Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 12;71(Pt 9):o652–o653. doi: 10.1107/S2056989015014644

Crystal structure of 6,7-di­chloro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa a,*
PMCID: PMC4555387  PMID: 26396886

Abstract

In the title compound, C10H4Cl2O3, a dichlorinated 3-formyl­chromone, the non-H atoms of the 4H-chromene ring are essentially coplanar (r.m.s. = 0.0188 Å), with the largest deviation from the least-squares plane [0.043 (2) Å] being for the pyran C=O C atom. The α,β-unsaturated carbonyl O atom deviates from the least-square plane by 0.124 (2) Å. The dihedral angle between the chromone and formyl least-square planes is 6.76 (3)°. In the crystal, mol­ecules are linked through C—H⋯O hydrogen bonds between the translation-symmetry and inversion-symmetry equivalents to form tetrads, which are further assembled by stacking inter­actions [centroid–centroid distance between the benzene rings = 3.769 (2) Å]. van der Waals contacts are found between the Cl atoms at the 6-position and the Cl atoms at 7-position of the glide-reflection-symmetry equivalents [Cl⋯Cl = 3.4785 (16) Å, C—Cl⋯Cl = 160.23 (7)° and Cl⋯Cl—C = 122.59 (7)°].

Keywords: crystal structure, chromone, hydrogen bonding, halogen–halogen contact, stacking inter­action

Related literature  

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014a ,b , 2015). For halogen bonding and halogen⋯halogen interactions, see: Auffinger et al. (2004); Metrangolo et al. (2005); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015).graphic file with name e-71-0o652-scheme1.jpg

Experimental  

Crystal data  

  • C10H4Cl2O3

  • M r = 243.05

  • Monoclinic, Inline graphic

  • a = 3.7695 (13) Å

  • b = 6.1465 (16) Å

  • c = 39.431 (13) Å

  • β = 90.72 (3)°

  • V = 913.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 140 K

  • 0.30 × 0.25 × 0.10 mm

Data collection  

  • Rigaku AFC–7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.574, T max = 0.934

  • 5075 measured reflections

  • 2089 independent reflections

  • 1747 reflections with F 2 > 2.0σ(F 2)

  • R int = 0.052

  • 3 standard reflections every 150 reflections intensity decay: 0.6%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.098

  • S = 1.04

  • 2089 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2015); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014644/zl2636sup1.cif

e-71-0o652-sup1.cif (174.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014644/zl2636Isup2.hkl

e-71-0o652-Isup2.hkl (167.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014644/zl2636Isup3.cml

a H a b H b c d H e . DOI: 10.1107/S2056989015014644/zl2636fig1.tif

Sphere models of the crystal structures of (a) 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), (b) 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), (c) 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013), (d) 7,8-di­chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015) and (e) the title compound (this work).

. DOI: 10.1107/S2056989015014644/zl2636fig2.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015014644/zl2636fig3.tif

A packing view of the title compound. C–H⋯O hydrogen bonds are represented by dashed lines.

CCDC reference: 1416757

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1O3i 0.95 2.34 3.187(3) 148(1)
C7H3O2ii 0.95 2.26 3.129(2) 151(1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The University of Shizuoka is acknowledged for instrumentational support.

supplementary crystallographic information

S1. Comment

Halogen bonding is an electrostatic interaction between an electrophilic region of a halogen atom and a nucleophilic region of an atom, and has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014, Persch et al., 2015). This is characterized by a short contact between the two atoms.

I have reported the crystal structures of chlorinated 3-formylchromones 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015). As for the monochlorinated 3-formylchromones, van der Waals contacts are observed between the formyl oxygen atom and the chlorine atom at 6-position in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a), and between the chlorine atoms at 7-position in 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). On the other hand, as for the dichlorinated 3-formylchromones, halogen bonds are observed between the formyl oxygen atom and the chlorine atom at 8-position in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig. 1c), and between the formyl oxygen atom and the chlorine atom at 7-position in 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1d). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of a dichlorinated 3-formylchromone 6,7-dichloro-4-oxo-4H-chromene-3-carbaldehyde. The main objective of this study is to reveal the interaction modes of the chlorine substituents of the title compound in the solid state.

The mean deviation of the least-square plane for the non-hydrogen atoms of the 4H-chromene ring is 0.0188 Å, and the largest deviation is 0.043 (2) Å for the C3 atom (Fig. 2). The α,β-unsaturated carbonyl O2 atom deviates from the least-square plane by 0.124 (2) Å. The dihedral angle between the chromene least-square plane and the formyl C2–C10–O3 plane is 6.76 (3)°.

In the crystal, the molecules are linked through C–H···O hydrogen bonds between the translation-symmetryi and inversion-symmetry equivalentsii,iii to form tetrads [i: x – 1, y + 1, z, ii: –x + 1, –y, –z + 1, iii: –x + 2, –y + 1, –z + 1], which are further assembled by stacking interactions [centroid–centroid distance between the benzene rings of the 4H-chromene units = 3.769 (2) Å], as shown in Fig. 3.

Van der Waals contacts are found between the chlorine atoms at 6-position and the chlorine atoms at 7-position of the glide-reflection-symmetry equivalentsiv [Cl1···Cl2iv = 3.4785 (16) Å, C5–Cl1···Cl2iv = 160.23 (7)°, Cl1···Cl2iv–C6iv = 122.59 (7)°, iv: –x + 1, y – 1/2, –z + 1/2], as shown in Fig. 1e. Thus, short contacts are observed for the chlorine atoms in the title compound. The interaction modes of the chlorine atoms in these dichlorinated 3-formylchromones might depend on how strongly the chlorine atoms interact with the oxygen and other vicinal chlorine atoms intramolecularly. These findings could be helpful to rational drug design considering halogen bonding.

S2. Experimental

To a solution of 4',5'-dichloro-2'-hydroxyacetophenone (4.8 mmol) in N,N-dimethylformamide (15 ml) was added dropwise POCl3 (12.0 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water and dried in vacuo (yield: 65%). 1H NMR (400 MHz, CDCl3): δ = 7.71 (s, 1H), 8.37 (s, 1H), 8.52 (s, 1H), 10.35 (s, 1H). Single crystals suitable for X-ray diffraction were obtained from a 1,2-dichloroethane solution of the title compound at room temperature.

S3. Refinement

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (­–3 0 2) was omitted because of systematic error.

Figures

Fig. 1.

Fig. 1.

Sphere models of the crystal structures of (a) 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), (b) 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), (c) 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013), (d) 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015) and (e) the title compound (this work).

Fig. 2.

Fig. 2.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Fig. 3.

Fig. 3.

A packing view of the title compound. C–H···O hydrogen bonds are represented by dashed lines.

Crystal data

C10H4Cl2O3 F(000) = 488.00
Mr = 243.05 Dx = 1.767 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
a = 3.7695 (13) Å Cell parameters from 25 reflections
b = 6.1465 (16) Å θ = 15.2–17.2°
c = 39.431 (13) Å µ = 0.69 mm1
β = 90.72 (3)° T = 140 K
V = 913.5 (5) Å3 Plate, yellow
Z = 4 0.30 × 0.25 × 0.10 mm

Data collection

Rigaku AFC–7R diffractometer Rint = 0.052
ω scans θmax = 27.8°, θmin = 3.1°
Absorption correction: ψ scan (North et al., 1968) h = −4→2
Tmin = 0.574, Tmax = 0.934 k = −7→7
5075 measured reflections l = −50→50
2089 independent reflections 3 standard reflections every 150 reflections
1747 reflections with F2 > 2.0σ(F2) intensity decay: 0.6%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.5553P] where P = (Fo2 + 2Fc2)/3
2089 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.55004 (14) 0.47912 (8) 0.27821 (2) 0.02586 (15)
Cl2 0.92228 (14) 0.92474 (8) 0.29767 (2) 0.02698 (15)
O1 0.8830 (4) 0.6908 (2) 0.41933 (3) 0.0230 (3)
O2 0.3678 (4) 0.1171 (2) 0.40111 (3) 0.0274 (3)
O3 0.7039 (5) 0.2474 (3) 0.49732 (4) 0.0373 (4)
C1 0.8118 (6) 0.5474 (3) 0.44408 (5) 0.0224 (4)
H1 0.8796 0.5864 0.4666 0.027*
C2 0.6523 (5) 0.3530 (3) 0.43968 (4) 0.0208 (4)
C3 0.5328 (5) 0.2856 (3) 0.40621 (5) 0.0199 (4)
C4 0.5555 (5) 0.3935 (3) 0.34486 (4) 0.0192 (4)
H2 0.4430 0.2604 0.3389 0.023*
C5 0.6442 (5) 0.5401 (3) 0.31980 (5) 0.0197 (4)
C6 0.8083 (5) 0.7381 (3) 0.32843 (4) 0.0189 (4)
C7 0.8846 (5) 0.7862 (3) 0.36175 (5) 0.0199 (4)
H3 0.9962 0.9196 0.3678 0.024*
C8 0.6295 (5) 0.4389 (3) 0.37891 (4) 0.0180 (4)
C9 0.7948 (5) 0.6354 (3) 0.38648 (4) 0.0188 (4)
C10 0.5952 (6) 0.2085 (3) 0.46908 (5) 0.0278 (5)
H4 0.4657 0.0777 0.4655 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0352 (3) 0.0278 (3) 0.0144 (2) −0.0004 (2) −0.00603 (19) −0.00328 (17)
Cl2 0.0343 (3) 0.0257 (3) 0.0209 (2) −0.0016 (2) −0.0012 (2) 0.00378 (18)
O1 0.0335 (8) 0.0206 (7) 0.0148 (6) −0.0087 (6) −0.0050 (5) −0.0014 (5)
O2 0.0360 (9) 0.0226 (7) 0.0234 (7) −0.0121 (6) −0.0061 (6) −0.0005 (6)
O3 0.0558 (11) 0.0357 (9) 0.0200 (7) −0.0143 (8) −0.0102 (7) 0.0052 (6)
C1 0.0285 (11) 0.0233 (9) 0.0153 (8) −0.0030 (8) −0.0021 (7) −0.0011 (7)
C2 0.0253 (10) 0.0205 (9) 0.0166 (9) −0.0041 (8) −0.0024 (7) −0.0002 (7)
C3 0.0229 (10) 0.0192 (9) 0.0175 (9) −0.0013 (7) −0.0018 (7) −0.0019 (7)
C4 0.0224 (10) 0.0177 (8) 0.0174 (8) −0.0008 (7) −0.0033 (7) −0.0037 (7)
C5 0.0223 (9) 0.0217 (9) 0.0149 (8) 0.0018 (7) −0.0029 (7) −0.0034 (7)
C6 0.0219 (10) 0.0186 (9) 0.0161 (8) 0.0004 (7) −0.0016 (7) 0.0021 (7)
C7 0.0222 (10) 0.0175 (8) 0.0197 (9) −0.0029 (7) −0.0023 (7) −0.0020 (7)
C8 0.0209 (9) 0.0170 (8) 0.0161 (8) −0.0013 (7) −0.0029 (7) −0.0017 (6)
C9 0.0225 (9) 0.0193 (8) 0.0146 (8) −0.0012 (7) −0.0035 (7) −0.0034 (7)
C10 0.0370 (12) 0.0265 (10) 0.0199 (9) −0.0081 (9) −0.0032 (8) 0.0023 (8)

Geometric parameters (Å, º)

Cl1—C5 1.7148 (19) C3—C8 1.480 (3)
Cl2—C6 1.7275 (19) C4—C5 1.381 (3)
O1—C1 1.344 (2) C4—C8 1.396 (2)
O1—C9 1.376 (2) C4—H2 0.9500
O2—C3 1.223 (2) C5—C6 1.405 (3)
O3—C10 1.206 (2) C6—C7 1.374 (2)
C1—C2 1.348 (3) C7—C9 1.391 (3)
C1—H1 0.9500 C7—H3 0.9500
C2—C3 1.450 (2) C8—C9 1.390 (3)
C2—C10 1.478 (3) C10—H4 0.9500
C1—O1—C9 118.23 (15) C7—C6—C5 120.28 (17)
O1—C1—C2 125.47 (16) C7—C6—Cl2 118.54 (15)
O1—C1—H1 117.3 C5—C6—Cl2 121.18 (14)
C2—C1—H1 117.3 C6—C7—C9 118.52 (17)
C1—C2—C3 120.25 (17) C6—C7—H3 120.7
C1—C2—C10 120.05 (17) C9—C7—H3 120.7
C3—C2—C10 119.69 (17) C9—C8—C4 117.65 (17)
O2—C3—C2 122.92 (17) C9—C8—C3 120.72 (16)
O2—C3—C8 123.27 (16) C4—C8—C3 121.63 (16)
C2—C3—C8 113.81 (16) O1—C9—C8 121.32 (16)
C5—C4—C8 120.70 (17) O1—C9—C7 115.91 (16)
C5—C4—H2 119.7 C8—C9—C7 122.76 (16)
C8—C4—H2 119.7 O3—C10—C2 123.64 (19)
C4—C5—C6 120.10 (16) O3—C10—H4 118.2
C4—C5—Cl1 119.51 (14) C2—C10—H4 118.2
C6—C5—Cl1 120.40 (15)
C9—O1—C1—C2 −1.5 (3) C5—C4—C8—C3 179.21 (18)
O1—C1—C2—C3 −1.7 (3) O2—C3—C8—C9 175.37 (19)
O1—C1—C2—C10 178.9 (2) C2—C3—C8—C9 −4.8 (3)
C1—C2—C3—O2 −175.48 (19) O2—C3—C8—C4 −3.9 (3)
C10—C2—C3—O2 3.9 (3) C2—C3—C8—C4 175.93 (17)
C1—C2—C3—C8 4.7 (3) C1—O1—C9—C8 1.4 (3)
C10—C2—C3—C8 −175.96 (18) C1—O1—C9—C7 −177.98 (17)
C8—C4—C5—C6 −0.5 (3) C4—C8—C9—O1 −178.76 (17)
C8—C4—C5—Cl1 179.93 (15) C3—C8—C9—O1 1.9 (3)
C4—C5—C6—C7 0.6 (3) C4—C8—C9—C7 0.6 (3)
Cl1—C5—C6—C7 −179.76 (15) C3—C8—C9—C7 −178.76 (18)
C4—C5—C6—Cl2 −179.99 (15) C6—C7—C9—O1 178.95 (17)
Cl1—C5—C6—Cl2 −0.4 (2) C6—C7—C9—C8 −0.4 (3)
C5—C6—C7—C9 −0.2 (3) C1—C2—C10—O3 −4.9 (4)
Cl2—C6—C7—C9 −179.59 (15) C3—C2—C10—O3 175.8 (2)
C5—C4—C8—C9 −0.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O3i 0.95 2.34 3.187 (3) 148 (1)
C7—H3···O2ii 0.95 2.26 3.129 (2) 151 (1)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2636).

References

  1. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. [DOI] [PMC free article] [PubMed]
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  3. Ishikawa, Y. (2014a). Acta Cryst. E70, o514. [DOI] [PMC free article] [PubMed]
  4. Ishikawa, Y. (2014b). Acta Cryst. E70, o831. [DOI] [PMC free article] [PubMed]
  5. Ishikawa, Y. (2015). Acta Cryst. E71, 902–905. [DOI] [PMC free article] [PubMed]
  6. Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. [DOI] [PMC free article] [PubMed]
  7. Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. [DOI] [PubMed]
  8. Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7. [DOI] [PMC free article] [PubMed]
  9. Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. [DOI] [PMC free article] [PubMed]
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed 54, 3290–3327. [DOI] [PubMed]
  12. Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
  13. Rigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. [DOI] [PubMed]
  16. Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014644/zl2636sup1.cif

e-71-0o652-sup1.cif (174.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014644/zl2636Isup2.hkl

e-71-0o652-Isup2.hkl (167.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014644/zl2636Isup3.cml

a H a b H b c d H e . DOI: 10.1107/S2056989015014644/zl2636fig1.tif

Sphere models of the crystal structures of (a) 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), (b) 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), (c) 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013), (d) 7,8-di­chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015) and (e) the title compound (this work).

. DOI: 10.1107/S2056989015014644/zl2636fig2.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015014644/zl2636fig3.tif

A packing view of the title compound. C–H⋯O hydrogen bonds are represented by dashed lines.

CCDC reference: 1416757

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES