Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 22;71(Pt 9):m171–m172. doi: 10.1107/S2056989015015194

Crystal structure of bis­(μ2-tetra­bromo­phthalato-κ2 O 1:O 2)bis[aqua(N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-κ2 N,N′)copper(II)]

Luis Manuel Tobón-Trujillo a, Luis Felipe Villanueva-Sánchez a, Diego Martínez-Otero a, Alejandro Dorazco-González a,*
PMCID: PMC4555376  PMID: 26396871

Abstract

In the title complex, [Cu2(C8Br4O4)2(C6H16N2)2(H2O)2], the CuII cation is chelated by a tetra­methyl­ethane-1,2-di­amine ligand and coordinated by a water mol­ecule as well as bridged by two tetra­bromo­phthalate anions in a distorted O3N2 trigonal–bipyramidal geometry. The two symmetry-related tetra­bromo­phthalate anions bridge the two CuII cations, forming a centrosymmetric dinuclear complex in which the Cu⋯Cu separation is 5.054 (2) Å. Intra­molecular classic O—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds occur in the dinuclear mol­ecule. In the crystal, the mol­ecules are linked by weak C—H⋯Br and C—H⋯O inter­actions into supra­molecular chains propagating along the b-axis direction.

Keywords: crystal structure; copper(II) complex; tetra­methyl­ethane-1,2-di­amine; tetra­bromo­phthalate anion; hydrogen bonding

Related literature  

For the crystal structures of related copper(II) complexes with tetramethylethylen-1,2-diamine and carboxyl­ate ligands; see: Ene et al. (2009); Dorazco-González et al. (2013); Liang et al. (2004). For the synthesis of coordination compounds with one-dimensional polymeric structures, see: Hong & You (2004); Colacio et al. (2009); Rodpun et al. (2015); Yang et al. (2002). For their magnetic properties, see: Ene et al. (2009); Kozlevčar et al. (2004). For supra­molecular polymorphism, see: Dorazco-González et al. (2013); Stibrany et al. (2009); Aakeröy et al. (2003); Valdés-Martínez et al. (1993); Julve et al. (1984). For mol­ecular recognition and sensing; see: Dorazco-González & Yatsimirsky (2010); Mendy et al. (2010).graphic file with name e-71-0m171-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C8Br4O4)2(C6H16N2)2(H2O)2]

  • M r = 1354.97

  • Monoclinic, Inline graphic

  • a = 9.0961 (2) Å

  • b = 9.2281 (2) Å

  • c = 24.4026 (7) Å

  • β = 95.4910 (6)°

  • V = 2038.95 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.94 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.08 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.442, T max = 0.745

  • 17394 measured reflections

  • 3739 independent reflections

  • 3547 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.016

  • wR(F 2) = 0.039

  • S = 1.07

  • 3739 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015015194/xu5866sup1.cif

e-71-0m171-sup1.cif (539.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015194/xu5866Isup2.hkl

e-71-0m171-Isup2.hkl (298.3KB, hkl)

. DOI: 10.1107/S2056989015015194/xu5866fig1.tif

The structure with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.

. DOI: 10.1107/S2056989015015194/xu5866fig2.tif

View of inter­actions in the crystal.

CCDC reference: 1418832

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O5H5AO2 0.81(2) 1.87(2) 2.649(2) 161(2)
O5H5BO4i 0.82(2) 1.83(2) 2.630(2) 167(3)
C10H10ABr4ii 0.99 2.84 3.729(3) 150
C11H11CO4 0.98 2.40 3.376(3) 179
C13H13AO4iii 0.98 2.58 3.506(3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank MSc Lizbeth Triana Cruz for technical assistence. The financial support of this research by CONACyT (CB239648) is gratefully acknowledged.

supplementary crystallographic information

S1. Introduction

The self-assembly of metal complexes with benzene-multi­carboxyl­ate ligands remains an active area in coordination chemistry especially with copper due to the very wide structural diversity and inter­esting properties in magnetism, host-guest systems, porous material (Ene et al., 2009; Dorazco-González et al., 2013; Liang et al., 2004). Dinuclear copper(II) compounds have been used in magnetism, as biomimetic active sites in bioinorganic chemistry and in the design and synthesis of metallic networks (Lu et al., 2004). Herein we present a dinuclear copper complex synthesised by self-assembly between copper perchlorate, a aliphatic di­amine (tmen) and a bulky benzendi­carboxyl­ate (tetra­bromo­phthalate). The tittle compound represents the first example of copper complex with tetra­bromo­phthalate.

S2. Experimental

Compound. Cu(ClO4)2.6H2O (0.1 mmol, 0.037 g) was added directly to a solution of tmen (0.1 mmol) in metanol-water solution 1:1 (8 mL). Then the dianion of tetra­bromo­phthalic acid (0.1 mmol, 0.055 g) in methanol-water solution 1:1 again (12 mL) was slowly added with stirring at room temperature, and a slight warming at 50 °C for 3 minutes.

S2.1. Synthesis and crystallization

Blue deep suitable crystals for diffraction X-ray were grown directly from solution by slow evaporation during 5 days. IR(KBr pellet), 3012 (w), 2971 (w), 2947 (w), 1741 (s), 1606 (m), 1396 (m), 1504 (w), 1459 (w), 1371 (s), 1315 (m), 1213 (m), 1096 (w), 1018 (w), 951 (w), 867 (w), 805 (w), 765 (w), 733 (w), 558 (w), 525 (w).

S2.2. Refinement

Water H atoms were placed in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.98–0.99 Å and refined in riding mode, Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms and 1.5Ueq(C) for methyl H atoms.

S3. Results and discussion

The reaction between the aqua-complex [Cu(tmen)(H2O)x](ClO4)2 and potassium salt of tetra­bromo­phthalate in mixture ethanol gives the title compound in good yield (>94 %) as blue suitable crystals for X ray diffraction. The single-crystal X-ray analysis reveals that the compound is a neutral dinuclear centro-symmetric copper (II) complex which crystallizes in monoclinic crystal system, space group P21/n (Figure 1). The asymmetric unit contains a five-coordinate copper atom [Cu(N2O3)] with two sites occupied by di­amine and three sites by oxygen atoms from two carboxyl­ate groups and one molecule of water. The Addison tau-parameter has been used to describe the distortion around coordination geometry, τ = (difference between two largest angles/60 for five-coordinated metal centers allows the distinction between trigonal-bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0). In this context, the coordination geometry of complex is distorted trigonal-bypiramide, τ = 0.68. The distance Cu ··· Cu is 5.054 (2) Å and a macrocycle is formed by 14 atoms containing two TBr-phthalate-bridge ligands. The combination of copper(II) with multi-carb­oxy­lic acids has formed one of the largest subgroups in metal-organic compounds and despite this there are few examples of coordination complex with 1,2,3,4,-tetra­halogenated benzenes among these only with tetra­chloro­phthalate have been reported (Hong & You, 2004; Yang et al., 2002). The present compound represents the first example with tetra­bromo­phthalate.

Figures

Fig. 1.

Fig. 1.

The structure with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View of interactions in the crystal.

Crystal data

[Cu2(C8Br4O4)2(C6H16N2)2(H2O)2] F(000) = 1300
Mr = 1354.97 Dx = 2.207 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.0961 (2) Å Cell parameters from 9880 reflections
b = 9.2281 (2) Å θ = 2.4–25.7°
c = 24.4026 (7) Å µ = 8.94 mm1
β = 95.4910 (6)° T = 100 K
V = 2038.95 (9) Å3 Prism, blue
Z = 2 0.25 × 0.15 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 3739 independent reflections
Radiation source: Incoatec ImuS 3547 reflections with I > 2σ(I)
Mirrors monochromator Rint = 0.019
ω scans θmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −10→10
Tmin = 0.442, Tmax = 0.745 k = −11→11
17394 measured reflections l = −29→29

Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0162P)2 + 2.4857P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
3739 reflections Δρmax = 0.80 e Å3
245 parameters Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.34950 (2) 0.30336 (3) 0.71377 (2) 0.01607 (6)
Br2 0.62992 (3) 0.47283 (3) 0.78249 (2) 0.02118 (6)
Br3 0.95418 (3) 0.47738 (3) 0.73268 (2) 0.01934 (6)
Br4 1.00627 (2) 0.27574 (3) 0.62483 (2) 0.01671 (6)
Cu1 0.32727 (3) −0.12890 (3) 0.55897 (2) 0.01122 (6)
O1 0.45257 (16) 0.02014 (16) 0.59851 (6) 0.0143 (3)
O2 0.32220 (16) 0.22748 (16) 0.58559 (6) 0.0135 (3)
O3 0.65378 (16) 0.19336 (16) 0.52428 (6) 0.0132 (3)
O4 0.79787 (17) 0.02815 (16) 0.57131 (6) 0.0144 (3)
O5 0.17319 (17) 0.01324 (17) 0.53376 (6) 0.0133 (3)
H5A 0.205 (3) 0.091 (2) 0.5454 (10) 0.016*
H5B 0.179 (3) 0.014 (3) 0.5006 (7) 0.016*
N1 0.4780 (2) −0.2831 (2) 0.58485 (7) 0.0153 (4)
N2 0.1667 (2) −0.2787 (2) 0.57861 (8) 0.0180 (4)
C1 0.5567 (2) 0.2309 (2) 0.63834 (8) 0.0102 (4)
C2 0.5382 (2) 0.3046 (2) 0.68693 (8) 0.0108 (4)
C3 0.6563 (2) 0.3755 (2) 0.71631 (8) 0.0119 (4)
C4 0.7951 (2) 0.3723 (2) 0.69622 (8) 0.0123 (4)
C5 0.8155 (2) 0.2926 (2) 0.64905 (8) 0.0114 (4)
C6 0.6979 (2) 0.2221 (2) 0.62005 (8) 0.0101 (4)
C7 0.4303 (2) 0.1547 (2) 0.60456 (8) 0.0104 (4)
C8 0.7190 (2) 0.1388 (2) 0.56745 (8) 0.0112 (4)
C9 0.3941 (3) −0.4200 (2) 0.57551 (10) 0.0206 (5)
H9A 0.4525 −0.5017 0.5925 0.025*
H9B 0.3757 −0.4388 0.5355 0.025*
C10 0.2483 (3) −0.4091 (3) 0.60056 (11) 0.0267 (6)
H10A 0.1885 −0.4970 0.5915 0.032*
H10B 0.2665 −0.4022 0.6411 0.032*
C11 0.6075 (3) −0.2849 (3) 0.55284 (11) 0.0221 (5)
H11A 0.5747 −0.2979 0.5137 0.033*
H11B 0.6728 −0.3651 0.5655 0.033*
H11C 0.6611 −0.1931 0.5581 0.033*
C12 0.5316 (3) −0.2652 (3) 0.64386 (10) 0.0295 (6)
H12A 0.5925 −0.1776 0.6485 0.044*
H12B 0.5908 −0.3497 0.6564 0.044*
H12C 0.4470 −0.2564 0.6657 0.044*
C13 0.0750 (3) −0.2171 (3) 0.61946 (10) 0.0270 (6)
H13A 0.0211 −0.1327 0.6036 0.040*
H13B 0.1384 −0.1874 0.6523 0.040*
H13C 0.0045 −0.2903 0.6297 0.040*
C14 0.0693 (3) −0.3163 (3) 0.52836 (10) 0.0244 (5)
H14A 0.0251 −0.2277 0.5119 0.037*
H14B −0.0091 −0.3815 0.5381 0.037*
H14C 0.1275 −0.3644 0.5019 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01284 (11) 0.02352 (12) 0.01199 (11) 0.00231 (9) 0.00185 (8) −0.00263 (9)
Br2 0.02459 (13) 0.02531 (13) 0.01399 (11) −0.00390 (10) 0.00359 (9) −0.01160 (9)
Br3 0.02013 (12) 0.02323 (13) 0.01411 (11) −0.01075 (9) −0.00115 (8) −0.00597 (9)
Br4 0.01220 (11) 0.02355 (13) 0.01461 (11) −0.00571 (9) 0.00253 (8) −0.00292 (9)
Cu1 0.01308 (13) 0.00842 (13) 0.01167 (13) −0.00056 (10) −0.00133 (10) −0.00121 (10)
O1 0.0144 (8) 0.0097 (8) 0.0178 (8) −0.0008 (6) −0.0039 (6) −0.0018 (6)
O2 0.0123 (8) 0.0125 (8) 0.0151 (8) 0.0011 (6) −0.0019 (6) −0.0023 (6)
O3 0.0172 (8) 0.0142 (8) 0.0080 (7) 0.0012 (6) 0.0002 (6) −0.0017 (6)
O4 0.0168 (8) 0.0129 (8) 0.0130 (7) 0.0032 (6) −0.0005 (6) −0.0012 (6)
O5 0.0160 (8) 0.0127 (8) 0.0109 (7) −0.0013 (6) −0.0006 (6) −0.0043 (6)
N1 0.0210 (10) 0.0108 (9) 0.0136 (9) −0.0004 (8) −0.0011 (7) 0.0003 (7)
N2 0.0196 (10) 0.0167 (10) 0.0185 (10) −0.0029 (8) 0.0052 (8) 0.0036 (8)
C1 0.0138 (10) 0.0060 (10) 0.0103 (10) 0.0006 (8) −0.0015 (8) 0.0030 (8)
C2 0.0125 (10) 0.0084 (10) 0.0116 (10) 0.0017 (8) 0.0023 (8) 0.0020 (8)
C3 0.0190 (11) 0.0095 (10) 0.0070 (10) 0.0005 (9) 0.0003 (8) −0.0012 (8)
C4 0.0160 (11) 0.0100 (10) 0.0100 (10) −0.0037 (9) −0.0040 (8) 0.0007 (8)
C5 0.0131 (10) 0.0115 (10) 0.0100 (10) −0.0017 (8) 0.0032 (8) 0.0027 (8)
C6 0.0148 (11) 0.0084 (10) 0.0069 (10) 0.0001 (8) −0.0003 (8) 0.0031 (8)
C7 0.0122 (10) 0.0117 (11) 0.0074 (9) −0.0017 (8) 0.0022 (8) −0.0004 (8)
C8 0.0104 (10) 0.0117 (11) 0.0116 (10) −0.0047 (9) 0.0025 (8) −0.0009 (8)
C9 0.0255 (13) 0.0097 (11) 0.0260 (13) −0.0008 (10) 0.0003 (10) 0.0021 (9)
C10 0.0288 (14) 0.0165 (12) 0.0357 (15) −0.0019 (11) 0.0077 (11) 0.0117 (11)
C11 0.0169 (12) 0.0180 (12) 0.0311 (14) 0.0039 (10) 0.0009 (10) 0.0069 (10)
C12 0.0426 (16) 0.0238 (14) 0.0194 (13) 0.0077 (12) −0.0113 (11) 0.0013 (10)
C13 0.0276 (14) 0.0328 (15) 0.0228 (13) 0.0022 (12) 0.0140 (11) 0.0060 (11)
C14 0.0196 (12) 0.0228 (13) 0.0307 (14) −0.0104 (10) 0.0010 (10) −0.0042 (11)

Geometric parameters (Å, º)

Br1—C2 1.895 (2) N1—C9 1.482 (3)
Br2—C3 1.883 (2) N1—C12 1.485 (3)
Br3—C4 1.892 (2) N2—C13 1.473 (3)
Br4—C5 1.893 (2) N2—C14 1.484 (3)
Cu1—O5 1.9744 (16) N2—C10 1.487 (3)
Cu1—O1 1.9776 (15) C1—C2 1.391 (3)
Cu1—N1 2.0340 (19) C1—C6 1.402 (3)
Cu1—N2 2.0995 (19) C1—C7 1.521 (3)
Cu1—O3i 2.1396 (14) C2—C3 1.396 (3)
O1—C7 1.269 (3) C3—C4 1.398 (3)
O2—C7 1.243 (3) C4—C5 1.393 (3)
O3—C8 1.263 (3) C5—C6 1.387 (3)
O3—Cu1i 2.1396 (14) C6—C8 1.524 (3)
O4—C8 1.246 (3) C9—C10 1.516 (3)
N1—C11 1.475 (3)
O5—Cu1—O1 92.80 (6) C2—C1—C7 122.73 (19)
O5—Cu1—N1 177.14 (7) C6—C1—C7 117.98 (18)
O1—Cu1—N1 89.71 (7) C1—C2—C3 121.13 (19)
O5—Cu1—N2 91.13 (7) C1—C2—Br1 118.64 (16)
O1—Cu1—N2 136.68 (7) C3—C2—Br1 120.21 (16)
N1—Cu1—N2 86.10 (8) C2—C3—C4 119.12 (19)
O5—Cu1—O3i 90.46 (6) C2—C3—Br2 120.61 (16)
O1—Cu1—O3i 124.17 (6) C4—C3—Br2 120.27 (15)
N1—Cu1—O3i 89.26 (7) C5—C4—C3 119.80 (19)
N2—Cu1—O3i 98.90 (7) C5—C4—Br3 120.18 (16)
C7—O1—Cu1 130.25 (14) C3—C4—Br3 120.02 (15)
C8—O3—Cu1i 127.37 (14) C6—C5—C4 120.80 (19)
C11—N1—C9 109.53 (18) C6—C5—Br4 119.17 (16)
C11—N1—C12 108.07 (19) C4—C5—Br4 120.01 (16)
C9—N1—C12 111.12 (19) C5—C6—C1 119.73 (19)
C11—N1—Cu1 113.14 (14) C5—C6—C8 120.89 (19)
C9—N1—Cu1 103.09 (14) C1—C6—C8 119.35 (18)
C12—N1—Cu1 111.86 (15) O2—C7—O1 127.93 (19)
C13—N2—C14 108.52 (19) O2—C7—C1 118.85 (18)
C13—N2—C10 111.32 (19) O1—C7—C1 113.20 (18)
C14—N2—C10 110.3 (2) O4—C8—O3 127.65 (19)
C13—N2—Cu1 110.61 (15) O4—C8—C6 117.88 (18)
C14—N2—Cu1 109.81 (14) O3—C8—C6 114.47 (18)
C10—N2—Cu1 106.31 (14) N1—C9—C10 109.8 (2)
C2—C1—C6 119.26 (19) N2—C10—C9 109.52 (19)
C6—C1—C2—C3 3.0 (3) C2—C1—C6—C8 178.75 (18)
C7—C1—C2—C3 −178.78 (19) C7—C1—C6—C8 0.5 (3)
C6—C1—C2—Br1 −175.50 (15) Cu1—O1—C7—O2 −1.5 (3)
C7—C1—C2—Br1 2.7 (3) Cu1—O1—C7—C1 −179.92 (13)
C1—C2—C3—C4 0.2 (3) C2—C1—C7—O2 60.4 (3)
Br1—C2—C3—C4 178.71 (15) C6—C1—C7—O2 −121.4 (2)
C1—C2—C3—Br2 −179.24 (15) C2—C1—C7—O1 −121.0 (2)
Br1—C2—C3—Br2 −0.7 (2) C6—C1—C7—O1 57.2 (2)
C2—C3—C4—C5 −3.3 (3) Cu1i—O3—C8—O4 −6.9 (3)
Br2—C3—C4—C5 176.09 (16) Cu1i—O3—C8—C6 172.16 (13)
C2—C3—C4—Br3 176.10 (15) C5—C6—C8—O4 66.3 (3)
Br2—C3—C4—Br3 −4.5 (2) C1—C6—C8—O4 −115.6 (2)
C3—C4—C5—C6 3.3 (3) C5—C6—C8—O3 −112.8 (2)
Br3—C4—C5—C6 −176.16 (16) C1—C6—C8—O3 65.3 (3)
C3—C4—C5—Br4 −175.18 (16) C11—N1—C9—C10 −170.79 (19)
Br3—C4—C5—Br4 5.4 (2) C12—N1—C9—C10 69.9 (2)
C4—C5—C6—C1 0.0 (3) Cu1—N1—C9—C10 −50.1 (2)
Br4—C5—C6—C1 178.46 (15) C13—N2—C10—C9 −148.7 (2)
C4—C5—C6—C8 178.09 (19) C14—N2—C10—C9 90.8 (2)
Br4—C5—C6—C8 −3.4 (3) Cu1—N2—C10—C9 −28.2 (2)
C2—C1—C6—C5 −3.1 (3) N1—C9—C10—N2 54.4 (3)
C7—C1—C6—C5 178.62 (18)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O2 0.81 (2) 1.87 (2) 2.649 (2) 161 (2)
O5—H5B···O4i 0.82 (2) 1.83 (2) 2.630 (2) 167 (3)
C10—H10A···Br4ii 0.99 2.84 3.729 (3) 150
C11—H11C···O4 0.98 2.40 3.376 (3) 179
C13—H13A···O4iii 0.98 2.58 3.506 (3) 158

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y−1, z; (iii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5866).

References

  1. Aakeröy, C. B., Beatty, A. M., Desper, J., O’Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956–3962.
  2. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Colacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054–2064.
  4. Dorazco-González, A., Martínez-Vargas, S., Hernández-Ortega, S. & Valdés-Martínez, J. (2013). CrystEngComm, 15, 5961–5968.
  5. Dorazco-González, A. & Yatsimirsky, A. K. (2010). Inorg. Chim. Acta, 363, 270–274.
  6. Ene, C. D., Madalan, A. M., Maxim, C., Jurca, B., Avarvari, N. & Andruh, M. (2009). J. Am. Chem. Soc. 131, 4586–4587. [DOI] [PubMed]
  7. Hong, C. S. & You, Y. S. (2004). Polyhedron, 23, 3043–3050.
  8. Julve, M., Faus, J., Verdaguer, M. & Gleizes, A. (1984). J. Am. Chem. Soc. 106, 8306–8308.
  9. Kozlevčar, B., Leban, I., Petrič, M., Petriček, S., Roubeau, O., Reedijk, J. & Šegedin, P. (2004). Inorg. Chim. Acta, 357, 4220–4230.
  10. Liang, M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2004). Inorg. Chem. Commun. 7, 173–175.
  11. Mendy, J. S., Saeed, M. A., Fronczek, F. R., Powell, D. R. & Hossain, A. (2010). Inorg. Chem. 49, 7223–7225. [DOI] [PMC free article] [PubMed]
  12. Rodpun, K., Blackman, A. G., Gardiner, M. G., Tan, E. W., Meledandri, C. J. & Lucas, N. T. (2015). CrystEngComm, 17, 2974–2988.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Stibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719–722.
  15. Valdés-Martínez, J., Cervantes-Lee, F. & ter Haar, L. W. (1993). J. Appl. Phys. 74, 1918–1921.
  16. Yang, S.-Y., Long, L.-S., Wu, Z.-Y., Zhan, M.-X., Huang, R.-B. & Zheng, L.-S. (2002). Transition Met. Chem. 27, 546–549.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015015194/xu5866sup1.cif

e-71-0m171-sup1.cif (539.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015194/xu5866Isup2.hkl

e-71-0m171-Isup2.hkl (298.3KB, hkl)

. DOI: 10.1107/S2056989015015194/xu5866fig1.tif

The structure with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.

. DOI: 10.1107/S2056989015015194/xu5866fig2.tif

View of inter­actions in the crystal.

CCDC reference: 1418832

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES