Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 26;71(Pt 9):1073–1076. doi: 10.1107/S2056989015015340

Crystal structure of di­chlorido­(4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­deca­ne)iron(III) hexa­fluorido­phosphate

Neil L Funwie a, Amy N Cain a, Brian Z Fanning a, Serena A Hageman a, Malorie Mullens a, Travis K Roberts a, Daniel J Turner a, Cammi N Valdez a, Robert W Vaughan a, Henok G Ermias a, Jon D Silversides b, Stephen J Archibald b, Timothy J Hubin a, Timothy J Prior b,*
PMCID: PMC4555389  PMID: 26396852

In contrast to other similar compounds, [FeCl2(C14H30N4)]PF6 is a monomer. Comparison with the mononuclear Fe2+ complex of the same ligand shows that the smaller Fe3+ ion is more fully engulfed by the cavity of the bicyclic ligand. Comparison with the μ-oxo dinuclear complex of an unsubstituted ligand of the same size demonstrates that the methyl groups of 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane prevent dimerization upon oxidation.

Keywords: crystal structure, macrocycle, cross bridge, iron, cylam

Abstract

The title compound, [FeCl2(C14H30N4)]PF6, contains Fe3+ coordinated by the four nitro­gen atoms of an ethyl­ene cross-bridged cyclam macrocycle and two cis chloride ligands in a distorted octa­hedral environment. In contrast to other similar compounds this is a monomer. Inter­molecular C—H⋯Cl inter­actions exist in the structure between the complex ions. Comparison with the mononuclear Fe2+ complex of the same ligand shows that the smaller Fe3+ ion is more fully engulfed by the cavity of the bicyclic ligand. Comparison with the μ-oxido dinuclear complex of an unsubstituted ligand of the same size demonstrates that the methyl groups of 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane prevent dimerization upon oxidation.

Chemical context  

The tendency for iron complexes to form oxido-bridged iron(III) species and ultimately hydrated iron oxides limits their utility, especially in aqueous media, as functional catalysts based on common ligands (Ortiz de Montellano, 1986). Even so, iron is one of the predominant metal ions found in biological catalytic systems (Jang et al., 1991; Wallar & Lipscomp, 1996; Boyington et al., 1993). A major feature of numerous synthetic catalysts having nitro­gen donors and vacant coordination sites is their propensity to form dimers in which higher valent metal ions are present. One of us has produced iron(II) (Hubin et al., 2000) and iron(III) (Hubin et al., 2001) complexes of ethyl­ene cross-bridged tetra­aza­macrocyclic ligands that are remarkably resistant to oxidative hydrolysis while still having available sites for binding of the metal ion to either a terminal oxidant or substrate. The ability of the complex to remain mononuclear, and thus catalytically useful, appears to hinge on the substitution pattern of the non-bridgehead nitro­gen atoms of the bicyclic ligands (Hubin et al., 2001). Methyl or benzyl substitution results only in mononuclear complexes, even in the M 3+ (Hubin et al., 2001, 2003) or M 4+ (Yin et al., 2006) oxidation state, while oxidation of the unsubstituted-ligand complexes results in μ-oxido iron(III) dimers (Hubin et al., 2003).

Recently, the iron(II) triflate complex of this same ligand, 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane, has been investigated as a catalyst for olefin oxidation by H2O2 and was found to be an active catalyst with reactivity properties similar to [Fe(TPA)(OTf)2] [TPA is tris(2-pyridyl­methyl)amine; OTf is trifluoromethanesulfonate; Feng et al., 2011]. A key result of this study was that the location of two available cis binding sites on the metal ion is crucial for maximum catalytic activity. Very recently an FeIV analogue has been reported, but no crystal structure data were given (England et al., 2015).graphic file with name e-71-01073-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains one complete Fe3+ mononuclear cross-bridged cyclam complex and a single PF6 anion. The metal is hexa­coordinate in the so-called cis-V geometry common for macrocycles of this type. It is coordinated by four nitro­gen atoms of the macrocycle and two cis chloride ions, as shown in Fig. 1. The Fe—Cl bond lengths are similar to those of other comparable Fe3+ complexes. The relatively long Fe—N bonds strongly suggest the Fe3+ present is in a high-spin configuration.

Figure 1.

Figure 1

ORTEP representation of the asymmetric unit with atoms drawn as 50% probability ellipsoids.

The Fe3+ resides within a pocket in the rigid macrocycle, slightly displaced from the centre. The N2—Fe1—N4 bond angle is 166.8 (3) Å and the N1—Fe1—N3 bite angle is 79.8 (3) Å.

Comparison with related structures  

Structural characterization of an Fe3+ mononuclear cross-bridged cyclam complex has not been achieved prior to the present study. In the present case, even upon oxidation of the iron from Fe(II) to Fe(III), the methyl-substituted ligand does not allow dimerization to occur. We will now compare the observed structure with that of the lower valent analogue and to the iron(III) μ-oxido dimer of the unsubstituted analogue.

From a comparison of the Fe3+ 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­adecane dichloride complex hexa­fluorido­phosphate with the Fe2+ analogue, the reduction in ionic radius of the iron ion upon oxidation is clear (Table 1). Nax—Fe3+—Nax is 166.8 (3)° in the present structure, while Nax—Fe2+—Nax is 161.88 (5)° in the reduced complex (Hubin et al., 2000). The smaller Fe3+ ion is pulled further into the ligand cavity as the favored octa­hedral geometry is approached, as can be seen by viewing each complex down the Nax—Fen+—Nax axis (Fig. 2). Fe—N bond lengths are also affected, going from a mean of 2.255 Å in the Fe2+ complex, to 2.209 Å in the Fe3+ complex. Comparison of the present Fe3+ monomer with the μ-oxido dimer complex is also informative. The crystal structure of the dimeric Fe3+ complex (Hubin, 2003) is represented in Fig. 3. The Fe3+ ion of this complex is also found in a pseudo-octa­hedral, six-coordinate geometry. Usually, these dimers contain five-coordinate metal cations, although dimers with six- and seven-coordinate cations are known (Murray, 1974). However, one monodentate chlorido ligand is maintained in this structure. Since the macrocyclic ligand is uncharged, the attractive Coulombic forces between the halide and the Fe3+ ion may be enough to keep it bound. Also, the folded ligand conformation helps separate the ligands from each other, easing the steric inter­actions that might favor lower coordination numbers with more nearly planar ligands. The secondary amine/Fe3+ bond lengths in the dimer are somewhat shorter than the tertiary amine/Fe3+ bond lengths: the Fe—N(secondary) mean length is 2.153 Å while the Fe—N(tertiary) mean length is 2.239 Å. In the monomer, with all tertiary amines, the mean Fe—N bond length is 2.209 Å, shorter but not quite matching that of the shortest, secondary amine bonds in the dimer. The Nax—Fe—Nax mean bond angle is 161.6° in the dimer, while this value is 166.85 (19)° in the monomer. Clearly, dimerization, and its associated steric consequences, pulls the Fe3+ ion further out of the ligand cavity than it is in the Fe3+ monomer. In fact, the dimer Nax—Fe—Nax bond angle is much closer to that of the Fe2+ monomer at 161.88 (5)° than that of the Fe3+ monomer at 166.85 (19)°. This steric consequence is consistent with the observation that the more sterically demanding methyl-substituted ligand prevents dimerization altogether.

Table 1. Geometric parameters (, ) for the macrocyclic cavity in Fe2+ and Fe3+ macrocyclesa .

Parameter Fe3+Me2 Lb Fe2+Me2 Lc Fe3+H2 L dimerd
FeN1 2.195(5) 2.2574(13) 2.151
FeN2 2.229(5) 2.2866(14) 2.155
FeN3 2.220(5) 2.2634(13) 2.234
FeN4 2.190(5) 2.2748(13) 2.245
N2axFeN4ax 166.8(3) 161.88(5) 161.6
N1eqFeN3eq 79.8(3) 78.36(5) 78.9

Notes: (a) where there are two independent molecules in the asymmetric unit, a mean value is given; (b) this work; (c) Hubin et al. (2000); (d) Hubin et al. (2003).

Figure 2.

Figure 2

Comparison of Fe2+ complex (Hubin et al., 2000) labelled (a), with Fe3+ monomer complex (b), and the one half of the dimer complex (Hubin et al., 2003) (c), in each case viewed perpendicular to the Cl–Fe–Cl or Cl–Fe–O plane. Atoms are drawn as 50% probability ellipsoids.

Figure 3.

Figure 3

Mol­ecular structure of μ-oxidobis[chlorido­(1,4,8,11-tetra­aza­bicyclo[6.6.2]hexa­deca­ne)iron(III)] (Hubin et al., 2003).

Supra­molecular features  

There are no classical hydrogen bonds within the structure, but many C—H⋯Cl and C—H⋯F inter­molecular inter­actions exist (Table 2). Pairs of complexes form dimers sustained by C—H⋯Cl inter­actions (H⋯Cl distances lie in the range 2.76 to 2.97 Å) and further C—H⋯Cl inter­actions link these into tapes that run parallel to the b-axis. These tapes are stacked along the a and c axes. Between them lie PF6 anions, forming C—H⋯F inter­actions to generate a three-dimensional array of inter­molecular contacts.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1AF4 0.99 2.59 3.244(13) 124
C2H2AF1i 0.99 2.36 3.249(12) 148
C3H3BCl2 0.99 2.73 3.304(11) 117
C5H5BCl2 0.99 2.67 3.277(11) 120
C6H6BCl2 0.99 2.91 3.453(10) 115
C8H8ACl1 0.99 2.78 3.337(10) 116
C8H8BCl2ii 0.99 2.78 3.726(11) 159
C9H9ACl2iii 0.99 2.76 3.571(12) 140
C10H10ACl1 0.99 2.69 3.311(11) 121
C11H11AF2iv 0.99 2.51 3.097(13) 118
C11H11BF5i 0.99 2.41 3.360(15) 161
C13H13ACl1 0.98 2.63 3.198(10) 117
C13H13BF1v 0.98 2.59 3.323(11) 131
C14H14ACl1 0.98 2.97 3.554(10) 119
C14H14BCl1vi 0.98 2.89 3.772(11) 150
C14H14BCl2 0.98 2.76 3.265(11) 113

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Database survey  

For coordination chemistry of cross-bridged tetra­aza­macrocycle derivatives and their applications, see: Hubin (2003); Jones et al. (2015); Springborg (2003); Wong et al. (2000). For related structures involving iron complexes of 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane derivatives, see: Hubin et al. (2000, 2001, 2003); McClain et al. (2006); Feng et al. (2011).

Synthesis and crystallization  

The title complex was prepared by a procedure slightly modified from those found in Hubin et al. (2000, 2001). In an inert atmosphere glovebox, 0.381 g (0.001 mol) of the iron(II) dichloride complex of 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane (Hubin et al., 2000) was dissolved in 20 ml of methanol in a round-bottom flask. Five equivalents of NH4PF6 (0.005 mol, 0.815 g) were dissolved in the solution. The flask was removed from the glovebox with a stopper to protect it from air. In a fume hood, a stream of nitro­gen gas was directed over the surface of the solution. Four to six drops of Br2 were added and the reaction was stirred for 15 minutes. Care must be taken when adding the bromine drops, as its vapor pressure and density tend to cause it to spurt out of the pipette. Practicing dispensing drops back into the bromine bottle (in the hood) can allow for successful dispensing.

A bright yellow–orange precipitate formed immediately. The nitro­gen gas was then allowed to bubble through the solution for 15 minutes to remove excess Br2. The flask was then stoppered and placed in a freezer for 30 minutes to complete the precipitation. The yellow–orange solid product was collected by vacuum filtration on a glass frit and washed with methanol and then ether. The product (0.428 g, 80% yield) was analytically pure as calculated with one-half molar equivalent of water of crystallization. Crystals suitable for X-ray diffraction were grown from ether diffusion into a di­chloro­methane solution.

Refinement  

Standard data collection and refinement procedures were adopted. Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [FeCl2(C14H30N4)]PF6
M r 526.14
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 150
a, b, c () 26.002(4), 8.5752(15), 9.3829(16)
V (3) 2092.1(6)
Z 4
Radiation type Mo K
(mm1) 1.11
Crystal size (mm) 0.12 0.09 0.07
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2(I)] reflections 21858, 4186, 2249
R int 0.143
(sin /)max (1) 0.620
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.050, 0.109, 0.84
No. of reflections 4186
No. of parameters 254
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.39, 0.33
Absolute structure Refined as a two-component inversion twin
Absolute structure parameter 0.03(5)

Computer programs: X-AREA (Stoe Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Hydrogen atoms were placed using a riding model with fixed bond lengths and angles. For methyl­ene groups U iso (H) was set at 1.2U iso(C) and for methyl groups U iso (H) was set at 1.5U iso(C).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015340/zl2640sup1.cif

e-71-01073-sup1.cif (775.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015340/zl2640Isup2.hkl

e-71-01073-Isup2.hkl (333.7KB, hkl)

CCDC reference: 1419250

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[FeCl2(C14H30N4)]PF6 Dx = 1.670 Mg m3
Mr = 526.14 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 8849 reflections
a = 26.002 (4) Å θ = 1.7–24.1°
b = 8.5752 (15) Å µ = 1.11 mm1
c = 9.3829 (16) Å T = 150 K
V = 2092.1 (6) Å3 Block, orange
Z = 4 0.12 × 0.09 × 0.07 mm
F(000) = 1084

Data collection

Stoe IPDS2 diffractometer 2249 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.143
Detector resolution: 6.67 pixels mm-1 θmax = 26.1°, θmin = 1.6°
ω–scans h = −32→32
21858 measured reflections k = −10→8
4186 independent reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0378P)2] where P = (Fo2 + 2Fc2)/3
S = 0.84 (Δ/σ)max = 0.001
4186 reflections Δρmax = 0.39 e Å3
254 parameters Δρmin = −0.33 e Å3
1 restraint Absolute structure: Refined as a two-component inversion twin
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.03 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.66232 (4) 0.14982 (13) 0.20386 (14) 0.0394 (3)
Cl1 0.71279 (10) 0.2523 (4) 0.3803 (3) 0.0471 (6)
Cl2 0.69285 (9) −0.0987 (3) 0.2182 (3) 0.0493 (6)
N1 0.6182 (3) 0.3664 (9) 0.1775 (7) 0.0479 (19)
N2 0.5950 (3) 0.0889 (10) 0.3401 (7) 0.043 (2)
N3 0.6144 (3) 0.0869 (10) 0.0162 (8) 0.042 (2)
N4 0.7148 (3) 0.2294 (12) 0.0366 (8) 0.045 (2)
C1 0.5844 (5) 0.3692 (15) 0.3148 (11) 0.058 (3)
H1A 0.6066 0.3876 0.3990 0.069*
H1B 0.5593 0.4558 0.3087 0.069*
C2 0.5569 (4) 0.2208 (13) 0.3320 (11) 0.057 (3)
H2A 0.5335 0.2044 0.2502 0.069*
H2B 0.5360 0.2236 0.4201 0.069*
C3 0.5698 (4) −0.0588 (14) 0.2979 (10) 0.056 (3)
H3A 0.5409 −0.0765 0.3645 0.067*
H3B 0.5949 −0.1440 0.3138 0.067*
C4 0.5490 (4) −0.0768 (14) 0.1479 (10) 0.059 (3)
H4A 0.5320 −0.1799 0.1407 0.071*
H4B 0.5222 0.0036 0.1328 0.071*
C5 0.5867 (4) −0.0642 (13) 0.0324 (11) 0.055 (3)
H5A 0.5689 −0.0866 −0.0585 0.066*
H5B 0.6128 −0.1471 0.0463 0.066*
C6 0.6538 (4) 0.0671 (13) −0.0993 (10) 0.060 (3)
H6A 0.6364 0.0548 −0.1924 0.072*
H6B 0.6743 −0.0283 −0.0810 0.072*
C7 0.6900 (5) 0.2105 (14) −0.1046 (11) 0.067 (3)
H7A 0.7166 0.1952 −0.1789 0.081*
H7B 0.6701 0.3053 −0.1286 0.081*
C8 0.7315 (4) 0.4001 (13) 0.0555 (11) 0.059 (3)
H8A 0.7520 0.4078 0.1442 0.071*
H8B 0.7545 0.4280 −0.0247 0.071*
C9 0.6882 (5) 0.5214 (14) 0.0628 (13) 0.073 (4)
H9A 0.7043 0.6258 0.0699 0.088*
H9B 0.6693 0.5179 −0.0287 0.088*
C10 0.6499 (4) 0.5070 (11) 0.1805 (13) 0.067 (3)
H10A 0.6685 0.5103 0.2724 0.080*
H10B 0.6269 0.5990 0.1773 0.080*
C11 0.5873 (5) 0.3684 (14) 0.0505 (12) 0.064 (4)
H11A 0.6044 0.4357 −0.0209 0.077*
H11B 0.5537 0.4166 0.0735 0.077*
C12 0.5775 (5) 0.2089 (12) −0.0168 (11) 0.060 (3)
H12A 0.5430 0.1728 0.0135 0.072*
H12B 0.5765 0.2222 −0.1216 0.072*
C13 0.6132 (4) 0.0676 (13) 0.4876 (9) 0.058 (3)
H13A 0.6302 0.1632 0.5200 0.087*
H13B 0.5838 0.0450 0.5497 0.087*
H13C 0.6376 −0.0194 0.4911 0.087*
C14 0.7641 (4) 0.1488 (14) 0.0423 (11) 0.058 (3)
H14A 0.7795 0.1633 0.1366 0.088*
H14B 0.7588 0.0373 0.0246 0.088*
H14C 0.7871 0.1917 −0.0306 0.088*
P1 0.58082 (9) 0.6220 (4) 0.6714 (2) 0.0514 (7)
F1 0.5510 (2) 0.7847 (7) 0.6576 (6) 0.0737 (19)
F2 0.5482 (3) 0.5900 (10) 0.8133 (7) 0.097 (3)
F3 0.6235 (3) 0.7031 (11) 0.7626 (8) 0.117 (3)
F4 0.6122 (2) 0.6531 (8) 0.5300 (6) 0.0635 (17)
F5 0.5377 (3) 0.5381 (11) 0.5818 (8) 0.094 (3)
F6 0.6097 (3) 0.4592 (7) 0.6862 (8) 0.094 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0415 (6) 0.0379 (6) 0.0388 (6) 0.0011 (6) −0.0025 (7) −0.0031 (8)
Cl1 0.0505 (14) 0.0455 (15) 0.0452 (12) −0.0004 (14) −0.0107 (12) −0.0074 (12)
Cl2 0.0602 (13) 0.0356 (11) 0.0522 (13) 0.0070 (10) −0.0035 (13) 0.0016 (13)
N1 0.053 (4) 0.054 (5) 0.036 (5) 0.008 (4) 0.005 (4) 0.003 (4)
N2 0.048 (5) 0.045 (5) 0.037 (4) 0.002 (4) −0.002 (4) 0.003 (4)
N3 0.039 (5) 0.045 (5) 0.042 (4) −0.006 (4) −0.009 (4) −0.004 (4)
N4 0.041 (5) 0.048 (6) 0.047 (4) −0.001 (5) −0.002 (4) −0.009 (4)
C1 0.066 (8) 0.055 (9) 0.052 (6) −0.002 (7) 0.001 (5) −0.006 (6)
C2 0.054 (7) 0.059 (8) 0.058 (7) 0.005 (6) 0.024 (5) 0.011 (6)
C3 0.061 (8) 0.056 (8) 0.049 (6) −0.022 (6) 0.012 (5) −0.002 (5)
C4 0.067 (7) 0.052 (7) 0.058 (6) −0.012 (6) −0.004 (6) −0.002 (5)
C5 0.059 (7) 0.055 (8) 0.051 (6) −0.007 (6) 0.002 (6) −0.008 (5)
C6 0.072 (8) 0.067 (8) 0.040 (5) −0.008 (6) −0.009 (5) 0.000 (5)
C7 0.086 (8) 0.070 (8) 0.046 (6) −0.011 (6) 0.007 (6) 0.004 (6)
C8 0.076 (8) 0.044 (7) 0.058 (6) 0.003 (6) 0.007 (5) 0.006 (5)
C9 0.086 (9) 0.047 (7) 0.086 (8) 0.002 (7) 0.032 (7) 0.002 (6)
C10 0.092 (8) 0.030 (5) 0.079 (9) −0.005 (5) 0.005 (8) 0.007 (6)
C11 0.067 (9) 0.052 (9) 0.073 (7) 0.025 (7) −0.008 (6) 0.003 (6)
C12 0.068 (7) 0.053 (8) 0.059 (6) −0.004 (6) −0.022 (6) 0.004 (6)
C13 0.071 (8) 0.068 (8) 0.035 (5) −0.021 (6) 0.007 (5) 0.014 (5)
C14 0.053 (7) 0.059 (8) 0.064 (6) 0.010 (6) 0.013 (5) −0.003 (6)
P1 0.0442 (14) 0.0654 (18) 0.0445 (16) 0.0126 (13) 0.0024 (11) 0.0086 (13)
F1 0.069 (4) 0.063 (4) 0.090 (5) 0.024 (3) 0.029 (3) 0.022 (3)
F2 0.123 (7) 0.094 (6) 0.075 (4) 0.050 (5) 0.058 (4) 0.038 (4)
F3 0.073 (5) 0.171 (9) 0.107 (5) 0.025 (5) −0.027 (4) −0.090 (5)
F4 0.060 (4) 0.077 (5) 0.054 (3) 0.004 (3) 0.012 (3) 0.000 (3)
F5 0.054 (4) 0.131 (8) 0.097 (5) −0.021 (5) 0.017 (4) −0.032 (5)
F6 0.123 (5) 0.081 (5) 0.079 (4) 0.046 (4) 0.038 (5) 0.019 (4)

Geometric parameters (Å, º)

Fe1—N4 2.188 (8) C6—C7 1.549 (14)
Fe1—N1 2.197 (7) C6—H6A 0.9900
Fe1—N3 2.223 (7) C6—H6B 0.9900
Fe1—N2 2.229 (8) C7—H7A 0.9900
Fe1—Cl2 2.278 (3) C7—H7B 0.9900
Fe1—Cl1 2.288 (3) C8—C9 1.534 (15)
N1—C11 1.437 (13) C8—H8A 0.9900
N1—C10 1.461 (11) C8—H8B 0.9900
N1—C1 1.559 (12) C9—C10 1.493 (15)
N2—C13 1.473 (12) C9—H9A 0.9900
N2—C3 1.480 (14) C9—H9B 0.9900
N2—C2 1.506 (13) C10—H10A 0.9900
N3—C12 1.453 (13) C10—H10B 0.9900
N3—C5 1.490 (13) C11—C12 1.528 (15)
N3—C6 1.501 (12) C11—H11A 0.9900
N4—C14 1.458 (12) C11—H11B 0.9900
N4—C7 1.482 (13) C12—H12A 0.9900
N4—C8 1.538 (15) C12—H12B 0.9900
C1—C2 1.469 (16) C13—H13A 0.9800
C1—H1A 0.9900 C13—H13B 0.9800
C1—H1B 0.9900 C13—H13C 0.9800
C2—H2A 0.9900 C14—H14A 0.9800
C2—H2B 0.9900 C14—H14B 0.9800
C3—C4 1.516 (13) C14—H14C 0.9800
C3—H3A 0.9900 P1—F3 1.564 (7)
C3—H3B 0.9900 P1—F5 1.575 (8)
C4—C5 1.467 (14) P1—F4 1.580 (6)
C4—H4A 0.9900 P1—F6 1.591 (6)
C4—H4B 0.9900 P1—F1 1.601 (6)
C5—H5A 0.9900 P1—F2 1.602 (7)
C5—H5B 0.9900
N4—Fe1—N1 88.9 (3) N3—C6—C7 110.3 (9)
N4—Fe1—N3 81.8 (3) N3—C6—H6A 109.6
N1—Fe1—N3 79.8 (3) C7—C6—H6A 109.6
N4—Fe1—N2 166.8 (3) N3—C6—H6B 109.6
N1—Fe1—N2 81.5 (3) C7—C6—H6B 109.6
N3—Fe1—N2 87.6 (3) H6A—C6—H6B 108.1
N4—Fe1—Cl2 96.7 (3) N4—C7—C6 108.8 (8)
N1—Fe1—Cl2 168.3 (2) N4—C7—H7A 109.9
N3—Fe1—Cl2 90.9 (2) C6—C7—H7A 109.9
N2—Fe1—Cl2 91.2 (2) N4—C7—H7B 109.9
N4—Fe1—Cl1 92.4 (2) C6—C7—H7B 109.9
N1—Fe1—Cl1 93.2 (2) H7A—C7—H7B 108.3
N3—Fe1—Cl1 171.0 (2) C9—C8—N4 116.3 (9)
N2—Fe1—Cl1 97.2 (2) C9—C8—H8A 108.2
Cl2—Fe1—Cl1 96.70 (11) N4—C8—H8A 108.2
C11—N1—C10 108.8 (9) C9—C8—H8B 108.2
C11—N1—C1 111.8 (7) N4—C8—H8B 108.2
C10—N1—C1 106.8 (8) H8A—C8—H8B 107.4
C11—N1—Fe1 113.3 (6) C10—C9—C8 117.9 (10)
C10—N1—Fe1 113.6 (6) C10—C9—H9A 107.8
C1—N1—Fe1 102.3 (6) C8—C9—H9A 107.8
C13—N2—C3 106.7 (8) C10—C9—H9B 107.8
C13—N2—C2 110.6 (8) C8—C9—H9B 107.8
C3—N2—C2 109.7 (8) H9A—C9—H9B 107.2
C13—N2—Fe1 108.4 (6) N1—C10—C9 115.5 (9)
C3—N2—Fe1 113.3 (6) N1—C10—H10A 108.4
C2—N2—Fe1 108.2 (6) C9—C10—H10A 108.4
C12—N3—C5 109.2 (8) N1—C10—H10B 108.4
C12—N3—C6 112.3 (8) C9—C10—H10B 108.4
C5—N3—C6 107.7 (8) H10A—C10—H10B 107.5
C12—N3—Fe1 111.4 (6) N1—C11—C12 115.2 (9)
C5—N3—Fe1 113.6 (6) N1—C11—H11A 108.5
C6—N3—Fe1 102.5 (5) C12—C11—H11A 108.5
C14—N4—C7 111.3 (8) N1—C11—H11B 108.5
C14—N4—C8 101.4 (8) C12—C11—H11B 108.5
C7—N4—C8 109.3 (8) H11A—C11—H11B 107.5
C14—N4—Fe1 112.0 (6) N3—C12—C11 116.5 (9)
C7—N4—Fe1 109.7 (6) N3—C12—H12A 108.2
C8—N4—Fe1 113.0 (6) C11—C12—H12A 108.2
C2—C1—N1 110.6 (9) N3—C12—H12B 108.2
C2—C1—H1A 109.5 C11—C12—H12B 108.2
N1—C1—H1A 109.5 H12A—C12—H12B 107.3
C2—C1—H1B 109.5 N2—C13—H13A 109.5
N1—C1—H1B 109.5 N2—C13—H13B 109.5
H1A—C1—H1B 108.1 H13A—C13—H13B 109.5
C1—C2—N2 109.6 (9) N2—C13—H13C 109.5
C1—C2—H2A 109.8 H13A—C13—H13C 109.5
N2—C2—H2A 109.8 H13B—C13—H13C 109.5
C1—C2—H2B 109.8 N4—C14—H14A 109.5
N2—C2—H2B 109.8 N4—C14—H14B 109.5
H2A—C2—H2B 108.2 H14A—C14—H14B 109.5
N2—C3—C4 119.6 (9) N4—C14—H14C 109.5
N2—C3—H3A 107.4 H14A—C14—H14C 109.5
C4—C3—H3A 107.4 H14B—C14—H14C 109.5
N2—C3—H3B 107.4 F3—P1—F5 179.0 (5)
C4—C3—H3B 107.4 F3—P1—F4 91.0 (4)
H3A—C3—H3B 107.0 F5—P1—F4 89.8 (3)
C5—C4—C3 116.1 (9) F3—P1—F6 90.5 (5)
C5—C4—H4A 108.3 F5—P1—F6 88.9 (5)
C3—C4—H4A 108.3 F4—P1—F6 88.7 (4)
C5—C4—H4B 108.3 F3—P1—F1 90.0 (4)
C3—C4—H4B 108.3 F5—P1—F1 90.6 (4)
H4A—C4—H4B 107.4 F4—P1—F1 92.0 (3)
C4—C5—N3 117.6 (9) F6—P1—F1 179.2 (4)
C4—C5—H5A 107.9 F3—P1—F2 89.8 (5)
N3—C5—H5A 107.9 F5—P1—F2 89.4 (4)
C4—C5—H5B 107.9 F4—P1—F2 179.2 (4)
N3—C5—H5B 107.9 F6—P1—F2 91.5 (4)
H5A—C5—H5B 107.2 F1—P1—F2 87.8 (3)
C11—N1—C1—C2 69.7 (11) C8—N4—C7—C6 −156.2 (9)
C10—N1—C1—C2 −171.5 (9) Fe1—N4—C7—C6 −31.9 (11)
Fe1—N1—C1—C2 −51.9 (10) N3—C6—C7—N4 57.8 (11)
N1—C1—C2—N2 58.7 (11) C14—N4—C8—C9 −176.9 (9)
C13—N2—C2—C1 85.8 (10) C7—N4—C8—C9 65.5 (11)
C3—N2—C2—C1 −156.8 (8) Fe1—N4—C8—C9 −56.9 (10)
Fe1—N2—C2—C1 −32.7 (9) N4—C8—C9—C10 60.6 (14)
C13—N2—C3—C4 −177.2 (10) C11—N1—C10—C9 −63.7 (11)
C2—N2—C3—C4 63.0 (12) C1—N1—C10—C9 175.6 (9)
Fe1—N2—C3—C4 −58.0 (12) Fe1—N1—C10—C9 63.5 (11)
N2—C3—C4—C5 61.0 (15) C8—C9—C10—N1 −64.2 (14)
C3—C4—C5—N3 −62.3 (14) C10—N1—C11—C12 145.2 (10)
C12—N3—C5—C4 −62.7 (11) C1—N1—C11—C12 −97.1 (11)
C6—N3—C5—C4 175.1 (9) Fe1—N1—C11—C12 17.9 (12)
Fe1—N3—C5—C4 62.3 (11) C5—N3—C12—C11 142.4 (10)
C12—N3—C6—C7 69.2 (10) C6—N3—C12—C11 −98.1 (11)
C5—N3—C6—C7 −170.6 (8) Fe1—N3—C12—C11 16.2 (12)
Fe1—N3—C6—C7 −50.5 (9) N1—C11—C12—N3 −23.2 (15)
C14—N4—C7—C6 92.6 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···F4 0.99 2.59 3.244 (13) 124
C2—H2A···F1i 0.99 2.36 3.249 (12) 148
C3—H3B···Cl2 0.99 2.73 3.304 (11) 117
C5—H5B···Cl2 0.99 2.67 3.277 (11) 120
C6—H6B···Cl2 0.99 2.91 3.453 (10) 115
C8—H8A···Cl1 0.99 2.78 3.337 (10) 116
C8—H8B···Cl2ii 0.99 2.78 3.726 (11) 159
C9—H9A···Cl2iii 0.99 2.76 3.571 (12) 140
C10—H10A···Cl1 0.99 2.69 3.311 (11) 121
C11—H11A···F2iv 0.99 2.51 3.097 (13) 118
C11—H11B···F5i 0.99 2.41 3.360 (15) 161
C13—H13A···Cl1 0.98 2.63 3.198 (10) 117
C13—H13B···F1v 0.98 2.59 3.323 (11) 131
C14—H14A···Cl1 0.98 2.97 3.554 (10) 119
C14—H14B···Cl1vi 0.98 2.89 3.772 (11) 150
C14—H14B···Cl2 0.98 2.76 3.265 (11) 113

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) −x+3/2, y+1/2, z−1/2; (iii) x, y+1, z; (iv) x, y, z−1; (v) x, y−1, z; (vi) −x+3/2, y−1/2, z−1/2.

References

  1. Boyington, J. C., Gaffney, B. J. & Amzel, L. M. (1993). Science, 260, 1482–1486. [DOI] [PubMed]
  2. England, J., Prakash, J., Cranswick, M. A., Mandal, D., Guo, Y., Münck, E., Shaik, S. & Que, L. Jr (2015). Inorg. Chem. 54, 7828–7839. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Feng, Y., England, J. & Que, L. Jr (2011). ACS Catal. 1, 1035–1042.
  5. Hubin, T. J. (2003). Coord. Chem. Rev. 241, 27–46.
  6. Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (2001). Inorg. Chem. 40, 435–444. [DOI] [PubMed]
  7. Hubin, T. J., McCormick, J. M., Collinson, S. R., Alcock, N. W., Clase, H. J. & Busch, D. H. (2003). Inorg. Chim. Acta, 346, 76–86.
  8. Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512–2522.
  9. Jang, H. G., Cox, D. D. & Que, L. Jr (1991). J. Am. Chem. Soc. 113, 9200–9204.
  10. Jones, D. G., Wilson, K. R., Cannon-Smith, D. J., Shircliff, A. D., Zhang, Z., Chen, Z., Prior, T. J., Yin, G. & Hubin, T. J. (2015). Inorg. Chem. 54, 2221–2234. [DOI] [PubMed]
  11. McClain II, J. M., Maples, D. L., Maples, R. D., Matz, D. L., Harris, S. M., Nelson, A. D. L., Silversides, J. D., Archibald, S. J. & Hubin, T. J. (2006). Acta Cryst. C62, m553–m555. [DOI] [PubMed]
  12. Murray, K. S. (1974). Coord. Chem. Rev. 12, 1–35.
  13. Ortiz de Montellano, P. R. (1986). In Cytochrome P450: Structure, Mechanism, and Biochemistry. New York: Plenum Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Springborg, J. (2003). Dalton Trans. pp. 1653–1665.
  17. Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.
  18. Wallar, B. J. & Lipscomb, J. D. (1996). Chem. Rev. 96, 2625–2658. [DOI] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Wong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K.-C., Guzei, I. A. & Rheingold, A. L. (2000). J. Am. Chem. Soc. 122, 10561–10572.
  21. Yin, G., Buchalova, M., Danby, A. M., Perkins, C. M., Kitko, D., Carter, J. D., Scheper, W. M. & Busch, D. H. (2006). Inorg. Chem. 45, 3467–3474. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015340/zl2640sup1.cif

e-71-01073-sup1.cif (775.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015340/zl2640Isup2.hkl

e-71-01073-Isup2.hkl (333.7KB, hkl)

CCDC reference: 1419250

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES