In this first crystal structure of an Ru complex with 6′,6"-bis(pyridin-2-yl)-2,2′:4′,4":2",2"’-quaterpyridine, a ‘half’ of the ligand (one of the two terpyridyl units) is N^N^N mer-coordinated, whereas the other is free and adopts a trans,trans conformation about the interannular C—C bonds. The crystal packing features π–π stacking interactions between tpy–tpy ligands.
Keywords: crystal structure, π–π stacking, terpyridine, ruthenium catalysts
Abstract
We report the structural characterization of [6′,6′′-bis(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine](2,2′-bipyridine)chloridoruthenium(II) hexafluoridophosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2′-bipyridine (bpy) and the tridendate ligand 6′,6′′-bis(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine (tpy–tpy). The [RuCl(bpy)(tpy–tpy)]+ monocation has a distorted octahedral geometry at the central RuII ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru—N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru—Cl. For tpy–tpy, the mean Ru—N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru—Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy–tpy adopts a trans,trans conformation about the interannular C—C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π–π stacking interactions based on tpy–tpy. The crystal structure reported here is the first for a tpy–tpy complex of ruthenium.
Chemical context
Aqueous homogeneous photocatalysis by supramolecular assemblies is a powerful concept in the development of sunlight-driven catalytic schemes for renewable energy applications (Herrero et al., 2011 ▸; Li et al., 2012 ▸; Raynal et al., 2014 ▸). In our recent efforts in this area, we have introduced alcohol-oxidation photocatalysts based on dinuclear Ru complexes (Chen et al., 2009 ▸, 2011 ▸). One of these systems is the chromophore-catalyst dyad [(tpy)Ru(tpy–tpy)Ru(bpy)(H2O)]4+, in which the well-defined photosensitizer {(tpy)Ru(tpy)} and catalyst {(tpy)Ru(bpy)(H2O)} moieties are linked by the single covalent bond between the back-to-back terpyridines (tpy–tpy). In this and other related photocatalysts containing the {(tpy)Ru(bpy)(L)} moiety (L = H2O or Cl−), the aqua species is typically formed by easy ligand substitution from its chlorido precursor in water (Chen et al., 2009 ▸; Davidson et al., 2015 ▸; Jakubikova et al., 2009 ▸; Li et al., 2015 ▸). Therefore, the mononuclear chlorido complex 1 reported here was initially prepared and isolated as an intermediate in the synthesis of the dinuclear precatalyst [(tpy)Ru(tpy–tpy)Ru(bpy)(Cl)]3+ (Chen et al., 2009 ▸). In addition to catalysis, the bridging tpy–tpy ligand finds relevance to the construction of donor–acceptor complexes with applications in charge/energy transfer and molecular (opto)electronics (Wild et al., 2011 ▸). Surprisingly, however, the crystal structure reported here is the first for an RuII complex.
Structural commentary
The hexafluoridophosphate salt of the monocationic complex (1·PF6) crystallizes in the triclinic (P
) space group. The structure of 1 is shown in Figs. 1 ▸ and 2 ▸, and selected data are summarized in Table 1 ▸. The complex has a distorted octahedral geometry at the metal due to the restricted bite angle of its meridionally coordinating tridendate ligand (a tpy moiety). The N1—Ru—N3 angle of 159.32 (16)° is very similar to those of bis-terpyridyl RuII complexes (Chen et al., 2013a
▸; Jude et al., 2013 ▸), and far from the ideal angle of 180°. The bidentate bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 79.04 (16)° in agreement with those found in similar chlorido RuII-bpy complexes (Chen et al., 2011 ▸, 2013b
▸). The N4 atom of bpy is arranged trans to the chlorido ligand in a nearly linear N4—Ru—Cl fashion [172.92 (12)°]. The RuII atom and atoms N2, N4, N5, and Cl1 form an equatorial plane with a maximum deviation of 0.032 (4) Å. The Ru-bound tpy moiety and bpy are approximately planar [with maximum deviations of 0.086 (5) Å and 0.071 (5) Å, respectively] and their mean planes are essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between planes. For the tridentate ligand, the mean Ru—N distance involving the outer N1 and N3 atoms trans to each other is 2.053 (8) Å, whereas the bond distance involving the central N2 is much shorter [1.936 (4) Å] as a result of the structural constraint imposed by these mer-arranged ligands (Chen et al., 2013a
▸; Jude et al., 2013 ▸). For the bidentate ligand, the Ru—N distance is 2.075 (4) Å for N5 but only 2.028 (4) Å for N4, reflecting the increased RuII→Nbpy π-backbonding interaction at the coordinating atom trans to the π-donor Cl− ligand (Chen et al., 2013b
▸). The Ru—Cl distance of 2.3982 (16) Å is nearly the same as those observed previously (Chen et al., 2013b
▸; Jude et al., 2009 ▸). As expected, the free (uncoordinated) ‘half’ of tpy–tpy adopts a trans,trans conformation about the interannular C—C bonds (Constable et al., 1993 ▸). Unlike the coordinating half of tpy–tpy, the rings of the free tpy moiety are only approximately coplanar, with angles of 20.9 (3)° and 13.3 (3)° between adjacent rings.
Figure 1.
Single-crystal structure of 1·PF6. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity, except for H25.
Figure 2.
Two views of a 2×2×2 crystal packing diagram of 1·PF6. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
Table 1. Selected geometric parameters (, ).
| Ru1N2 | 1.936(4) | Ru1N5 | 2.075(4) |
| Ru1N4 | 2.028(4) | Ru1Cl1 | 2.3982(16) |
| Ru1N3 | 2.047(4) | C8C33 | 1.467(7) |
| Ru1N1 | 2.059(4) | Cl1H25 | 2.70 |
| N2Ru1N4 | 96.32(17) | N3Ru1N5 | 97.77(16) |
| N2Ru1N3 | 79.86(16) | N1Ru1N5 | 102.89(16) |
| N4Ru1N3 | 92.26(16) | N2Ru1Cl1 | 90.73(12) |
| N2Ru1N1 | 79.48(16) | N4Ru1Cl1 | 172.92(12) |
| N4Ru1N1 | 90.79(15) | N3Ru1Cl1 | 89.60(12) |
| N3Ru1N1 | 159.32(16) | N1Ru1Cl1 | 89.87(12) |
| N2Ru1N5 | 174.75(17) | N5Ru1Cl1 | 93.94(12) |
| N4Ru1N5 | 79.04(16) |
Supramolecular features
The intramolecular Cl⋯H contact of 2.70 Å involving the hydrogen of the nearest C atom at bpy (H25) is similar to that observed earlier for complexes containing the {RuCl(bpy)} moiety (Chen et al., 2011 ▸, 2013b ▸; Jude et al., 2009 ▸). Although multiple intermolecular and intramolecular N⋯H distances that are shorter than the sum of van der Waals radii can be identified, the proximity appears to be mostly a consequence of geometry rather than chemically significant contacts. More relevant in the crystal packing of 1·PF6 (Fig. 2 ▸) is the intermolecular face-to-face π–π stacking between some of the pyridyl rings from tpy–tpy, for which the centroid–centroid distances (Cg⋯Cg) and plane–plane dihedral angles (α) are respectively: 3.723 (3) Å and 2.8 (2)° for (N3,C11,C12,C13,C14,C15)⋯(N1,C1,C2,C3,C4,C5) [symmetry operation: −1 + x, y, z]; 3.812 (4) Å and 3.2 (2)° for (N3,C11,C12,C13,C14,C15)⋯(N2,C6,C7,C8,C9,C10) [symmetry operation: 1–x, 1–y, 1–z]; 3.826 (4) Å and 5.6 (3)° for (N8,C36,C37,C38,C39,C40)⋯(N1,C1,C2,C3,C4,C5) [symmetry operation: –x, –y, 1–z]; and 3.630 (4) Å and 15.5 (3)° for (N8,C36,C37,C38,C39,C40)⋯(N6,C26,C27,C28,C29,C30) [symmetry operation: 1 + x, y, z]. In all these π–π stacking interactions, the slip angles from the parallel displacement (β, γ) are smaller than 30°.
Database survey
A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014 ▸) listed 50 hits for the tpy–tpy substructure; i.e. 6′,6′′-bis(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine. Other than one structure for the metal-free ligand itself (Constable et al., 1993 ▸), one for an ytterbocene complex (Carlson et al., 2006 ▸), and a few for MnII and ZnII complexes (Koo et al., 2003 ▸), all other structures are for Cu (mostly divalent) complexes and have been reported by Zubieta and colleagues (e.g. Koo et al., 2003 ▸; Ouellette et al., 2005 ▸; Jones et al., 2013 ▸). The structure reported herein is thus the first for a tpy–tpy complex with a second-row transition metal ion.
Synthesis and crystallization
Compound 1·PF6 was prepared by slow dropwise addition of a DMF solution of cis-Ru(bpy)(DMSO)2Cl2 into a solution of the tpy–tpy ligand (also in DMF) at reflux. The reaction solution was refluxed for another 2.5 h and then cooled down to room temperature. After evaporation of the solvent on a rotavap, water was added to dissolve the solid and excess NH4PF6 was added to form the precipitate, which was filtered off and dried under vacuum. Further purification was performed by column chromatography using alumina and a mixture of acetonitrile/toluene (1:2) as the eluant. The product was collected from the first band. The solvent was evaporated and the dark-red solid was collected and dried under vacuum (yield: 30%). Analysis calculated for C40H28N8F6PClRu: C, 53.25; H, 3.13; N, 12.42. Found: C, 52.71; H, 3.12; N, 11.86. Single crystals for X-ray structural analysis were grown by slow diffusion of diethyl ether into acetonitrile solutions of the complexes in long thin tubes.
Other Characterization
The identity of the complex [Ru(Cl)(bpy)(tpy–tpy)]+ was also characterized in MeCN solutions by other techniques. Mass spectra (ESI–MS: m/z 757) are in agreement with the formulation for the cation, i.e. [1(-PF6)]+ (calculated for C40H28N8ClRu, m/z 757.1). 1H-NMR (CD3CN, 400 MHz): δ 10.27–10.26 (d, 1H, aromatic), 9.07 (s, 2H, aromatic), 8.89 (s, 2H, aromatic), 8.73–6.95 (m, 23H, aromatic). Electrochemical measurements by cyclic voltammetry gave a redox potential of 0.83 V vs SCE for the reversible RuII/RuIII couple. This potential is anodically shifted by only 20 mV relative to the [Ru(Cl)(bpy)(tpy)]+ complex (0.81 V vs SCE; Chen et al., 2009 ▸), which is consistent with the slightly more electron-withdrawing nature of tpy–tpy compared to tpy.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All carbon-bound hydrogen-atom positions were idealized and set to ride on the atom they were attached to, with C—H = 0.93 Å (aromatic) and U iso(H) = 1.2U eq(C). Each atom in the anion was modeled in two positions, with site occupancies tied to 1.0. A total of 48 temperature-factor restraints were used to force convergence. The SQUEEZE routine in PLATON (van der Sluis & Spek, 1990 ▸; Spek, 2015 ▸) was used to treat disordered solvent molecules. The given chemical formula and other crystal data do not take into account the solvent. The final refinement included anisotropic temperature factors on all non-hydrogen atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [RuCl(C10H8N2)(C30H20N6)]PF6 |
| M r | 902.19 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 120 |
| a, b, c () | 8.678(4), 13.743(7), 18.999(10) |
| , , () | 94.913(7), 90.583(7), 91.316(7) |
| V (3) | 2257(2) |
| Z | 2 |
| Radiation type | Mo K |
| (mm1) | 0.50 |
| Crystal size (mm) | 0.20 0.12 0.08 |
| Data collection | |
| Diffractometer | Bruker D8 with APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2007 ▸) |
| T min, T max | 0.703, 0.961 |
| No. of measured, independent and observed [I > 2(I)] reflections | 22054, 8243, 4937 |
| R int | 0.109 |
| (sin /)max (1) | 0.604 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.062, 0.136, 0.91 |
| No. of reflections | 8243 |
| No. of parameters | 578 |
| No. of restraints | 48 |
| H-atom treatment | H-atom parameters constrained |
| max, min (e 3) | 0.74, 0.74 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014632/pk2553sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014632/pk2553Isup2.hkl
CCDC reference: 1416756
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory.
supplementary crystallographic information
Crystal data
| [RuCl(C10H8N2)(C30H20N6)]PF6 | Z = 2 |
| Mr = 902.19 | F(000) = 908 |
| Triclinic, P1 | Dx = 1.328 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.678 (4) Å | Cell parameters from 1124 reflections |
| b = 13.743 (7) Å | θ = 2.4–19.3° |
| c = 18.999 (10) Å | µ = 0.50 mm−1 |
| α = 94.913 (7)° | T = 120 K |
| β = 90.583 (7)° | Block, red |
| γ = 91.316 (7)° | 0.20 × 0.12 × 0.08 mm |
| V = 2257 (2) Å3 |
Data collection
| Bruker D8 with APEXII CCD diffractometer | 8243 independent reflections |
| Radiation source: fine-focus sealed tube | 4937 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.109 |
| ω scans | θmax = 25.4°, θmin = 1.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
| Tmin = 0.703, Tmax = 0.961 | k = −16→16 |
| 22054 measured reflections | l = −22→22 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.136 | H-atom parameters constrained |
| S = 0.91 | w = 1/[σ2(Fo2) + (0.0419P)2] where P = (Fo2 + 2Fc2)/3 |
| 8243 reflections | (Δ/σ)max < 0.001 |
| 578 parameters | Δρmax = 0.74 e Å−3 |
| 48 restraints | Δρmin = −0.74 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Ru1 | 0.31152 (5) | 0.40649 (3) | 0.31845 (2) | 0.01950 (14) | |
| Cl1 | 0.20756 (14) | 0.55446 (9) | 0.37256 (6) | 0.0221 (3) | |
| P1 | 0.0848 (11) | 0.7198 (7) | 0.9425 (5) | 0.041 (2) | 0.373 (15) |
| F1 | 0.185 (2) | 0.6716 (13) | 0.8753 (9) | 0.052 (5) | 0.373 (15) |
| F2 | −0.011 (2) | 0.6165 (12) | 0.9447 (11) | 0.083 (5) | 0.373 (15) |
| F3 | −0.009 (2) | 0.7718 (12) | 1.0054 (9) | 0.071 (5) | 0.373 (15) |
| F4 | 0.187 (3) | 0.8171 (17) | 0.9359 (14) | 0.095 (9) | 0.373 (15) |
| F5 | −0.0441 (13) | 0.7540 (13) | 0.8891 (5) | 0.049 (4) | 0.373 (15) |
| F6 | 0.214 (2) | 0.6793 (16) | 0.9933 (11) | 0.084 (7) | 0.373 (15) |
| P1' | 0.1274 (7) | 0.6894 (5) | 0.9376 (3) | 0.0488 (16) | 0.627 (15) |
| F1' | 0.1952 (13) | 0.6232 (9) | 0.8730 (5) | 0.075 (3) | 0.627 (15) |
| F2' | 0.0703 (14) | 0.5948 (6) | 0.9729 (4) | 0.079 (4) | 0.627 (15) |
| F3' | 0.0586 (12) | 0.7545 (7) | 1.0043 (5) | 0.068 (3) | 0.627 (15) |
| F4' | 0.1802 (16) | 0.7844 (9) | 0.9033 (7) | 0.068 (4) | 0.627 (15) |
| F5' | −0.0369 (10) | 0.6894 (11) | 0.8975 (5) | 0.080 (3) | 0.627 (15) |
| F6' | 0.2860 (13) | 0.6884 (6) | 0.9794 (5) | 0.066 (3) | 0.627 (15) |
| N1 | 0.0981 (4) | 0.3388 (3) | 0.3224 (2) | 0.0177 (10) | |
| N2 | 0.3256 (4) | 0.3534 (3) | 0.4094 (2) | 0.0168 (10) | |
| N3 | 0.5281 (5) | 0.4555 (3) | 0.3497 (2) | 0.0207 (10) | |
| N4 | 0.3947 (4) | 0.2883 (3) | 0.2611 (2) | 0.0204 (10) | |
| N5 | 0.3130 (5) | 0.4552 (3) | 0.2180 (2) | 0.0209 (10) | |
| N6 | 0.7959 (5) | 0.2076 (3) | 0.7126 (2) | 0.0213 (10) | |
| N7 | 0.4133 (5) | 0.1081 (3) | 0.7186 (2) | 0.0190 (10) | |
| N8 | 0.0356 (5) | 0.0152 (3) | 0.6655 (2) | 0.0229 (10) | |
| C1 | −0.0175 (5) | 0.3340 (4) | 0.2744 (3) | 0.0223 (13) | |
| H1 | −0.0029 | 0.3644 | 0.2330 | 0.027* | |
| C2 | −0.1553 (6) | 0.2869 (4) | 0.2835 (3) | 0.0230 (13) | |
| H2 | −0.2316 | 0.2847 | 0.2486 | 0.028* | |
| C3 | −0.1805 (6) | 0.2418 (4) | 0.3463 (3) | 0.0241 (13) | |
| H3 | −0.2733 | 0.2091 | 0.3535 | 0.029* | |
| C4 | −0.0646 (5) | 0.2471 (4) | 0.3969 (3) | 0.0218 (12) | |
| H4 | −0.0786 | 0.2189 | 0.4393 | 0.026* | |
| C5 | 0.0717 (6) | 0.2945 (3) | 0.3839 (3) | 0.0207 (12) | |
| C6 | 0.2055 (6) | 0.3018 (4) | 0.4340 (3) | 0.0214 (12) | |
| C7 | 0.2167 (6) | 0.2579 (3) | 0.4963 (3) | 0.0189 (12) | |
| H7 | 0.1332 | 0.2222 | 0.5118 | 0.023* | |
| C8 | 0.3525 (6) | 0.2668 (4) | 0.5362 (3) | 0.0192 (12) | |
| C9 | 0.4728 (5) | 0.3232 (3) | 0.5111 (3) | 0.0168 (11) | |
| H9 | 0.5643 | 0.3322 | 0.5369 | 0.020* | |
| C10 | 0.4565 (5) | 0.3660 (3) | 0.4476 (3) | 0.0173 (12) | |
| C11 | 0.5715 (5) | 0.4265 (4) | 0.4147 (2) | 0.0172 (12) | |
| C12 | 0.7154 (5) | 0.4531 (4) | 0.4451 (3) | 0.0194 (12) | |
| H12 | 0.7434 | 0.4327 | 0.4888 | 0.023* | |
| C13 | 0.8163 (6) | 0.5107 (4) | 0.4085 (3) | 0.0243 (13) | |
| H13 | 0.9124 | 0.5295 | 0.4279 | 0.029* | |
| C14 | 0.7733 (5) | 0.5394 (4) | 0.3439 (3) | 0.0204 (12) | |
| H14 | 0.8403 | 0.5767 | 0.3186 | 0.024* | |
| C15 | 0.6282 (6) | 0.5120 (4) | 0.3169 (3) | 0.0245 (13) | |
| H15 | 0.5986 | 0.5339 | 0.2739 | 0.029* | |
| C16 | 0.4309 (5) | 0.2020 (4) | 0.2859 (3) | 0.0195 (12) | |
| H16 | 0.4197 | 0.1955 | 0.3339 | 0.023* | |
| C17 | 0.4820 (6) | 0.1254 (4) | 0.2448 (3) | 0.0250 (13) | |
| H17 | 0.5046 | 0.0674 | 0.2642 | 0.030* | |
| C18 | 0.5005 (6) | 0.1337 (4) | 0.1735 (3) | 0.0284 (14) | |
| H18 | 0.5340 | 0.0809 | 0.1442 | 0.034* | |
| C19 | 0.4695 (6) | 0.2198 (4) | 0.1462 (3) | 0.0294 (14) | |
| H19 | 0.4849 | 0.2269 | 0.0986 | 0.035* | |
| C20 | 0.4152 (6) | 0.2964 (4) | 0.1900 (3) | 0.0254 (13) | |
| C21 | 0.3745 (6) | 0.3931 (4) | 0.1671 (3) | 0.0281 (14) | |
| C22 | 0.3947 (7) | 0.4183 (4) | 0.0986 (3) | 0.0394 (16) | |
| H22 | 0.4368 | 0.3744 | 0.0645 | 0.047* | |
| C23 | 0.3512 (7) | 0.5100 (4) | 0.0819 (3) | 0.0448 (17) | |
| H23 | 0.3677 | 0.5296 | 0.0369 | 0.054* | |
| C24 | 0.2835 (7) | 0.5715 (4) | 0.1324 (3) | 0.0372 (16) | |
| H24 | 0.2482 | 0.6319 | 0.1216 | 0.045* | |
| C25 | 0.2687 (6) | 0.5418 (4) | 0.1998 (3) | 0.0249 (13) | |
| H25 | 0.2254 | 0.5847 | 0.2343 | 0.030* | |
| C26 | 0.9244 (6) | 0.2161 (4) | 0.7534 (3) | 0.0272 (14) | |
| H26 | 1.0148 | 0.2391 | 0.7342 | 0.033* | |
| C27 | 0.9280 (6) | 0.1921 (4) | 0.8225 (3) | 0.0272 (13) | |
| H27 | 1.0188 | 0.1992 | 0.8490 | 0.033* | |
| C28 | 0.7979 (7) | 0.1582 (4) | 0.8509 (3) | 0.0387 (16) | |
| H28 | 0.7984 | 0.1411 | 0.8972 | 0.046* | |
| C29 | 0.6637 (6) | 0.1490 (4) | 0.8110 (3) | 0.0292 (14) | |
| H29 | 0.5727 | 0.1268 | 0.8303 | 0.035* | |
| C30 | 0.6661 (6) | 0.1732 (3) | 0.7422 (3) | 0.0192 (12) | |
| C31 | 0.5239 (6) | 0.1666 (4) | 0.6984 (3) | 0.0203 (12) | |
| C32 | 0.5088 (5) | 0.2208 (4) | 0.6396 (3) | 0.0188 (12) | |
| H32 | 0.5906 | 0.2601 | 0.6266 | 0.023* | |
| C33 | 0.3710 (6) | 0.2161 (4) | 0.6005 (3) | 0.0215 (12) | |
| C34 | 0.2524 (6) | 0.1552 (4) | 0.6246 (3) | 0.0233 (13) | |
| H34 | 0.1567 | 0.1506 | 0.6019 | 0.028* | |
| C35 | 0.2801 (6) | 0.1025 (4) | 0.6822 (3) | 0.0204 (12) | |
| C36 | 0.1559 (6) | 0.0370 (4) | 0.7088 (3) | 0.0213 (12) | |
| C37 | 0.1701 (6) | 0.0028 (4) | 0.7753 (3) | 0.0252 (13) | |
| H37 | 0.2561 | 0.0197 | 0.8037 | 0.030* | |
| C38 | 0.0555 (6) | −0.0559 (4) | 0.7981 (3) | 0.0306 (14) | |
| H38 | 0.0632 | −0.0807 | 0.8420 | 0.037* | |
| C39 | −0.0724 (6) | −0.0781 (4) | 0.7552 (3) | 0.0294 (14) | |
| H39 | −0.1529 | −0.1174 | 0.7696 | 0.035* | |
| C40 | −0.0762 (6) | −0.0404 (4) | 0.6909 (3) | 0.0271 (13) | |
| H40 | −0.1632 | −0.0545 | 0.6625 | 0.032* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ru1 | 0.0195 (3) | 0.0187 (3) | 0.0207 (3) | −0.00196 (18) | 0.00070 (18) | 0.00520 (19) |
| Cl1 | 0.0220 (7) | 0.0213 (8) | 0.0231 (7) | −0.0007 (6) | 0.0025 (6) | 0.0030 (6) |
| P1 | 0.049 (3) | 0.037 (3) | 0.035 (3) | −0.002 (2) | −0.002 (2) | 0.002 (2) |
| F1 | 0.059 (6) | 0.057 (7) | 0.041 (6) | 0.000 (5) | 0.008 (4) | 0.008 (5) |
| F2 | 0.086 (7) | 0.075 (7) | 0.089 (7) | −0.019 (4) | 0.010 (5) | 0.009 (5) |
| F3 | 0.075 (7) | 0.073 (7) | 0.064 (6) | 0.012 (5) | −0.002 (5) | 0.001 (4) |
| F4 | 0.100 (12) | 0.054 (12) | 0.13 (2) | −0.049 (10) | −0.041 (15) | 0.020 (12) |
| F5 | 0.053 (7) | 0.066 (11) | 0.025 (6) | −0.028 (7) | −0.011 (5) | −0.005 (6) |
| F6 | 0.094 (8) | 0.088 (8) | 0.072 (8) | 0.008 (5) | −0.020 (5) | 0.019 (5) |
| P1' | 0.052 (2) | 0.059 (3) | 0.037 (2) | −0.0087 (19) | −0.0020 (18) | 0.0111 (19) |
| F1' | 0.100 (7) | 0.075 (8) | 0.050 (5) | −0.006 (6) | 0.003 (4) | 0.005 (6) |
| F2' | 0.108 (8) | 0.071 (6) | 0.057 (5) | −0.063 (5) | 0.000 (5) | 0.020 (4) |
| F3' | 0.071 (5) | 0.085 (5) | 0.044 (4) | −0.012 (4) | 0.001 (4) | −0.012 (3) |
| F4' | 0.060 (6) | 0.070 (10) | 0.082 (8) | −0.013 (6) | −0.005 (6) | 0.064 (7) |
| F5' | 0.067 (4) | 0.103 (5) | 0.068 (4) | −0.006 (4) | −0.012 (3) | −0.004 (4) |
| F6' | 0.078 (7) | 0.065 (5) | 0.057 (5) | −0.027 (5) | −0.041 (5) | 0.035 (4) |
| N1 | 0.014 (2) | 0.019 (2) | 0.021 (2) | −0.0010 (19) | −0.0042 (19) | 0.002 (2) |
| N2 | 0.012 (2) | 0.014 (2) | 0.025 (2) | −0.0066 (18) | 0.0028 (19) | 0.0009 (19) |
| N3 | 0.021 (2) | 0.011 (2) | 0.031 (3) | 0.0019 (19) | 0.002 (2) | 0.004 (2) |
| N4 | 0.014 (2) | 0.028 (3) | 0.019 (2) | −0.013 (2) | 0.0024 (19) | 0.003 (2) |
| N5 | 0.027 (3) | 0.009 (2) | 0.027 (3) | 0.000 (2) | −0.003 (2) | 0.000 (2) |
| N6 | 0.018 (2) | 0.026 (3) | 0.021 (2) | 0.000 (2) | −0.0044 (19) | 0.004 (2) |
| N7 | 0.019 (2) | 0.018 (2) | 0.020 (2) | 0.0001 (19) | 0.0030 (19) | 0.0028 (19) |
| N8 | 0.021 (2) | 0.020 (3) | 0.027 (3) | −0.005 (2) | −0.005 (2) | 0.003 (2) |
| C1 | 0.017 (3) | 0.025 (3) | 0.026 (3) | 0.002 (2) | 0.004 (2) | 0.009 (3) |
| C2 | 0.022 (3) | 0.022 (3) | 0.025 (3) | 0.001 (2) | −0.004 (2) | 0.003 (3) |
| C3 | 0.010 (3) | 0.025 (3) | 0.038 (3) | −0.003 (2) | 0.003 (2) | 0.009 (3) |
| C4 | 0.019 (3) | 0.022 (3) | 0.025 (3) | −0.001 (2) | 0.002 (2) | 0.005 (2) |
| C5 | 0.023 (3) | 0.005 (3) | 0.036 (3) | 0.002 (2) | −0.003 (3) | 0.007 (2) |
| C6 | 0.024 (3) | 0.019 (3) | 0.021 (3) | −0.001 (2) | −0.001 (2) | 0.003 (2) |
| C7 | 0.018 (3) | 0.015 (3) | 0.024 (3) | −0.004 (2) | 0.001 (2) | 0.004 (2) |
| C8 | 0.022 (3) | 0.017 (3) | 0.018 (3) | −0.003 (2) | 0.001 (2) | −0.001 (2) |
| C9 | 0.018 (3) | 0.010 (3) | 0.023 (3) | 0.001 (2) | −0.003 (2) | 0.005 (2) |
| C10 | 0.012 (3) | 0.015 (3) | 0.025 (3) | −0.002 (2) | 0.002 (2) | 0.004 (2) |
| C11 | 0.017 (3) | 0.018 (3) | 0.018 (3) | −0.004 (2) | 0.002 (2) | 0.007 (2) |
| C12 | 0.021 (3) | 0.021 (3) | 0.017 (3) | −0.001 (2) | 0.002 (2) | 0.005 (2) |
| C13 | 0.014 (3) | 0.027 (3) | 0.031 (3) | −0.002 (2) | 0.002 (2) | −0.003 (3) |
| C14 | 0.013 (3) | 0.027 (3) | 0.021 (3) | −0.006 (2) | 0.006 (2) | 0.007 (2) |
| C15 | 0.027 (3) | 0.020 (3) | 0.027 (3) | 0.007 (3) | 0.009 (3) | 0.008 (3) |
| C16 | 0.014 (3) | 0.017 (3) | 0.028 (3) | −0.004 (2) | 0.001 (2) | 0.008 (3) |
| C17 | 0.030 (3) | 0.020 (3) | 0.027 (3) | −0.001 (3) | −0.002 (3) | 0.010 (3) |
| C18 | 0.041 (4) | 0.017 (3) | 0.027 (3) | 0.004 (3) | 0.001 (3) | 0.004 (3) |
| C19 | 0.042 (4) | 0.024 (3) | 0.022 (3) | 0.007 (3) | 0.000 (3) | 0.000 (3) |
| C20 | 0.030 (3) | 0.023 (3) | 0.025 (3) | 0.009 (3) | 0.000 (3) | 0.008 (3) |
| C21 | 0.033 (3) | 0.021 (3) | 0.030 (3) | −0.003 (3) | −0.005 (3) | 0.005 (3) |
| C22 | 0.071 (5) | 0.026 (4) | 0.022 (3) | 0.011 (3) | −0.001 (3) | 0.005 (3) |
| C23 | 0.077 (5) | 0.031 (4) | 0.028 (4) | 0.011 (4) | 0.005 (3) | 0.013 (3) |
| C24 | 0.062 (4) | 0.027 (4) | 0.025 (3) | 0.009 (3) | −0.001 (3) | 0.009 (3) |
| C25 | 0.037 (3) | 0.018 (3) | 0.020 (3) | 0.004 (3) | 0.006 (3) | 0.002 (2) |
| C26 | 0.015 (3) | 0.029 (3) | 0.038 (4) | 0.004 (3) | 0.000 (3) | 0.001 (3) |
| C27 | 0.026 (3) | 0.017 (3) | 0.039 (4) | 0.002 (3) | −0.015 (3) | 0.008 (3) |
| C28 | 0.051 (4) | 0.039 (4) | 0.027 (3) | −0.013 (3) | −0.013 (3) | 0.012 (3) |
| C29 | 0.035 (3) | 0.032 (4) | 0.022 (3) | −0.014 (3) | −0.005 (3) | 0.010 (3) |
| C30 | 0.023 (3) | 0.011 (3) | 0.025 (3) | 0.003 (2) | −0.004 (2) | 0.007 (2) |
| C31 | 0.021 (3) | 0.017 (3) | 0.023 (3) | 0.001 (2) | 0.004 (2) | 0.004 (2) |
| C32 | 0.011 (3) | 0.022 (3) | 0.024 (3) | 0.000 (2) | 0.003 (2) | 0.011 (2) |
| C33 | 0.016 (3) | 0.022 (3) | 0.027 (3) | −0.003 (2) | −0.001 (2) | 0.004 (2) |
| C34 | 0.022 (3) | 0.026 (3) | 0.022 (3) | 0.001 (2) | −0.002 (2) | 0.000 (3) |
| C35 | 0.024 (3) | 0.015 (3) | 0.023 (3) | 0.005 (2) | 0.007 (2) | 0.004 (2) |
| C36 | 0.024 (3) | 0.015 (3) | 0.026 (3) | 0.008 (2) | 0.000 (2) | 0.006 (2) |
| C37 | 0.016 (3) | 0.030 (3) | 0.032 (3) | −0.003 (2) | −0.001 (2) | 0.014 (3) |
| C38 | 0.030 (3) | 0.030 (4) | 0.034 (3) | −0.005 (3) | 0.012 (3) | 0.011 (3) |
| C39 | 0.019 (3) | 0.028 (3) | 0.043 (4) | −0.006 (3) | 0.004 (3) | 0.008 (3) |
| C40 | 0.023 (3) | 0.021 (3) | 0.037 (4) | −0.006 (3) | 0.006 (3) | 0.006 (3) |
Geometric parameters (Å, º)
| Ru1—N2 | 1.936 (4) | C4—C5 | 1.372 (6) |
| Ru1—N4 | 2.028 (4) | C5—C6 | 1.490 (7) |
| Ru1—N3 | 2.047 (4) | C6—C7 | 1.378 (6) |
| Ru1—N1 | 2.059 (4) | C7—C8 | 1.391 (6) |
| Ru1—N5 | 2.075 (4) | C8—C9 | 1.399 (6) |
| Ru1—Cl1 | 2.3982 (16) | C8—C33 | 1.467 (7) |
| P1—F3 | 1.585 (17) | C9—C10 | 1.393 (6) |
| P1—F4 | 1.60 (2) | C10—C11 | 1.464 (6) |
| P1—F5 | 1.608 (14) | C11—C12 | 1.398 (6) |
| P1—F6 | 1.61 (2) | C12—C13 | 1.398 (6) |
| P1—F2 | 1.630 (17) | C13—C14 | 1.372 (7) |
| P1—F1 | 1.652 (19) | C14—C15 | 1.386 (7) |
| P1'—F4' | 1.569 (12) | C16—C17 | 1.342 (7) |
| P1'—F6' | 1.583 (10) | C17—C18 | 1.379 (7) |
| P1'—F2' | 1.585 (8) | C18—C19 | 1.364 (7) |
| P1'—F1' | 1.590 (11) | C19—C20 | 1.379 (7) |
| P1'—F5' | 1.609 (10) | C20—C21 | 1.484 (7) |
| P1'—F3' | 1.615 (10) | C21—C22 | 1.386 (7) |
| N1—C1 | 1.345 (6) | C22—C23 | 1.385 (7) |
| N1—C5 | 1.381 (6) | C23—C24 | 1.369 (8) |
| N2—C10 | 1.341 (6) | C24—C25 | 1.384 (7) |
| N2—C6 | 1.357 (6) | C26—C27 | 1.381 (7) |
| N3—C15 | 1.345 (6) | C27—C28 | 1.347 (7) |
| N3—C11 | 1.381 (6) | C28—C29 | 1.381 (7) |
| N4—C16 | 1.355 (6) | C29—C30 | 1.375 (7) |
| N4—C20 | 1.378 (6) | C30—C31 | 1.478 (7) |
| N5—C25 | 1.331 (6) | C31—C32 | 1.401 (7) |
| N5—C21 | 1.357 (6) | C32—C33 | 1.399 (6) |
| N6—C26 | 1.349 (6) | C33—C34 | 1.415 (6) |
| N6—C30 | 1.358 (6) | C34—C35 | 1.386 (7) |
| N7—C31 | 1.319 (6) | C35—C36 | 1.507 (7) |
| N7—C35 | 1.337 (6) | C36—C37 | 1.392 (7) |
| N8—C36 | 1.334 (6) | C37—C38 | 1.364 (7) |
| N8—C40 | 1.341 (6) | C38—C39 | 1.382 (7) |
| C1—C2 | 1.366 (6) | C39—C40 | 1.368 (7) |
| C2—C3 | 1.408 (7) | Cl1—H25 | 2.70 |
| C3—C4 | 1.382 (7) | ||
| N2—Ru1—N4 | 96.32 (17) | C1—C2—C3 | 119.2 (5) |
| N2—Ru1—N3 | 79.86 (16) | C4—C3—C2 | 118.6 (5) |
| N4—Ru1—N3 | 92.26 (16) | C5—C4—C3 | 119.0 (5) |
| N2—Ru1—N1 | 79.48 (16) | C4—C5—N1 | 122.9 (5) |
| N4—Ru1—N1 | 90.79 (15) | C4—C5—C6 | 123.3 (5) |
| N3—Ru1—N1 | 159.32 (16) | N1—C5—C6 | 113.8 (4) |
| N2—Ru1—N5 | 174.75 (17) | N2—C6—C7 | 121.4 (5) |
| N4—Ru1—N5 | 79.04 (16) | N2—C6—C5 | 112.1 (4) |
| N3—Ru1—N5 | 97.77 (16) | C7—C6—C5 | 126.4 (5) |
| N1—Ru1—N5 | 102.89 (16) | C6—C7—C8 | 120.3 (5) |
| N2—Ru1—Cl1 | 90.73 (12) | C7—C8—C9 | 117.2 (5) |
| N4—Ru1—Cl1 | 172.92 (12) | C7—C8—C33 | 121.5 (4) |
| N3—Ru1—Cl1 | 89.60 (12) | C9—C8—C33 | 121.2 (4) |
| N1—Ru1—Cl1 | 89.87 (12) | C10—C9—C8 | 120.5 (4) |
| N5—Ru1—Cl1 | 93.94 (12) | N2—C10—C9 | 120.7 (4) |
| F3—P1—F4 | 91.2 (13) | N2—C10—C11 | 112.6 (4) |
| F3—P1—F5 | 88.1 (8) | C9—C10—C11 | 126.8 (4) |
| F4—P1—F5 | 91.9 (11) | N3—C11—C12 | 121.5 (4) |
| F3—P1—F6 | 94.5 (10) | N3—C11—C10 | 114.7 (4) |
| F4—P1—F6 | 90.2 (13) | C12—C11—C10 | 123.7 (4) |
| F5—P1—F6 | 176.6 (10) | C11—C12—C13 | 118.7 (5) |
| F3—P1—F2 | 93.3 (9) | C14—C13—C12 | 119.8 (5) |
| F4—P1—F2 | 175.5 (13) | C13—C14—C15 | 118.9 (5) |
| F5—P1—F2 | 88.8 (8) | N3—C15—C14 | 123.4 (5) |
| F6—P1—F2 | 88.8 (10) | C17—C16—N4 | 123.5 (5) |
| F3—P1—F1 | 176.8 (10) | C16—C17—C18 | 119.2 (5) |
| F4—P1—F1 | 85.9 (11) | C19—C18—C17 | 119.6 (5) |
| F5—P1—F1 | 90.6 (9) | C18—C19—C20 | 119.4 (5) |
| F6—P1—F1 | 87.0 (10) | N4—C20—C19 | 121.3 (5) |
| F2—P1—F1 | 89.6 (9) | N4—C20—C21 | 113.8 (5) |
| F4'—P1'—F6' | 90.7 (6) | C19—C20—C21 | 124.9 (5) |
| F4'—P1'—F2' | 178.6 (7) | N5—C21—C22 | 122.1 (5) |
| F6'—P1'—F2' | 90.2 (5) | N5—C21—C20 | 114.9 (5) |
| F4'—P1'—F1' | 90.7 (6) | C22—C21—C20 | 123.0 (5) |
| F6'—P1'—F1' | 91.1 (6) | C23—C22—C21 | 118.8 (5) |
| F2'—P1'—F1' | 90.4 (5) | C24—C23—C22 | 119.3 (5) |
| F4'—P1'—F5' | 90.8 (6) | C23—C24—C25 | 118.6 (5) |
| F6'—P1'—F5' | 178.0 (6) | N5—C25—C24 | 123.5 (5) |
| F2'—P1'—F5' | 88.4 (5) | N6—C26—C27 | 123.1 (5) |
| F1'—P1'—F5' | 90.2 (6) | C28—C27—C26 | 119.0 (5) |
| F4'—P1'—F3' | 90.5 (6) | C27—C28—C29 | 119.7 (5) |
| F6'—P1'—F3' | 88.4 (6) | C30—C29—C28 | 119.2 (5) |
| F2'—P1'—F3' | 88.3 (5) | N6—C30—C29 | 122.1 (5) |
| F1'—P1'—F3' | 178.7 (6) | N6—C30—C31 | 117.2 (4) |
| F5'—P1'—F3' | 90.3 (5) | C29—C30—C31 | 120.7 (5) |
| C1—N1—C5 | 116.9 (4) | N7—C31—C32 | 122.7 (5) |
| C1—N1—Ru1 | 128.9 (3) | N7—C31—C30 | 116.0 (4) |
| C5—N1—Ru1 | 114.2 (3) | C32—C31—C30 | 121.2 (4) |
| C10—N2—C6 | 119.9 (4) | C33—C32—C31 | 120.2 (5) |
| C10—N2—Ru1 | 119.7 (3) | C32—C33—C34 | 116.0 (5) |
| C6—N2—Ru1 | 120.5 (3) | C32—C33—C8 | 122.3 (5) |
| C15—N3—C11 | 117.7 (4) | C34—C33—C8 | 121.6 (5) |
| C15—N3—Ru1 | 129.3 (4) | C35—C34—C33 | 119.4 (5) |
| C11—N3—Ru1 | 113.0 (3) | N7—C35—C34 | 123.3 (5) |
| C16—N4—C20 | 116.9 (4) | N7—C35—C36 | 116.2 (4) |
| C16—N4—Ru1 | 126.3 (3) | C34—C35—C36 | 120.5 (5) |
| C20—N4—Ru1 | 116.8 (3) | N8—C36—C37 | 123.5 (5) |
| C25—N5—C21 | 117.6 (4) | N8—C36—C35 | 116.5 (4) |
| C25—N5—Ru1 | 127.0 (3) | C37—C36—C35 | 120.0 (5) |
| C21—N5—Ru1 | 115.3 (3) | C38—C37—C36 | 118.7 (5) |
| C26—N6—C30 | 116.9 (4) | C37—C38—C39 | 119.3 (5) |
| C31—N7—C35 | 118.3 (4) | C40—C39—C38 | 117.6 (5) |
| C36—N8—C40 | 115.7 (5) | N8—C40—C39 | 125.1 (5) |
| N1—C1—C2 | 123.3 (5) |
References
- Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlson, C. N., Kuehl, C. J., Da Re, R. E., Veauthier, J. M., Schelter, E. J., Milligan, A. E., Scott, B. L., Bauer, E. D., Thompson, J. D., Morris, D. E. & John, K. D. (2006). J. Am. Chem. Soc. 128, 7230–7241. [DOI] [PubMed]
- Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672–9675. [DOI] [PubMed]
- Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604. [DOI] [PubMed]
- Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013a). Acta Cryst. E69, m79–m80. [DOI] [PMC free article] [PubMed]
- Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013b). Acta Cryst. E69, m510–m511. [DOI] [PMC free article] [PubMed]
- Constable, E. C., Thompson, A. M. W. C. & Tocher, D. A. (1993). Supramol. Chem. 3, 9–14.
- Davidson, R. J., Wilson, L. E., Duckworth, A. R., Yufit, D. S., Beeby, A. & Low, P. J. (2015). Dalton Trans. 44, 11368–11379. [DOI] [PubMed]
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Herrero, C., Quaranta, A., Leibl, W., Rutherford, A. W. & Aukauloo, A. (2011). Energ. Environ. Sci. 4, 2353–2365.
- Jakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720–10725. [DOI] [PubMed]
- Jones, S., Vargas, J. M., Pellizzeri, S., O’Connor, C. J. & Zubieta, J. (2013). Inorg. Chim. Acta, 395, 44–57.
- Jude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. 2009, 683–690.
- Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82. [DOI] [PMC free article] [PubMed]
- Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O’Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176.
- Li, F., Jiang, Y., Zhang, B., Huang, F., Gao, Y. & Sun, L. (2012). Angew. Chem. Int. Ed. 51, 2417–2420. [DOI] [PubMed]
- Li, T.-T., Li, F.-M., Zhao, W.-L., Tian, Y.-H., Chen, Y., Cai, R. & Fu, W.-F. (2015). Inorg. Chem. 54, 183–191. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ouellette, W., Golub, V., O’Connor, C. J. & Zubieta, J. (2005). Dalton Trans. p. 291. [DOI] [PubMed]
- Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660–1733. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
- Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459–1511. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014632/pk2553sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014632/pk2553Isup2.hkl
CCDC reference: 1416756
Additional supporting information: crystallographic information; 3D view; checkCIF report


