) 0.9555 (3) 0.6659 (5) 0.0383 (9)
C3 0.6881 (3) 0.9821 (3) 0.5730 (5) 0.0391 (9)
H3 0.6911 1.0490 0.5167 0.047*
C4 0.7608 (2) 0.9138 (3) 0.5602 (4) 0.0360 (8)
H4 0.8130 0.9328 0.4950 0.043*
C5 0.7559 (2) 0.8168 (2) 0.6448 (4) 0.0299 (7)
C6 0.6796 (2) 0.7879 (3) 0.7391 (4) 0.0345 (8)
H6 0.6770 0.7214 0.7966 0.041*
C7 0.6077 (2) 0.8575 (3) 0.7480 (5) 0.0373 (8)
H7 0.5551 0.8380 0.8114 0.045*
C8 0.7418 (2) 0.6020 (3) 0.4478 (5) 0.0323 (8)
C9 0.6651 (2) 0.6401 (3) 0.3637 (4) 0.0307 (7)
C10 0.5859 (2) 0.5833 (3) 0.3596 (5) 0.0337 (8)
H10 0.5329 0.6110 0.3061 0.040*
C11 0.5861 (2) 0.4846 (3) 0.4361 (5) 0.0323 (8)
C12 0.6613 (2) 0.4440 (3) 0.5188 (5) 0.0363 (8)
H12 0.6593 0.3754 0.5693 0.044*
C13 0.7395 (2) 0.5035 (3) 0.5279 (5) 0.0362 (8)
H13 0.7911 0.4774 0.5880 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0284 (4) 0.0403 (4) 0.0443 (5) 0.0001 (4) −0.0037 (5) 0.0048 (5)
O1 0.0275 (12) 0.0566 (16) 0.072 (2) −0.0066 (12) 0.0026 (13) 0.0053 (15)
O2 0.0478 (17) 0.0453 (15) 0.0507 (17) 0.0058 (12) −0.0094 (13) 0.0130 (13)
O3 0.0330 (13) 0.0407 (14) 0.0444 (15) 0.0004 (12) 0.0077 (11) −0.0014 (12)
O4 0.077 (2) 0.069 (2) 0.063 (2) −0.0155 (17) 0.0088 (18) 0.0306 (17)
O5 0.073 (2) 0.0364 (14) 0.077 (2) 0.0159 (15) −0.0244 (17) 0.0065 (15)
O6 0.0387 (16) 0.0549 (17) 0.077 (2) −0.0012 (14) −0.0106 (16) −0.0068 (17)
O7 0.070 (2) 0.0441 (15) 0.0517 (17) −0.0187 (14) 0.0021 (15) 0.0053 (14)
N1 0.058 (2) 0.0326 (16) 0.044 (2) −0.0040 (16) −0.0153 (17) 0.0052 (14)
N2 0.044 (2) 0.0391 (16) 0.0391 (18) −0.0051 (15) 0.0050 (16) −0.0065 (15)
C1 0.051 (2) 0.047 (2) 0.059 (3) 0.0125 (18) −0.009 (2) −0.011 (2)
C2 0.0358 (19) 0.0371 (18) 0.042 (2) 0.0007 (16) −0.0077 (16) −0.0076 (17)
C3 0.050 (2) 0.0285 (17) 0.039 (2) −0.0011 (16) −0.0090 (17) 0.0033 (15)
C4 0.0358 (19) 0.0388 (19) 0.0335 (19) −0.0086 (16) 0.0015 (15) 0.0028 (15)
C5 0.0268 (16) 0.0322 (15) 0.0307 (18) −0.0046 (13) −0.0045 (15) 0.0029 (17)
C6 0.037 (2) 0.0323 (18) 0.0342 (19) −0.0063 (15) −0.0001 (16) 0.0020 (16)
C7 0.0304 (18) 0.042 (2) 0.039 (2) −0.0069 (16) 0.0000 (16) −0.0065 (17)
C8 0.0294 (18) 0.0328 (18) 0.0346 (17) 0.0035 (14) 0.0080 (15) 0.0015 (16)
C9 0.0383 (19) 0.0254 (16) 0.0283 (16) 0.0049 (15) 0.0017 (15) 0.0020 (14)
C10 0.036 (2) 0.0325 (17) 0.0324 (18) 0.0090 (15) −0.0008 (16) −0.0015 (15)
C11 0.0328 (19) 0.0326 (17) 0.0315 (18) −0.0003 (15) 0.0062 (15) −0.0024 (15)
C12 0.044 (2) 0.0280 (17) 0.0366 (19) 0.0059 (15) 0.0014 (17) 0.0056 (15)
C13 0.0362 (19) 0.0326 (17) 0.0397 (19) 0.0112 (15) 0.0006 (16) 0.0040 (16)

Geometric parameters (Å, º)

S1—O1 1.414 (3) C3—H3 0.9500
S1—O2 1.415 (3) C3—C4 1.381 (5)
S1—O3 1.634 (3) C4—H4 0.9500
S1—C5 1.737 (3) C4—C5 1.390 (4)
O3—C8 1.391 (4) C5—C6 1.388 (5)
O4—N1 1.224 (4) C6—H6 0.9500
O5—N1 1.210 (4) C6—C7 1.381 (5)
O6—N2 1.231 (4) C7—H7 0.9500
O7—N2 1.228 (4) C8—C9 1.389 (5)
N1—C9 1.468 (5) C8—C13 1.389 (5)
N2—C11 1.465 (4) C9—C10 1.374 (5)
C1—H1A 0.9800 C10—H10 0.9500
C1—H1B 0.9800 C10—C11 1.378 (5)
C1—H1C 0.9800 C11—C12 1.379 (5)
C1—C2 1.507 (5) C12—H12 0.9500
C2—C3 1.387 (5) C12—C13 1.379 (5)
C2—C7 1.391 (5) C13—H13 0.9500
O1—S1—O2 121.20 (17) C4—C5—S1 118.8 (3)
O1—S1—O3 102.73 (16) C6—C5—S1 120.0 (2)
O1—S1—C5 110.64 (16) C6—C5—C4 121.2 (3)
O2—S1—O3 107.40 (14) C5—C6—H6 120.6
O2—S1—C5 109.80 (17) C7—C6—C5 118.8 (3)
O3—S1—C5 103.27 (15) C7—C6—H6 120.6
C8—O3—S1 118.7 (2) C2—C7—H7 119.4
O4—N1—C9 116.5 (3) C6—C7—C2 121.3 (3)
O5—N1—O4 125.9 (3) C6—C7—H7 119.4
O5—N1—C9 117.6 (4) C9—C8—O3 119.7 (3)
O6—N2—C11 118.6 (3) C13—C8—O3 120.6 (3)
O7—N2—O6 123.2 (3) C13—C8—C9 119.8 (3)
O7—N2—C11 118.3 (3) C8—C9—N1 120.8 (3)
H1A—C1—H1B 109.5 C10—C9—N1 117.5 (3)
H1A—C1—H1C 109.5 C10—C9—C8 121.6 (3)
H1B—C1—H1C 109.5 C9—C10—H10 121.3
C2—C1—H1A 109.5 C9—C10—C11 117.5 (3)
C2—C1—H1B 109.5 C11—C10—H10 121.3
C2—C1—H1C 109.5 C10—C11—N2 118.2 (3)
C3—C2—C1 121.0 (3) C10—C11—C12 122.3 (3)
C3—C2—C7 118.5 (3) C12—C11—N2 119.5 (3)
C7—C2—C1 120.5 (3) C11—C12—H12 120.2
C2—C3—H3 119.2 C11—C12—C13 119.7 (3)
C4—C3—C2 121.6 (3) C13—C12—H12 120.2
C4—C3—H3 119.2 C8—C13—H13 120.5
C3—C4—H4 120.7 C12—C13—C8 119.1 (3)
C3—C4—C5 118.6 (3) C12—C13—H13 120.5
C5—C4—H4 120.7
S1—O3—C8—C9 101.6 (3) O7—N2—C11—C12 2.6 (5)
S1—O3—C8—C13 −79.5 (4) N1—C9—C10—C11 174.5 (3)
S1—C5—C6—C7 −177.7 (3) N2—C11—C12—C13 179.9 (3)
O1—S1—O3—C8 −177.1 (2) C1—C2—C3—C4 −179.7 (3)
O1—S1—C5—C4 21.1 (3) C1—C2—C7—C6 −179.7 (4)
O1—S1—C5—C6 −161.2 (3) C2—C3—C4—C5 −0.7 (5)
O2—S1—O3—C8 54.0 (3) C3—C2—C7—C6 0.5 (5)
O2—S1—C5—C4 157.5 (3) C3—C4—C5—S1 178.3 (3)
O2—S1—C5—C6 −24.8 (3) C3—C4—C5—C6 0.6 (5)
O3—S1—C5—C4 −88.2 (3) C4—C5—C6—C7 0.0 (5)
O3—S1—C5—C6 89.5 (3) C5—S1—O3—C8 −62.0 (3)
O3—C8—C9—N1 3.0 (5) C5—C6—C7—C2 −0.6 (5)
O3—C8—C9—C10 −179.9 (3) C7—C2—C3—C4 0.2 (5)
O3—C8—C13—C12 −177.6 (3) C8—C9—C10—C11 −2.7 (5)
O4—N1—C9—C8 44.8 (5) C9—C8—C13—C12 1.4 (5)
O4—N1—C9—C10 −132.4 (4) C9—C10—C11—N2 −177.5 (3)
O5—N1—C9—C8 −136.9 (4) C9—C10—C11—C12 1.9 (5)
O5—N1—C9—C10 46.0 (5) C10—C11—C12—C13 0.5 (5)
O6—N2—C11—C10 1.6 (5) C11—C12—C13—C8 −2.2 (5)
O6—N2—C11—C12 −177.8 (3) C13—C8—C9—N1 −176.0 (3)
O7—N2—C11—C10 −178.0 (3) C13—C8—C9—C10 1.1 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2i 0.95 2.42 3.273 (5) 149
C4—H4···O6ii 0.95 2.57 3.486 (5) 162
C7—H7···O7iii 0.95 2.75 3.499 (5) 137
C10—H10···O7iv 0.95 2.51 3.233 (5) 133
C12—H12···O4v 0.95 2.34 3.087 (5) 135

Symmetry codes: (i) −x+3/2, y+1/2, z−1/2; (ii) x+1/2, −y+3/2, z; (iii) −x+1, −y+1, z+1/2; (iv) −x+1, −y+1, z−1/2; (v) −x+3/2, y−1/2, z+1/2.

References

  1. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  2. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Castro, E. A., Andújar, M., Toro, A. & Santos, J. G. (2003). J. Org. Chem. 68, 3608–3613. [DOI] [PubMed]
  5. Colthurst, M. J. & Williams, A. J. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1493–1498.
  6. Daszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Guthrie, J. P. (1991). J. Am. Chem. Soc. 113, 3941–3949.
  10. Ichikawa, M., Takahashi, M., Aoyagi, S. & Kibayashi, C. (2004). J. Am. Chem. Soc. 126, 16553–16558. [DOI] [PubMed]
  11. Ji, X., Cheng, B., Song, J. & Liu, C. (2008). Acta Cryst. E64, o1816. [DOI] [PMC free article] [PubMed]
  12. Lee, H. W., Guha, A. K., Kim, C. K. & Lee, I. (2002). J. Org. Chem. 67, 2215–2222. [DOI] [PubMed]
  13. Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o118–o120.
  14. Morales-Rojas, J. & Moss, R. A. (2002). Chem. Rev. 102, 2497–2522. [DOI] [PubMed]
  15. Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Qrareya, H., Protti, S. & Fagnoni, M. (2014). J. Org. Chem. 79, 11527–11533. [DOI] [PubMed]
  18. Ramachandran, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o873. [DOI] [PMC free article] [PubMed]
  19. Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spillane, W. J., McGrath, P., Brack, C. & O’Byrne, A. B. (2001). J. Org. Chem. 66, 6313–6316. [DOI] [PubMed]
  23. Stefanidis, D., Cho, S., Dhe-Paganon, S. & Jencks, W. P. (1993). J. Am. Chem. Soc. 115, 1650–1656.
  24. Terrier, F., Le Guével, E., Chatrousse, A. P., Moutiers, G. & Buncel, E. (2003). Chem. Commun. pp. 600–601. [DOI] [PubMed]
  25. Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166–3172. [DOI] [PubMed]
  26. Um, I. H., Hong, J. Y., Kim, J. J., Chae, O. M. & Bae, S. K. (2003). J. Am. Chem. Soc 68, 5180–5185. [DOI] [PubMed]
  27. Um, I. H., Kang, J. S., Shin, Y. H. & Buncel, E. (2013). J. Org. Chem. 78, 490–497. [DOI] [PubMed]
  28. Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, o378–o380.
  29. Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b). Acta Cryst. E59, o939–o941.
  30. Zhao, J., Liu, X., Luo, W., Xie, M., Lin, L. & Feng, X. (2013). Angew. Chem. Int. Ed. 52, 3473–3477. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015650/pk2562sup1.cif

e-71-01085-sup1.cif (227.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015650/pk2562Isup2.hkl

e-71-01085-Isup2.hkl (144.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015650/pk2562Isup3.cml

CCDC reference: 1419864

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES