Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 22;71(Pt 9):o682–o683. doi: 10.1107/S2056989015015364

Crystal structure of ethyl 2-(4-chlorophenyl)-3-cyclopentyl-4-oxo-1-propyl­imidazolidine-5-carboxylate

Mohamed Ali Tabarki a, Youssef Ben Smida b,*, Abderrahmen Guesmi b,c, Rafâa Besbes a
PMCID: PMC4555374  PMID: 26396903

Abstract

The title compound, C20H27ClN2O3, was obtained via an original synthesis method. The central heterocyclic ring adopts a shallow envelope conformation, with the N atom bearing the cyclo­pentane ring as the flap [deviation from the other atoms = 0.442 (2) Å]. The cyclo­pentane ring adopts a twisted conformation about one of the CN—C bonds: the exocyclic C—N bond adopts an equatorial orientation. The dihedral angles between the central ring (all atoms) and the pendant five- and six-membered rings are 10.3 (2) and 87.76 (14)°, respectively. In the crystal, C—H⋯O inter­actions link the mol­ecules into [011] chains. A weak C—H⋯Cl inter­action links the chains into (100) sheets. A mechanism for the cyclization reaction is proposed.

Keywords: crystal structure, synthesis, aziridine rearrangement, C—H⋯O and C—H⋯O inter­actions

Related literature  

For background to the biological properties of imidazolidin-4-one rings, see: Chambel et al. (2006); Vale et al. (2008a ,b ,c ); Gomes et al. (2004); Araujo et al. (2005); Qin et al. (2009). For imidazolidin-4-one rings in Diels–Alder reactions, see: Lin et al. (2013). For the synthesis and mechanistic studies, see: Gomes et al. (2006); Zhang et al. (2008).graphic file with name e-71-0o682-scheme1.jpg

Experimental  

Crystal data  

  • C20H27ClN2O3

  • M r = 378.89

  • Triclinic, Inline graphic

  • a = 9.083 (7) Å

  • b = 11.201 (6) Å

  • c = 11.846 (6) Å

  • α = 117.75 (4)°

  • β = 90.49 (5)°

  • γ = 104.08 (6)°

  • V = 1024.1 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.4 × 0.3 × 0.2 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 6270 measured reflections

  • 4439 independent reflections

  • 2533 reflections with I > 2σ(I)

  • R int = 0.024

  • 2 standard reflections every 120 reflections intensity decay: 4%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.180

  • S = 0.99

  • 4439 reflections

  • 295 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015015364/hb7486sup1.cif

e-71-0o682-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015364/hb7486Isup2.hkl

e-71-0o682-Isup2.hkl (213.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015364/hb7486Isup3.cml

20 27 2 3 . DOI: 10.1107/S2056989015015364/hb7486fig1.tif

Synthesis protocol of C20H27ClN2O3.

. DOI: 10.1107/S2056989015015364/hb7486fig2.tif

Perspective view of the title compound showing 50% displacement ellipsoids.

20 27 2 3 . DOI: 10.1107/S2056989015015364/hb7486fig3.tif

Unit cell projection of C20H27ClN2O3 showing two mol­ecules per cell.

CCDC reference: 1419261

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C10H2O1i 1.00(2) 2.50(3) 3.454(4) 160(2)
C3H12O3ii 0.99(4) 2.59(4) 3.439(5) 143(3)
C16H16BCl1iii 0.97 2.80 3.662(6) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia is gratefully acknowledged. The authors are grateful to Professor Mohamed Faouzi Zid from the Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, for the data collection.

supplementary crystallographic information

S1. comment

The imidazolidin-4-one rings are of major inter­est and constitute a very important class of heterocyclic compounds because of their presence in several biologically active synthetic products (Chambel et al. 2006; Vale et al. 2008a) and their use as high anti­malarial drugs (Vale et al. 2008b&c). These products exhibit also anti­bacterial activity (Gomes et al. 2004; Araujo et al. 2005) and inhibit binding of VCAM-1 to VLA-4 (Qin et al. 2009). On the other hand, imidazolidnione was used as organocatalyst for Diels-Alder reactions (Lin et al.2013).

In the present work we have developed an efficient strategy for the synthesis of 1-cyclo­penty-2-para­chloro­phenyl-3-propyl-5-eth­oxy­carbonyl­imidazolidin-4-one (I) (Fig.1) via ring expansion of aziridine-2-carboxyl­ate upon reaction with propyl­iso­cyanate. It should be mentioned that in a similar protocol, Gomes et al. (2006) report that aziridines rearrange under the effect of heating or radiation and transform into azomethines. The latter reacts subsequently on various electrophiles systems.

A result similar to one described by Zhang et al.(2008), but the authors did not explain the formation of the compounds obtained. To explain the formation of the imidazolidin-4-one we based on work that was performed by Gomes et al. (2006) and in which the authors suggest that aziridines rearrange under the effect of heating or irradiation and become an azomethine. The latter reacts subsequently on various electrophile systems. In our case, the attack of the iso­cyanate by the carbanion of azomethine, formed upon the refluxing in toluene aziridine, adequately explains obtaining imidazolidin-4-one after cyclization of the inter­mediate formed.

S2. Experimental

S2.1. Synthesis and crystallization

To a solution of ethyl 3-(4-chloro­phenyl)-1-cyclo­pentyl­aziridine-2-carboxyl­ate (2.20 mmol) in toluene (10 ml) under nitro­gen atmosphere, were added n-Propyl­iso­cyanate (2.64 mmol). The mixture was refluxed during 20 hours. After completeness of the reaction, the mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using a mixture of n-hexane / EtOAc (5:5) as eluent to afford colourless prisms of the studied compound.

S2.2. Refinement

Hydrogen atoms were treated by a mixture of independent and constrained refinement. In fact hydrogen atoms from H1 to H15 were located in the difference Fourier Map. The others H atoms were located geometrically and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

Synthesis protocol of C20H27ClN2O3.

Fig. 2.

Fig. 2.

Perspective view of the title compound showing 50% displacement ellipsoids.

Fig. 3.

Fig. 3.

Unit cell projection of C20H27ClN2O3 showing two molecules per cell.

Crystal data

C20H27ClN2O3 Z = 2
Mr = 378.89 F(000) = 404
Triclinic, P1 Dx = 1.229 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.083 (7) Å Cell parameters from 25 reflections
b = 11.201 (6) Å θ = 10–15°
c = 11.846 (6) Å µ = 0.21 mm1
α = 117.75 (4)° T = 298 K
β = 90.49 (5)° Prism, colorless
γ = 104.08 (6)° 0.4 × 0.3 × 0.2 mm
V = 1024.1 (11) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.024
Radiation source: fine-focus sealed tube θmax = 27.0°, θmin = 2.1°
Graphite monochromator h = −11→3
ω/2θ scans k = −14→14
6270 measured reflections l = −15→15
4439 independent reflections 2 standard reflections every 120 reflections
2533 reflections with I > 2σ(I) intensity decay: 4%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1064P)2 + 0.0609P] where P = (Fo2 + 2Fc2)/3
4439 reflections (Δ/σ)max = 0.043
295 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.01028 (10) 0.71959 (8) 0.06769 (7) 0.0791 (3)
O1 0.5260 (2) 0.67479 (19) 0.72389 (18) 0.0698 (6)
O2 0.5879 (2) 0.87245 (18) 0.91481 (16) 0.0650 (5)
O3 0.4728 (3) 0.9785 (2) 0.69803 (19) 0.0759 (6)
N1 0.7774 (2) 0.82492 (19) 0.64046 (17) 0.0461 (5)
N2 0.5635 (2) 0.8158 (2) 0.53131 (18) 0.0502 (5)
C1 0.8327 (3) 0.6004 (3) 0.1915 (2) 0.0570 (7)
C2 0.7634 (3) 0.7335 (2) 0.4011 (2) 0.0441 (5)
C3 0.4957 (4) 0.7979 (4) 0.9770 (3) 0.0732 (9)
C4 0.9202 (4) 0.8525 (3) 0.3002 (2) 0.0606 (7)
C5 0.6794 (3) 0.7399 (2) 0.5138 (2) 0.0442 (5)
C6 0.9138 (3) 0.7244 (3) 0.1961 (2) 0.0538 (6)
C7 0.6788 (3) 0.8889 (2) 0.7346 (2) 0.0503 (6)
C8 0.5893 (3) 0.7974 (3) 0.7891 (2) 0.0502 (6)
C9 0.5592 (3) 0.9044 (2) 0.6558 (2) 0.0527 (6)
C10 0.7574 (3) 0.6052 (2) 0.2946 (2) 0.0507 (6)
C11 0.4526 (4) 0.7868 (3) 0.4255 (3) 0.0635 (7)
C12 0.8435 (3) 0.8565 (3) 0.4024 (2) 0.0559 (7)
C13 1.0021 (4) 0.7211 (4) 0.5907 (3) 0.0706 (8)
C14 0.8731 (3) 0.7538 (3) 0.6745 (2) 0.0555 (6)
C15 0.9604 (4) 0.8461 (4) 0.8118 (3) 0.0717 (8)
C16 1.1058 (4) 0.8014 (6) 0.8072 (4) 0.1159 (15)
H16A 1.1940 0.8836 0.8458 0.139*
H16B 1.1023 0.7511 0.8556 0.139*
C17 1.1201 (4) 0.7121 (5) 0.6750 (4) 0.1030 (12)
H17A 1.1022 0.6159 0.6581 0.124*
H17B 1.2224 0.7432 0.6574 0.124*
C18 0.5848 (5) 0.7287 (5) 1.0162 (4) 0.1136 (14)
H18A 0.5229 0.6808 1.0561 0.170*
H18B 0.6730 0.7974 1.0764 0.170*
H18C 0.6176 0.6619 0.9419 0.170*
C19 0.3480 (4) 0.6381 (3) 0.3616 (3) 0.0785 (9)
H19A 0.4093 0.5724 0.3275 0.094*
H19B 0.2937 0.6217 0.4255 0.094*
C20 0.2353 (5) 0.6120 (6) 0.2556 (4) 0.1300 (17)
H20A 0.1705 0.5173 0.2180 0.195*
H20B 0.2886 0.6256 0.1911 0.195*
H20C 0.1737 0.6762 0.2892 0.195*
H1 0.626 (2) 0.645 (2) 0.4965 (19) 0.032 (5)*
H2 0.697 (3) 0.519 (2) 0.297 (2) 0.041 (6)*
H3 0.734 (3) 0.979 (3) 0.802 (3) 0.067 (8)*
H4 0.392 (4) 0.738 (4) 0.923 (3) 0.096 (11)*
H5 0.826 (3) 0.513 (3) 0.115 (3) 0.073 (8)*
H6 0.972 (3) 0.937 (3) 0.310 (3) 0.073 (9)*
H7 0.806 (3) 0.668 (3) 0.667 (2) 0.051 (6)*
H8 0.497 (4) 0.796 (3) 0.365 (3) 0.082 (10)*
H9 0.952 (4) 0.624 (3) 0.516 (3) 0.091 (10)*
H10 0.842 (3) 0.951 (3) 0.476 (3) 0.075 (8)*
H11 0.908 (4) 0.827 (3) 0.868 (3) 0.090 (10)*
H12 0.470 (4) 0.875 (4) 1.053 (4) 0.098 (11)*
H13 0.375 (4) 0.834 (4) 0.460 (3) 0.107 (12)*
H14 1.051 (4) 0.812 (4) 0.585 (3) 0.100 (11)*
H15 0.982 (4) 0.953 (4) 0.834 (3) 0.091 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0968 (6) 0.0929 (6) 0.0563 (4) 0.0280 (5) 0.0331 (4) 0.0418 (4)
O1 0.0915 (14) 0.0523 (11) 0.0569 (11) 0.0042 (10) 0.0224 (10) 0.0269 (9)
O2 0.0894 (14) 0.0616 (11) 0.0461 (9) 0.0212 (10) 0.0243 (9) 0.0274 (8)
O3 0.0993 (16) 0.0773 (13) 0.0715 (13) 0.0525 (12) 0.0327 (11) 0.0386 (11)
N1 0.0511 (11) 0.0486 (11) 0.0392 (9) 0.0109 (9) 0.0068 (8) 0.0231 (8)
N2 0.0523 (12) 0.0537 (11) 0.0478 (11) 0.0174 (9) 0.0079 (9) 0.0259 (9)
C1 0.0669 (17) 0.0512 (14) 0.0442 (13) 0.0164 (13) 0.0117 (12) 0.0160 (12)
C2 0.0476 (13) 0.0434 (12) 0.0386 (11) 0.0092 (10) 0.0040 (10) 0.0195 (10)
C3 0.098 (3) 0.077 (2) 0.0580 (17) 0.034 (2) 0.0333 (18) 0.0390 (16)
C4 0.082 (2) 0.0509 (15) 0.0496 (14) 0.0093 (14) 0.0154 (13) 0.0292 (13)
C5 0.0466 (13) 0.0408 (12) 0.0431 (12) 0.0079 (10) 0.0092 (10) 0.0206 (10)
C6 0.0582 (15) 0.0662 (16) 0.0408 (12) 0.0165 (12) 0.0115 (11) 0.0291 (12)
C7 0.0661 (16) 0.0399 (12) 0.0402 (12) 0.0088 (11) 0.0116 (11) 0.0185 (10)
C8 0.0585 (15) 0.0484 (14) 0.0449 (12) 0.0150 (12) 0.0134 (11) 0.0232 (11)
C9 0.0648 (16) 0.0467 (13) 0.0522 (14) 0.0180 (12) 0.0199 (12) 0.0268 (11)
C10 0.0552 (15) 0.0440 (13) 0.0485 (13) 0.0104 (11) 0.0102 (11) 0.0205 (11)
C11 0.0627 (18) 0.0772 (19) 0.0590 (17) 0.0239 (16) 0.0066 (14) 0.0375 (16)
C12 0.0757 (18) 0.0411 (13) 0.0445 (13) 0.0083 (12) 0.0145 (12) 0.0192 (11)
C13 0.074 (2) 0.081 (2) 0.0568 (17) 0.0360 (18) 0.0077 (15) 0.0262 (17)
C14 0.0581 (16) 0.0553 (15) 0.0593 (15) 0.0118 (13) 0.0038 (13) 0.0346 (13)
C15 0.073 (2) 0.100 (3) 0.0519 (16) 0.0268 (18) 0.0068 (14) 0.0434 (17)
C16 0.080 (3) 0.208 (5) 0.073 (2) 0.058 (3) 0.0089 (19) 0.070 (3)
C17 0.087 (3) 0.151 (3) 0.083 (2) 0.061 (3) 0.008 (2) 0.053 (2)
C18 0.129 (3) 0.156 (4) 0.120 (3) 0.067 (3) 0.041 (3) 0.104 (3)
C19 0.072 (2) 0.084 (2) 0.0719 (19) 0.0244 (17) 0.0029 (16) 0.0309 (17)
C20 0.087 (3) 0.165 (4) 0.110 (3) 0.025 (3) −0.030 (2) 0.050 (3)

Geometric parameters (Å, º)

Cl1—C6 1.747 (3) C11—C19 1.515 (5)
O1—C8 1.197 (3) C11—H8 0.86 (3)
O2—C8 1.328 (3) C11—H13 0.96 (4)
O2—C3 1.478 (3) C12—H10 1.01 (3)
O3—C9 1.222 (3) C13—C17 1.511 (5)
N1—C7 1.464 (3) C13—C14 1.543 (4)
N1—C5 1.478 (3) C13—H9 1.01 (3)
N1—C14 1.478 (3) C13—H14 1.03 (4)
N2—C9 1.348 (3) C14—C15 1.535 (4)
N2—C11 1.460 (4) C14—H7 0.97 (2)
N2—C5 1.466 (3) C15—C16 1.515 (5)
C1—C6 1.380 (4) C15—H11 0.90 (3)
C1—C10 1.391 (3) C15—H15 1.07 (3)
C1—H5 0.96 (3) C16—C17 1.441 (5)
C2—C12 1.385 (3) C16—H16A 0.9700
C2—C10 1.390 (3) C16—H16B 0.9700
C2—C5 1.525 (3) C17—H17A 0.9700
C3—C18 1.452 (5) C17—H17B 0.9701
C3—H4 1.01 (4) C18—H18A 0.9600
C3—H12 0.99 (4) C18—H18B 0.9600
C4—C6 1.376 (4) C18—H18C 0.9600
C4—C12 1.390 (4) C19—C20 1.483 (5)
C4—H6 0.90 (3) C19—H19A 0.9700
C5—H1 0.97 (2) C19—H19B 0.9700
C7—C9 1.518 (4) C20—H20A 0.9600
C7—C8 1.533 (3) C20—H20B 0.9599
C7—H3 0.95 (3) C20—H20C 0.9600
C10—H2 1.00 (2)
C8—O2—C3 116.5 (2) C2—C12—C4 120.8 (2)
C7—N1—C5 106.60 (19) C2—C12—H10 119.8 (16)
C7—N1—C14 116.08 (19) C4—C12—H10 119.3 (16)
C5—N1—C14 115.95 (19) C17—C13—C14 103.6 (3)
C9—N2—C11 123.2 (2) C17—C13—H9 109.5 (18)
C9—N2—C5 113.4 (2) C14—C13—H9 103.7 (19)
C11—N2—C5 123.1 (2) C17—C13—H14 105 (2)
C6—C1—C10 119.3 (2) C14—C13—H14 105.6 (19)
C6—C1—H5 118.8 (17) H9—C13—H14 127 (3)
C10—C1—H5 121.8 (17) N1—C14—C15 112.0 (2)
C12—C2—C10 119.2 (2) N1—C14—C13 113.7 (2)
C12—C2—C5 120.1 (2) C15—C14—C13 103.3 (2)
C10—C2—C5 120.7 (2) N1—C14—H7 107.9 (14)
C18—C3—O2 110.8 (3) C15—C14—H7 109.7 (14)
C18—C3—H4 117 (2) C13—C14—H7 110.2 (14)
O2—C3—H4 111 (2) C16—C15—C14 104.7 (3)
C18—C3—H12 111 (2) C16—C15—H11 107 (2)
O2—C3—H12 103 (2) C14—C15—H11 111 (2)
H4—C3—H12 103 (3) C16—C15—H15 113.1 (18)
C6—C4—C12 119.1 (2) C14—C15—H15 107.8 (18)
C6—C4—H6 125.9 (19) H11—C15—H15 113 (3)
C12—C4—H6 115.0 (19) C17—C16—C15 109.3 (3)
N2—C5—N1 101.47 (18) C17—C16—H16A 109.8
N2—C5—C2 110.85 (19) C15—C16—H16A 109.8
N1—C5—C2 113.85 (19) C17—C16—H16B 109.8
N2—C5—H1 107.4 (12) C15—C16—H16B 109.8
N1—C5—H1 113.1 (12) H16A—C16—H16B 108.3
C2—C5—H1 109.7 (12) C16—C17—C13 107.5 (3)
C4—C6—C1 121.2 (2) C16—C17—H17A 110.2
C4—C6—Cl1 119.1 (2) C13—C17—H17A 110.2
C1—C6—Cl1 119.7 (2) C16—C17—H17B 110.2
N1—C7—C9 103.22 (19) C13—C17—H17B 110.2
N1—C7—C8 115.3 (2) H17A—C17—H17B 108.5
C9—C7—C8 105.8 (2) C3—C18—H18A 109.5
N1—C7—H3 111.6 (16) C3—C18—H18B 109.5
C9—C7—H3 109.3 (16) H18A—C18—H18B 109.5
C8—C7—H3 111.0 (16) C3—C18—H18C 109.5
O1—C8—O2 125.5 (2) H18A—C18—H18C 109.5
O1—C8—C7 123.1 (2) H18B—C18—H18C 109.5
O2—C8—C7 111.4 (2) C20—C19—C11 111.8 (3)
O3—C9—N2 127.3 (3) C20—C19—H19A 109.3
O3—C9—C7 126.4 (2) C11—C19—H19A 109.3
N2—C9—C7 106.2 (2) C20—C19—H19B 109.3
C2—C10—C1 120.4 (2) C11—C19—H19B 109.3
C2—C10—H2 116.7 (12) H19A—C19—H19B 107.9
C1—C10—H2 122.9 (12) C19—C20—H20A 109.5
N2—C11—C19 112.9 (3) C19—C20—H20B 109.5
N2—C11—H8 112 (2) H20A—C20—H20B 109.5
C19—C11—H8 106 (2) C19—C20—H20C 109.5
N2—C11—H13 109 (2) H20A—C20—H20C 109.5
C19—C11—H13 97 (2) H20B—C20—H20C 109.5
H8—C11—H13 119 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H2···O1i 1.00 (2) 2.50 (3) 3.454 (4) 160 (2)
C3—H12···O3ii 0.99 (4) 2.59 (4) 3.439 (5) 143 (3)
C16—H16B···Cl1iii 0.97 2.80 3.662 (6) 148

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) x, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7486).

References

  1. Araújo, M. J., Bom, J., Capela, R., Casimiro, C., Chambel, P., Gomes, P., Iley, J., Lopes, F., Morais, J., Moreira, R., de Oliveira, E., do Rosário, V. & Vale, N. (2005). J. Med. Chem. 48, 888–892. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Chambel, P., Capela, R., Lopes, F., Iley, J., Morais, J., Gouveia, L., Gomes, J. R. B., Gomes, P. & Moreira, R. (2006). Tetrahedron, 62, 9883–9891.
  4. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gomes, R., Araújo, M. J., Rodrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562.
  7. Gomes, P. J. S., Nunes, C. M., Pais, A. A. C. C., Pinho e Melo, T. M. V. D. & Arnaut, L. G. (2006). Tetrahedron Lett. 47, 5475–5479.
  8. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  9. Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 1–5.
  10. Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.
  11. Qin, L. Y., Cole, A. G., Metzger, A., O’Brien, L., Sun, X., Wu, J., Xu, Y., Xu, K., Zhang, Y. & Henderson, I. (2009). Tetrahedron Lett. 50, 419–422.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Vale, N., Collins, M. S., Gut, J., Ferraz, R., Rosenthal, P. J., Cushion, M. T., Moreira, R. & Gomes, P. (2008a). Bioorg. Med. Chem. Lett. 18, 485–488. [DOI] [PubMed]
  14. Vale, N., Matos, J., Moreira, R. & Gomes, P. (2008b). Tetrahedron, 64, 11144–11149.
  15. Vale, N., Moreira, R. & Gomes, P. (2008c). Int. J. Mass Spectrom. 270, 81–93.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Zhang, K., Chopade, P. R. & Louie, J. (2008). Tetrahedron Lett. 49, 4306–4309. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015015364/hb7486sup1.cif

e-71-0o682-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015364/hb7486Isup2.hkl

e-71-0o682-Isup2.hkl (213.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015015364/hb7486Isup3.cml

20 27 2 3 . DOI: 10.1107/S2056989015015364/hb7486fig1.tif

Synthesis protocol of C20H27ClN2O3.

. DOI: 10.1107/S2056989015015364/hb7486fig2.tif

Perspective view of the title compound showing 50% displacement ellipsoids.

20 27 2 3 . DOI: 10.1107/S2056989015015364/hb7486fig3.tif

Unit cell projection of C20H27ClN2O3 showing two mol­ecules per cell.

CCDC reference: 1419261

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES