Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 15;71(Pt 9):1036–1041. doi: 10.1107/S2056989015014917

Crystal structures of three indole derivatives: 3-ethnyl-2-methyl-1-phenyl­sulfonyl-1H-indole, 4-phenyl­sulfonyl-3H,4H-cyclo­penta­[b]indol-1(2H)-one and 1-{2-[(E)-2-(5-chloro-2-nitro­phen­yl)ethen­yl]-1-phenyl­sulfonyl-1H-indol-3-yl}ethan-1-one chloro­form monosolvate

S Gopinath a, K Sethusankar a,*, Bose Muthu Ramalingam b, Arasambattu K Mohanakrishnan b
PMCID: PMC4555396  PMID: 26396842

The title compounds, (I), (II) and (III), are indole derivatives. Compounds (I) and (II) present two independent moieties in the asymmetric unit, and their packing is led by C—H⋯O hydrogen bonds and C—H⋯π inter­actions. In compound (III), the C—H⋯O hydrogen bonds form Inline graphic(22) inversion dimers.

Keywords: crystal structure, phenyl­sulfon­yl, indole derivatives, hydrogen bonding

Abstract

The title compounds, C17H13NO2S, (I), C17H13NO3S, (II), and C24H17ClN2O5S·CHCl3, (III), are indole derivatives. Compounds (I) and (II) crystalize with two independent mol­ecules in the asymmetric unit. The indole ring systems in all three structures deviate only slightly from planarity, with dihedral angles between the planes of the pyrrole and benzene rings spanning the tight range 0.20 (9)–1.65 (9)°. These indole ring systems, in turn, are almost orthogonal to the phenyl­sulfonyl rings [range of dihedral angles between mean planes = 77.21 (8)–89.26 (8)°]. In the three compounds, the mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, generating S(6) ring motifs with the sulfone O atom. In compounds (I) and (II), the two independent mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, while in compound (III), the mol­ecules are linked by C—H⋯O hydrogen bonds, generating R 2 2(22) inversion dimers.

Chemical context  

Indole is an aromatic heterocyclic group, the parent of a large number of important compounds in nature with significant biological activity (Kaushik et al., 2013). The indole ring system occurs in plants (Nigovic et al., 2000); for example, indole-3-acetic acid is a naturally occuring auxin that controls several plant growth activities (Moore, 1989; Fargasova, 1994). Indole derivatives exhibit anti­bacterial, anti­fungal (Singh et al., 2000), anti­tumor (Andreani et al., 2001), anti­hepatitis B virus (Chai et al., 2006) and anti-inflammatory (Rodriguez et al., 1985) activities. They are also used as bioactive drugs (Stevenson et al., 2000) and have also been proven to display high aldose reductase inhibitory (Rajeswaran et al., 1999) and anti­microbial activities (Amal Raj et al., 2003). Indole derivatives are also found to possess hypertensive, muscle relaxant (Hendi & Basangoudar, 1981) and anti­viral (Kolocouris et al., 1994) activities. Some of the indole alkaloids extracted from plants possess inter­esting cytotoxic and anti­parasitic properties (Quetin-Leclercq, 1994). Against this background, the X-ray structure determination of 3-ethnyl-2-methyl-1-phenyl­sulfonyl-1H-indole, (I), 4-phenyl­sulfonyl-3H,4H-cyclo­penta­[b]indol-1(2H)-one, (II), and 1-{2-[(E)-2-(5-chloro-2-nitro­phen­yl)ethen­yl]-1-phenyl­sulfonyl-1H-indol-3-yl}ethan-1-one chloro­form monosolvate, (III), has been carried out to study their structural aspects and the results are presented here.graphic file with name e-71-01036-scheme1.jpg

Structural commentary  

The mol­ecular structures of title compounds (I), (II) and (III) are shown in Figs. 1, 2 and 3, respectively. Compounds (I) and (II) comprise two crystallographically independent mol­ecules (A and B) in the asymmetric unit. The corresponding bond lengths and bond angles of mol­ecules A and B [in compounds (I) and (II)] agree well with each other, as illustrated in Figs. 4 and 5. The indole ring systems depart slightly from planarity, the dihedral angles formed between the pyrrole rings and benzene rings being 1.65 (9) and 0.97 (10) [mol­ecules A and B of compound (I)], 0.20 (9) and 0.86 (9) [mol­ecules A and B of compound (II)], and 1.34 (14)° [compound (III)].

Figure 1.

Figure 1

The mol­ecular structure of the compound (I), showing the atom-numbering scheme. The intra­molecular C2A—H2A⋯O2A and C2B—H2B⋯O2B inter­actions (mol­ecules A and B), which generate two S(6) ring motifs, are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of the compound (II), showing the atom-numbering scheme. The intra­molecular C2A—H2A⋯O2A and C2B—H2B⋯O2B inter­actions (mol­ecules A and B), which generate two S(6) ring motifs, are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The mol­ecular structure of the compound (III), showing the atom-numbering scheme. The intra­molecular C2—H2⋯O2 inter­action, which generates an S(6) ring motif, is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

Mol­ecules A (red) and mol­ecule B (black) of title compound (I) overlapping with each other. H atoms are shown as spheres of arbitrary radius.

Figure 5.

Figure 5

The mol­ecule A (red) and mol­ecule B (black) of title compound (II) overlapping with each other. H atoms are shown as spheres of arbitrary radius.

The indole ring systems are almost orthogonal to the phenyl­sulfonyl rings [dihedral angles = 77.21 (8) and 89.26 (8)° in (I), 78.98 (7) and 80.48 (8)° in (II), and 83.17 (13)° in (III)]. In the case of (II), the indole ring systems are nearly coplanar with the cyclo­penta­none rings [dihedral angles: = 0.58 (9) and 1.52 (8)°].

In all three compounds, as a result of the electron-withdrawing character of the phenyl­sulfonyl group, the N—Csp 2 bond lengths are longer than the mean value of 1.355 (14)Å for the N—C bond length (Allen et al., 1987). Atom S1 has a distorted tetra­hedral configuration. The widening of the angle O1=S1=O2 and the narrowing of the angle N1—S1—C9 from ideal tetra­hedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds.

In all three compounds, the expansion of the ispo angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 are caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981).

The sums of the bond angles around atoms N1 are 351.55 and 356.16° in (I), 359.86 and 359.29° in (II), and 352.79° in (III), indicating sp 2 hybridization. In all three compounds, the mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds which generate S(6) ring motifs with the sulfone O atom (Tables 1, 2 and 3). In addition to these, in compound (III), the mol­ecular structure is characterized by intra­molecular C25—Cl3⋯O2 halogen bonding (XB), between the solvent Cl atom (Cl3) and sulfone-group O atom (O2) [Cl3⋯O2 = 3.036 (2) Å and with a bond angle of 164.48 (14)°].

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg2 is the centroid of the pyrrole ring N1A/C1A/C6A/C7A/C8A, Cg1 and Cg3 are the centroids of the benzene rings C1B–C6B and C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O1A 0.93 2.36 2.941 (3) 121
C2B—H2B⋯O1B 0.93 2.38 2.957 (3) 120
C16B—H16B⋯O2A i 0.93 2.43 3.334 (3) 153
C10A—H10ACg1ii 0.93 2.95 3.728 (2) 142
C11A—H11ACg2ii 0.93 2.74 3.546 (2) 145
C16A—H16ACg3iii 0.93 2.88 3.699 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 and Cg2 are the centroids of the benzene rings C9A–C14A and C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O1A 0.93 2.44 3.007 (2) 119
C2B—H2B⋯O1B 0.93 2.44 3.010 (2) 120
C12B—H12B⋯O2A i 0.93 2.46 3.369 (3) 166
C5A—H5ACg1ii 0.93 2.65 3.550 (2) 164
C17B—H17CCg2ii 0.97 2.85 3.729 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.32 2.903 (4) 121
C22—H22⋯O2i 0.93 2.51 3.412 (4) 162
C25—H25⋯O3ii 0.98 2.49 3.283 (4) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal packing of compound (I), the mol­ecules are linked via inter­molecular C16B—H16B⋯O2A(−x + 1, y + Inline graphic, −z + 1) hydrogen bonds running parallel to the [101] direction. The crystal packing is further stabilized by inter­molecular C10A—H10ACg1, C11A—H11ACg2 and C16A—H16ACg3 inter­actions, with separations of 3.727 (2), 3.546 (2) and 3.699 (3) Å at (−x + 2, y − Inline graphic, −z + 1) and (−x + 1, y + Inline graphic, −z), respectively. Cg2 is the centre of gravity of pyrrole ring N1B/C1B/C6B/C7B/C8B, and Cg1 and Cg3 are the centres of gravity of benzene rings C1B–C6B and C1A–C6A, respectively. C—H⋯π inter­actions run parallel to the [210] direction (Table 1 and Fig. 6).

Figure 6.

Figure 6

The crystal packing of compound (I), viewed down the b axis, showing C12B—H12B⋯O2A i inter­molecular hydrogen bond link the independent mol­ecules running parallel to the [101] direction and further inter­connected by C10A—H10ACg1ii, C11A—H11ACg2ii and C16A—H16ACg3iii inter­actions. Cg2 is the centre of the gravity of the pyrrole ring (atoms N1B/C1B/C6B/C7B/C8B), and Cg1 and Cg3 are the centres of the gravity of benzene rings C1B–C6B and C1A–C6A, respectively. [Symmetry codes: (i) −x + 1, y + Inline graphic, −z + 1; (ii) −x + 2, y − Inline graphic, −z + 1; (iii) −x + 1, y + Inline graphic, −z.]

In the crystal packing of compound (II), the independent mol­ecules (A and B) are linked by inter­molecular C12B—H12B⋯O2A(x + 1, y, z − 1) hydrogen bonds and are further connected by C5A—H5ACg1 and C17B—H17CCg2 inter­actions, with separations of 3.550 (2) and 3.729 (2) Å at (−x + 1, −y + 1, -z+1) (Cg1 and Cg2 are the centres of gravity of benzene rings C9A–C14A and C1A–C6A), respectively). The C12B—H12B⋯O2A and C17B—H17CCg2 inter­actions run parallel to the [101] direction and C5A—H5ACg1 inter­actions run along the [0Inline graphic1] direction (Table 2 and Fig. 7), respectively.

Figure 7.

Figure 7

The crystal packing of compound (II), viewed down the b axis, showing C12B—H12B⋯O2A i inter­molecular hydrogen bond running parallel to the [101] direction and further inter­comnnected by C5A—H5ACg1ii and C17B—H17CCg2ii inter­actions. H atoms not involved in the hydrogen bonding have been omitted for clarity. Cg1 and Cg2 are the centres of the gravity of benzene rings C9A–C14A and C1A–C6A, respectively. [Symmetry codes: (i) x + 1, y, z − 1; (ii) −x + 1, −y + 1, −z + 1.]

In the crystal of compound (III), mol­ecules are linked via C22—H22⋯O2(−x + 1, −y + 1, −z + 1) inter­molecular hydrogen bonds which generates Inline graphic(22) inversion dimers. In addition, the chloro­form solvent mol­ecule is linked to the organic mol­ecule by a C25—H25⋯O3 hydrogen bond (Bernstein et al., 1995) involving the O atom of the ethanone group (Table 3 and Fig. 8).

Figure 8.

Figure 8

The crystal packing of compound (III), viewed down the c axis, showing C22—H22⋯O2i inter­molecular hydrogen bonds, which results in Inline graphic(22) inversion dimers forms a sheet lying parallel to the [1Inline graphic Inline graphic] direction. In addition, the solvent mol­ecule inter­acts with the organic mol­ecule linked via a C25—H25⋯O3ii hydrogen bond. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z.]

Synthesis and crystallization  

Compound (I)  

A solution of [(3-acetyl-1-phenyl­sulfanyl-1H-indol-2-yl)meth­yl]tri­phenyl­phospho­nium ylide (0.5 g, 9 mmol) in dry toluene (20 ml) was refluxed for 12 h under an N2 atmosphere. After consumption of the starting material [monitered by thin-layer chromatography (TLC)], removal of the solvent in vacuo followed by column chromatographic purification (silica gel, EtOAc–hexane 1:9 v/v) gave (I) (yield 1.30 g, 29%) as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (I) in ethyl acetate at room temperature (m.p. 383–385 K).

Compound (II)  

Reaction of 2-bromo­methyl-1-(1-phenyl­sulfonyl-1H-indol-3-yl)ethan-1-one (0.2 g, 5 mmol) with K2CO3 (0.35 g, 5 mmol) in aceto­nitrile was carried out under reflux for 8 h under an N2 atmosphere. After the consumption of the starting material (monitered by TLC), the reaction mass was poured over crushed ice and extracted with di­chloro­methane (2 × 15 ml). The organic layers were combined and washed with brine solution (2 × 20 ml) and dried (Na2SO4). The crude product was purified by column chromatography (silica gel, EtOAc–hexane 1:4 v/v) to give (II) (yield 1.40 g, 88%) as a white solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (II) in ethyl acetate at room temperature (m.p. 475–481 K).

Compound (III)  

A solution of [(3-acetyl-1-phenyl­sufanyl-1H-indol-2-yl)meth­yl]tri­phenyl­phosphonium ylide (3 g, 5.23 mmol) and 5-chloro­nitro­benzaldehyde (1.06 g, 5.75 mmol) in dry chloro­form (50 ml) was refluxed for 10 h under an N2 atmosphere. Removal of the solvent in vacuo followed by titration of the crude product with methonal (10 ml), gave (III) (yield 2.29 g, 91%) as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of compound (III) in chloro­form at room temperature (m.p. 439–441 K).

Refinement  

Crystal data, data collection and structure refinement details for compounds (I), (II) and (III) are summarized in Table 4. The positions of the H atoms were localized from the difference electron-density maps and their distances were geometrically constrained. H atoms bound to the C atoms were treated as riding atoms, with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methyl­ene and methine H atoms, respectively, with U iso(H) = 1.5U eq(methyl C) and 1.2U eq(nonmethyl C). The rotation angles for methyl groups were optimized by least squares.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C17H13NO2S C17H13NO3S C24H17ClN2O5S·CHCl3
M r 295.34 311.34 600.27
Crystal system, space group Monoclinic, P21 Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 296 296 296
a, b, c (Å) 12.1786 (5), 10.2422 (5), 12.6306 (5) 9.8708 (6), 12.3914 (7), 13.1457 (12) 9.5856 (3), 11.2767 (4), 13.1782 (4)
α, β, γ (°) 90, 113.082 (2), 90 102.706 (3), 96.552 (3), 111.989 (2) 104.9070 (11), 108.2350 (9), 91.581 (1)
V3) 1449.36 (11) 1419.70 (18) 1298.31 (7)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.23 0.24 0.58
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD diffractometer Bruker Kappa APEXII CCD diffractometer Bruker Kappa APEXII CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.924, 0.945 0.919, 0.942 0.817, 0.866
No. of measured, independent and observed [I > 2σ(I)] reflections 12944, 5750, 5372 20747, 5869, 4993 25757, 4579, 4054
R int 0.024 0.028 0.019
(sin θ/λ)max−1) 0.639 0.628 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.080, 1.02 0.038, 0.105, 1.04 0.049, 0.136, 1.05
No. of reflections 5750 5869 4579
No. of parameters 389 397 335
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.25 0.22, −0.46 0.99, −0.77
Absolute structure Flack (1983), 2406 Friedel pairs
Absolute structure parameter 0.01 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989015014917/bg2558sup1.cif

e-71-01036-sup1.cif (96.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014917/bg2558Isup2.hkl

e-71-01036-Isup2.hkl (281.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015014917/bg2558IIsup3.hkl

e-71-01036-IIsup3.hkl (287.3KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015014917/bg2558IIIsup4.hkl

e-71-01036-IIIsup4.hkl (224.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014917/bg2558IIsup5.cml

Supporting information file. DOI: 10.1107/S2056989015014917/bg2558IIIsup6.cml

CCDC references: 1417660, 1417659, 1417658

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

supplementary crystallographic information

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Crystal data

C17H13NO2S F(000) = 616
Mr = 295.34 Dx = 1.354 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5750 reflections
a = 12.1786 (5) Å θ = 1.8–27.0°
b = 10.2422 (5) Å µ = 0.23 mm1
c = 12.6306 (5) Å T = 296 K
β = 113.082 (2)° Block, colourless
V = 1449.36 (11) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Data collection

Bruker Kappa APEXII CCD diffractometer 5750 independent reflections
Radiation source: fine-focus sealed tube 5372 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω & φ scans θmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −15→15
Tmin = 0.924, Tmax = 0.945 k = −13→11
12944 measured reflections l = −16→13

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.0899P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5750 reflections Δρmax = 0.16 e Å3
389 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.01 (4)

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.65808 (13) 0.73762 (18) 0.29191 (13) 0.0410 (3)
C1B 0.95152 (14) 1.07543 (17) 0.20687 (14) 0.0455 (4)
C2A 0.73969 (17) 0.6367 (2) 0.32455 (17) 0.0550 (4)
H2A 0.7426 0.5771 0.3811 0.066*
C2B 1.04368 (16) 0.9877 (2) 0.22107 (18) 0.0596 (5)
H2B 1.0758 0.9783 0.1657 0.072*
C3A 0.81721 (17) 0.6290 (2) 0.26835 (19) 0.0658 (5)
H3A 0.8732 0.5620 0.2878 0.079*
C3B 1.0845 (2) 0.9162 (2) 0.3204 (2) 0.0747 (7)
H3B 1.1461 0.8569 0.3323 0.090*
C4A 0.81412 (17) 0.7173 (2) 0.18443 (18) 0.0621 (5)
H4A 0.8679 0.7091 0.1491 0.075*
C4B 1.0382 (2) 0.9282 (3) 0.4041 (2) 0.0775 (7)
H4B 1.0688 0.8775 0.4704 0.093*
C5A 0.73243 (16) 0.8168 (2) 0.15291 (15) 0.0521 (4)
H5A 0.7300 0.8761 0.0963 0.062*
C5B 0.94725 (19) 1.0145 (2) 0.38970 (16) 0.0636 (5)
H5B 0.9154 1.0227 0.4453 0.076*
C6A 0.65311 (13) 0.82726 (17) 0.20735 (13) 0.0404 (3)
C6B 0.90403 (15) 1.08907 (18) 0.29039 (14) 0.0477 (4)
C7A 0.55590 (14) 0.91571 (16) 0.19224 (13) 0.0431 (4)
C7B 0.81248 (14) 1.18826 (17) 0.25068 (14) 0.0472 (4)
C8A 0.50461 (14) 0.88117 (17) 0.26651 (13) 0.0431 (4)
C8B 0.80488 (14) 1.23229 (19) 0.14747 (14) 0.0482 (4)
C9A 0.69568 (14) 0.84083 (17) 0.54842 (13) 0.0422 (4)
C9B 0.78684 (16) 1.02723 (18) −0.08004 (14) 0.0453 (4)
C10A 0.81214 (16) 0.7967 (2) 0.59661 (16) 0.0546 (4)
H10A 0.8308 0.7109 0.5861 0.066*
C10B 0.82856 (17) 0.90137 (19) −0.07879 (16) 0.0531 (4)
H10B 0.9097 0.8830 −0.0436 0.064*
C11A 0.89979 (17) 0.8829 (2) 0.66059 (18) 0.0633 (5)
H11A 0.9787 0.8550 0.6941 0.076*
C11B 0.7474 (2) 0.8039 (2) −0.13078 (18) 0.0630 (5)
H11B 0.7738 0.7186 −0.1305 0.076*
C12A 0.87192 (17) 1.0095 (2) 0.67542 (17) 0.0602 (5)
H12A 0.9320 1.0669 0.7186 0.072*
C12B 0.62746 (19) 0.8317 (2) −0.18316 (17) 0.0641 (5)
H12B 0.5734 0.7652 −0.2184 0.077*
C13A 0.75599 (17) 1.0519 (2) 0.62696 (18) 0.0593 (5)
H13A 0.7378 1.1379 0.6375 0.071*
C13B 0.58749 (19) 0.9568 (2) −0.18365 (19) 0.0661 (5)
H13B 0.5063 0.9747 −0.2191 0.079*
C14A 0.66630 (15) 0.9678 (2) 0.56280 (17) 0.0538 (4)
H14A 0.5875 0.9961 0.5298 0.065*
C14B 0.66648 (18) 1.0563 (2) −0.13216 (16) 0.0574 (5)
H14B 0.6395 1.1413 −0.1324 0.069*
C15A 0.51574 (16) 1.0165 (2) 0.10820 (16) 0.0534 (4)
C15B 0.74452 (15) 1.2338 (2) 0.31326 (16) 0.0584 (5)
C16A 0.4818 (2) 1.0963 (3) 0.0369 (2) 0.0744 (6)
H16A 0.452 1.157 −0.022 0.088 (10)*
C16B 0.6914 (2) 1.2689 (3) 0.3686 (2) 0.0764 (7)
H16B 0.647 1.302 0.41 0.090*
C17A 0.39623 (17) 0.9400 (2) 0.27481 (18) 0.0612 (5)
H17C 0.3627 1.0036 0.2149 0.092*
H17D 0.4178 0.9815 0.3484 0.092*
H17E 0.3385 0.8728 0.2665 0.092*
C17B 0.7258 (2) 1.3385 (2) 0.07802 (18) 0.0715 (6)
H17F 0.6788 1.3719 0.1177 0.107*
H17G 0.6739 1.3046 0.0045 0.107*
H17H 0.7736 1.4075 0.0670 0.107*
N1A 0.56467 (11) 0.76926 (13) 0.32876 (11) 0.0424 (3)
N1B 0.89185 (12) 1.16606 (15) 0.11823 (11) 0.0474 (3)
O1A 0.62039 (14) 0.60415 (13) 0.48518 (13) 0.0635 (4)
O1B 1.00485 (13) 1.11237 (17) −0.00198 (14) 0.0705 (4)
O2A 0.47181 (11) 0.77339 (15) 0.47241 (12) 0.0618 (4)
O2B 0.84226 (15) 1.27284 (14) −0.07179 (13) 0.0726 (4)
S1A 0.58058 (4) 0.73619 (4) 0.46403 (4) 0.04641 (11)
S1B 0.88932 (4) 1.15298 (5) −0.01502 (4) 0.05211 (12)

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0404 (7) 0.0413 (8) 0.0444 (7) −0.0043 (7) 0.0201 (6) −0.0060 (7)
C1B 0.0408 (8) 0.0444 (9) 0.0476 (8) −0.0031 (7) 0.0135 (6) −0.0041 (7)
C2A 0.0577 (10) 0.0495 (11) 0.0631 (10) 0.0076 (8) 0.0292 (8) 0.0053 (8)
C2B 0.0516 (10) 0.0534 (12) 0.0727 (12) 0.0080 (8) 0.0231 (9) −0.0050 (9)
C3A 0.0541 (10) 0.0669 (14) 0.0827 (13) 0.0152 (9) 0.0334 (10) −0.0005 (11)
C3B 0.0623 (12) 0.0602 (14) 0.0885 (15) 0.0208 (10) 0.0154 (11) 0.0052 (11)
C4A 0.0505 (9) 0.0787 (14) 0.0676 (11) 0.0004 (10) 0.0343 (8) −0.0073 (11)
C4B 0.0792 (14) 0.0719 (15) 0.0673 (13) 0.0160 (12) 0.0134 (11) 0.0193 (11)
C5A 0.0503 (9) 0.0623 (11) 0.0501 (9) −0.0100 (8) 0.0267 (7) −0.0039 (8)
C5B 0.0689 (12) 0.0687 (13) 0.0496 (10) 0.0017 (10) 0.0194 (9) 0.0073 (9)
C6A 0.0396 (7) 0.0420 (9) 0.0384 (7) −0.0082 (6) 0.0141 (6) −0.0065 (6)
C6B 0.0440 (8) 0.0470 (10) 0.0471 (8) −0.0034 (7) 0.0124 (7) −0.0046 (7)
C7A 0.0433 (8) 0.0418 (9) 0.0409 (8) −0.0052 (6) 0.0131 (6) −0.0044 (6)
C7B 0.0407 (8) 0.0506 (10) 0.0462 (8) −0.0018 (7) 0.0125 (6) −0.0086 (7)
C8A 0.0425 (8) 0.0419 (9) 0.0427 (8) −0.0017 (7) 0.0144 (6) −0.0065 (7)
C8B 0.0455 (8) 0.0455 (9) 0.0473 (8) 0.0012 (8) 0.0113 (6) −0.0081 (8)
C9A 0.0443 (8) 0.0480 (10) 0.0393 (7) −0.0008 (7) 0.0218 (6) 0.0026 (7)
C9B 0.0525 (9) 0.0507 (10) 0.0378 (7) −0.0072 (7) 0.0230 (7) −0.0006 (7)
C10A 0.0515 (9) 0.0533 (11) 0.0568 (9) 0.0074 (8) 0.0188 (8) 0.0037 (8)
C10B 0.0536 (9) 0.0554 (11) 0.0522 (9) 0.0028 (8) 0.0227 (8) −0.0013 (8)
C11A 0.0434 (9) 0.0752 (14) 0.0626 (11) 0.0096 (9) 0.0112 (8) 0.0007 (10)
C11B 0.0751 (12) 0.0493 (11) 0.0639 (11) −0.0008 (9) 0.0266 (10) −0.0059 (9)
C12A 0.0498 (10) 0.0721 (14) 0.0567 (10) −0.0108 (9) 0.0189 (8) −0.0092 (10)
C12B 0.0693 (12) 0.0581 (13) 0.0582 (11) −0.0147 (10) 0.0179 (9) −0.0066 (9)
C13A 0.0557 (10) 0.0513 (11) 0.0694 (12) 0.0002 (8) 0.0229 (9) −0.0096 (9)
C13B 0.0549 (10) 0.0681 (13) 0.0650 (12) −0.0026 (10) 0.0124 (9) −0.0040 (10)
C14A 0.0434 (8) 0.0537 (11) 0.0633 (11) 0.0051 (8) 0.0199 (8) −0.0035 (9)
C14B 0.0601 (10) 0.0552 (11) 0.0541 (10) 0.0034 (9) 0.0195 (8) −0.0011 (9)
C15A 0.0538 (10) 0.0519 (11) 0.0516 (9) 0.0011 (8) 0.0175 (8) −0.0012 (8)
C15B 0.0469 (8) 0.0737 (13) 0.0514 (9) 0.0012 (10) 0.0158 (7) −0.0106 (10)
C16A 0.0803 (14) 0.0700 (15) 0.0687 (13) 0.0148 (12) 0.0247 (11) 0.0235 (12)
C16B 0.0602 (11) 0.108 (2) 0.0633 (11) 0.0105 (12) 0.0270 (10) −0.0110 (12)
C17A 0.0548 (10) 0.0672 (13) 0.0642 (11) 0.0137 (9) 0.0260 (9) −0.0020 (10)
C17B 0.0828 (14) 0.0601 (14) 0.0607 (12) 0.0248 (11) 0.0164 (10) 0.0010 (10)
N1A 0.0429 (7) 0.0427 (8) 0.0470 (7) −0.0017 (5) 0.0235 (6) −0.0026 (6)
N1B 0.0501 (7) 0.0456 (8) 0.0453 (7) −0.0009 (6) 0.0175 (6) −0.0042 (6)
O1A 0.0804 (9) 0.0448 (8) 0.0740 (8) −0.0075 (6) 0.0398 (7) 0.0119 (6)
O1B 0.0614 (7) 0.0857 (11) 0.0780 (9) −0.0214 (8) 0.0418 (7) −0.0109 (8)
O2A 0.0527 (7) 0.0776 (10) 0.0691 (8) −0.0135 (6) 0.0389 (6) −0.0025 (7)
O2B 0.0989 (11) 0.0560 (9) 0.0652 (8) −0.0141 (7) 0.0348 (8) 0.0135 (7)
S1A 0.0495 (2) 0.0472 (2) 0.0508 (2) −0.00875 (18) 0.02854 (17) 0.00263 (19)
S1B 0.0593 (2) 0.0526 (3) 0.0507 (2) −0.0126 (2) 0.02839 (19) 0.00082 (19)

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Geometric parameters (Å, º)

C1A—C2A 1.380 (2) C9B—C10B 1.383 (3)
C1A—C6A 1.392 (2) C9B—S1B 1.7570 (18)
C1A—N1A 1.425 (2) C10A—C11A 1.377 (3)
C1B—C2B 1.393 (2) C10A—H10A 0.9300
C1B—C6B 1.395 (3) C10B—C11B 1.377 (3)
C1B—N1B 1.416 (2) C10B—H10B 0.9300
C2A—C3A 1.388 (3) C11A—C12A 1.372 (3)
C2A—H2A 0.9300 C11A—H11A 0.9300
C2B—C3B 1.367 (3) C11B—C12B 1.376 (3)
C2B—H2B 0.9300 C11B—H11B 0.9300
C3A—C4A 1.383 (3) C12A—C13A 1.371 (3)
C3A—H3A 0.9300 C12A—H12A 0.9300
C3B—C4B 1.386 (4) C12B—C13B 1.370 (3)
C3B—H3B 0.9300 C12B—H12B 0.9300
C4A—C5A 1.369 (3) C13A—C14A 1.377 (3)
C4A—H4A 0.9300 C13A—H13A 0.9300
C4B—C5B 1.372 (3) C13B—C14B 1.377 (3)
C4B—H4B 0.9300 C13B—H13B 0.9300
C5A—C6A 1.392 (2) C14A—H14A 0.9300
C5A—H5A 0.9300 C14B—H14B 0.9300
C5B—C6B 1.384 (3) C15A—C16A 1.166 (3)
C5B—H5B 0.9300 C15B—C16B 1.179 (3)
C6A—C7A 1.443 (2) C16A—H16A 0.9300
C6B—C7B 1.445 (2) C16B—H16B 0.9300
C7A—C8A 1.362 (2) C17A—H17C 0.9600
C7A—C15A 1.423 (2) C17A—H17D 0.9600
C7B—C8B 1.348 (2) C17A—H17E 0.9600
C7B—C15B 1.428 (3) C17B—H17F 0.9600
C8A—N1A 1.420 (2) C17B—H17G 0.9600
C8A—C17A 1.492 (2) C17B—H17H 0.9600
C8B—N1B 1.423 (2) N1A—S1A 1.6769 (14)
C8B—C17B 1.490 (3) N1B—S1B 1.6764 (14)
C9A—C14A 1.380 (3) O1A—S1A 1.4260 (15)
C9A—C10A 1.382 (2) O1B—S1B 1.4136 (16)
C9A—S1A 1.7545 (17) O2A—S1A 1.4217 (14)
C9B—C14B 1.383 (3) O2B—S1B 1.4239 (15)
C2A—C1A—C6A 122.21 (15) C9B—C10B—H10B 120.7
C2A—C1A—N1A 130.26 (16) C12A—C11A—C10A 120.66 (18)
C6A—C1A—N1A 107.49 (14) C12A—C11A—H11A 119.7
C2B—C1B—C6B 121.28 (17) C10A—C11A—H11A 119.7
C2B—C1B—N1B 131.47 (18) C12B—C11B—C10B 120.5 (2)
C6B—C1B—N1B 107.21 (14) C12B—C11B—H11B 119.8
C1A—C2A—C3A 116.37 (18) C10B—C11B—H11B 119.8
C1A—C2A—H2A 121.8 C11A—C12A—C13A 120.34 (19)
C3A—C2A—H2A 121.8 C11A—C12A—H12A 119.8
C3B—C2B—C1B 116.7 (2) C13A—C12A—H12A 119.8
C3B—C2B—H2B 121.7 C13B—C12B—C11B 120.26 (19)
C1B—C2B—H2B 121.7 C13B—C12B—H12B 119.9
C4A—C3A—C2A 122.36 (19) C11B—C12B—H12B 119.9
C4A—C3A—H3A 118.8 C12A—C13A—C14A 120.34 (19)
C2A—C3A—H3A 118.8 C12A—C13A—H13A 119.8
C2B—C3B—C4B 122.8 (2) C14A—C13A—H13A 119.8
C2B—C3B—H3B 118.6 C12B—C13B—C14B 120.60 (19)
C4B—C3B—H3B 118.6 C12B—C13B—H13B 119.7
C5A—C4A—C3A 120.52 (18) C14B—C13B—H13B 119.7
C5A—C4A—H4A 119.7 C13A—C14A—C9A 118.69 (16)
C3A—C4A—H4A 119.7 C13A—C14A—H14A 120.7
C5B—C4B—C3B 120.3 (2) C9A—C14A—H14A 120.7
C5B—C4B—H4B 119.8 C13B—C14B—C9B 118.61 (19)
C3B—C4B—H4B 119.8 C13B—C14B—H14B 120.7
C4A—C5A—C6A 118.65 (18) C9B—C14B—H14B 120.7
C4A—C5A—H5A 120.7 C16A—C15A—C7A 178.1 (2)
C6A—C5A—H5A 120.7 C16B—C15B—C7B 177.4 (2)
C4B—C5B—C6B 118.5 (2) C15A—C16A—H16A 177
C4B—C5B—H5B 120.8 C15B—C16B—H16B 177.4
C6B—C5B—H5B 120.8 C8A—C17A—H17C 109.5
C1A—C6A—C5A 119.88 (16) C8A—C17A—H17D 109.5
C1A—C6A—C7A 107.60 (15) H17C—C17A—H17D 109.5
C5A—C6A—C7A 132.49 (16) C8A—C17A—H17E 109.5
C5B—C6B—C1B 120.46 (18) H17C—C17A—H17E 109.5
C5B—C6B—C7B 132.06 (18) H17D—C17A—H17E 109.5
C1B—C6B—C7B 107.47 (15) C8B—C17B—H17F 109.5
C8A—C7A—C15A 125.88 (17) C8B—C17B—H17G 109.5
C8A—C7A—C6A 108.66 (15) H17F—C17B—H17G 109.5
C15A—C7A—C6A 125.34 (17) C8B—C17B—H17H 109.5
C8B—C7B—C15B 126.23 (17) H17F—C17B—H17H 109.5
C8B—C7B—C6B 108.78 (15) H17G—C17B—H17H 109.5
C15B—C7B—C6B 124.97 (17) C8A—N1A—C1A 107.85 (13)
C7A—C8A—N1A 108.38 (14) C8A—N1A—S1A 123.78 (11)
C7A—C8A—C17A 126.94 (17) C1A—N1A—S1A 119.91 (11)
N1A—C8A—C17A 124.41 (16) C1B—N1B—C8B 108.10 (14)
C7B—C8B—N1B 108.40 (15) C1B—N1B—S1B 122.90 (12)
C7B—C8B—C17B 126.67 (17) C8B—N1B—S1B 125.17 (11)
N1B—C8B—C17B 124.81 (17) O2A—S1A—O1A 119.90 (9)
C14A—C9A—C10A 121.65 (17) O2A—S1A—N1A 106.43 (8)
C14A—C9A—S1A 117.98 (13) O1A—S1A—N1A 106.11 (8)
C10A—C9A—S1A 120.35 (14) O2A—S1A—C9A 109.69 (8)
C14B—C9B—C10B 121.46 (17) O1A—S1A—C9A 109.48 (9)
C14B—C9B—S1B 119.38 (15) N1A—S1A—C9A 103.96 (7)
C10B—C9B—S1B 119.16 (14) O1B—S1B—O2B 119.87 (10)
C11A—C10A—C9A 118.32 (18) O1B—S1B—N1B 106.31 (8)
C11A—C10A—H10A 120.8 O2B—S1B—N1B 106.38 (9)
C9A—C10A—H10A 120.8 O1B—S1B—C9B 109.32 (9)
C11B—C10B—C9B 118.58 (18) O2B—S1B—C9B 108.95 (9)
C11B—C10B—H10B 120.7 N1B—S1B—C9B 104.95 (8)
C6A—C1A—C2A—C3A 0.0 (3) C11B—C12B—C13B—C14B 0.2 (3)
N1A—C1A—C2A—C3A 177.20 (17) C12A—C13A—C14A—C9A −0.1 (3)
C6B—C1B—C2B—C3B 0.1 (3) C10A—C9A—C14A—C13A 0.0 (3)
N1B—C1B—C2B—C3B 177.65 (19) S1A—C9A—C14A—C13A −178.76 (15)
C1A—C2A—C3A—C4A 0.3 (3) C12B—C13B—C14B—C9B 0.0 (3)
C1B—C2B—C3B—C4B 0.1 (3) C10B—C9B—C14B—C13B 0.0 (3)
C2A—C3A—C4A—C5A −0.4 (3) S1B—C9B—C14B—C13B 179.41 (16)
C2B—C3B—C4B—C5B 0.0 (4) C7A—C8A—N1A—C1A 1.52 (16)
C3A—C4A—C5A—C6A 0.2 (3) C17A—C8A—N1A—C1A 175.90 (16)
C3B—C4B—C5B—C6B −0.4 (4) C7A—C8A—N1A—S1A 149.26 (12)
C2A—C1A—C6A—C5A −0.1 (2) C17A—C8A—N1A—S1A −36.4 (2)
N1A—C1A—C6A—C5A −177.89 (14) C2A—C1A—N1A—C8A −178.62 (17)
C2A—C1A—C6A—C7A 178.06 (15) C6A—C1A—N1A—C8A −1.11 (16)
N1A—C1A—C6A—C7A 0.31 (17) C2A—C1A—N1A—S1A 32.2 (2)
C4A—C5A—C6A—C1A 0.0 (2) C6A—C1A—N1A—S1A −150.32 (11)
C4A—C5A—C6A—C7A −177.66 (17) C2B—C1B—N1B—C8B −179.51 (18)
C4B—C5B—C6B—C1B 0.6 (3) C6B—C1B—N1B—C8B −1.71 (18)
C4B—C5B—C6B—C7B −178.8 (2) C2B—C1B—N1B—S1B 21.6 (3)
C2B—C1B—C6B—C5B −0.4 (3) C6B—C1B—N1B—S1B −160.64 (12)
N1B—C1B—C6B—C5B −178.51 (16) C7B—C8B—N1B—C1B 1.83 (19)
C2B—C1B—C6B—C7B 179.05 (16) C17B—C8B—N1B—C1B 177.97 (17)
N1B—C1B—C6B—C7B 0.97 (18) C7B—C8B—N1B—S1B 160.16 (12)
C1A—C6A—C7A—C8A 0.64 (17) C17B—C8B—N1B—S1B −23.7 (3)
C5A—C6A—C7A—C8A 178.52 (16) C8A—N1A—S1A—O2A 38.37 (14)
C1A—C6A—C7A—C15A −175.48 (15) C1A—N1A—S1A—O2A −177.52 (13)
C5A—C6A—C7A—C15A 2.4 (3) C8A—N1A—S1A—O1A 167.13 (12)
C5B—C6B—C7B—C8B 179.6 (2) C1A—N1A—S1A—O1A −48.76 (14)
C1B—C6B—C7B—C8B 0.16 (19) C8A—N1A—S1A—C9A −77.43 (13)
C5B—C6B—C7B—C15B 1.3 (3) C1A—N1A—S1A—C9A 66.68 (14)
C1B—C6B—C7B—C15B −178.11 (17) C14A—C9A—S1A—O2A −30.31 (17)
C15A—C7A—C8A—N1A 174.76 (15) C10A—C9A—S1A—O2A 150.92 (15)
C6A—C7A—C8A—N1A −1.33 (17) C14A—C9A—S1A—O1A −163.80 (14)
C15A—C7A—C8A—C17A 0.6 (3) C10A—C9A—S1A—O1A 17.44 (17)
C6A—C7A—C8A—C17A −175.53 (16) C14A—C9A—S1A—N1A 83.17 (15)
C15B—C7B—C8B—N1B 177.02 (17) C10A—C9A—S1A—N1A −95.59 (15)
C6B—C7B—C8B—N1B −1.22 (19) C1B—N1B—S1B—O1B −40.11 (15)
C15B—C7B—C8B—C17B 1.0 (3) C8B—N1B—S1B—O1B 164.60 (16)
C6B—C7B—C8B—C17B −177.26 (18) C1B—N1B—S1B—O2B −168.94 (13)
C14A—C9A—C10A—C11A 0.2 (3) C8B—N1B—S1B—O2B 35.78 (17)
S1A—C9A—C10A—C11A 178.93 (15) C1B—N1B—S1B—C9B 75.67 (14)
C14B—C9B—C10B—C11B −0.1 (3) C8B—N1B—S1B—C9B −79.62 (17)
S1B—C9B—C10B—C11B −179.54 (15) C14B—C9B—S1B—O1B −160.88 (15)
C9A—C10A—C11A—C12A −0.3 (3) C10B—C9B—S1B—O1B 18.58 (17)
C9B—C10B—C11B—C12B 0.3 (3) C14B—C9B—S1B—O2B −28.16 (17)
C10A—C11A—C12A—C13A 0.3 (3) C10B—C9B—S1B—O2B 151.29 (15)
C10B—C11B—C12B—C13B −0.3 (3) C14B—C9B—S1B—N1B 85.44 (15)
C11A—C12A—C13A—C14A 0.0 (3) C10B—C9B—S1B—N1B −95.11 (15)

(I) 3-Ethnyl-2-methyl-1-phenylsulfonyl-1H-indole . Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the pyrrole ring N1A/C1A/C6A/C7A/C8A, Cg1 and Cg3 are the centroids of the benzene rings C1B–C6B and C1A–C6A.

D—H···A D—H H···A D···A D—H···A
C2A—H2A···O1A 0.93 2.36 2.941 (3) 121
C2B—H2B···O1B 0.93 2.38 2.957 (3) 120
C16B—H16B···O2Ai 0.93 2.43 3.334 (3) 153
C10A—H10A···Cg1ii 0.93 2.95 3.728 (2) 142
C11A—H11A···Cg2ii 0.93 2.74 3.546 (2) 145
C16A—H16A···Cg3iii 0.93 2.88 3.699 (3) 148

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y+1/2, −z.

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Crystal data

C17H13NO3S Z = 4
Mr = 311.34 F(000) = 648
Triclinic, P1 Dx = 1.457 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8708 (6) Å Cell parameters from 5869 reflections
b = 12.3914 (7) Å θ = 1.6–26.5°
c = 13.1457 (12) Å µ = 0.24 mm1
α = 102.706 (3)° T = 296 K
β = 96.552 (3)° Block, white
γ = 111.989 (2)° 0.35 × 0.30 × 0.25 mm
V = 1419.70 (18) Å3

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Data collection

Bruker Kappa APEXII CCD diffractometer 5869 independent reflections
Radiation source: fine-focus sealed tube 4993 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω & φ scans θmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→11
Tmin = 0.919, Tmax = 0.942 k = −15→15
20747 measured reflections l = −16→16

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3752P] where P = (Fo2 + 2Fc2)/3
5869 reflections (Δ/σ)max < 0.001
397 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.46 e Å3

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.27143 (17) 0.47276 (13) 0.54857 (12) 0.0410 (3)
C1B 0.47089 (17) 0.18216 (14) 0.06379 (12) 0.0422 (3)
C2A 0.16605 (19) 0.47310 (16) 0.46965 (14) 0.0520 (4)
H2A 0.0730 0.4080 0.4430 0.062*
C2B 0.3875 (2) 0.20192 (17) −0.01653 (14) 0.0549 (4)
H2B 0.4237 0.2740 −0.0353 0.066*
C3A 0.2044 (2) 0.57378 (18) 0.43203 (14) 0.0571 (4)
H3A 0.1357 0.5762 0.3789 0.069*
C3B 0.2488 (2) 0.11042 (19) −0.06764 (15) 0.0619 (5)
H3B 0.1910 0.1209 −0.1224 0.074*
C4A 0.3429 (2) 0.67144 (17) 0.47144 (14) 0.0557 (4)
H4A 0.3656 0.7376 0.4439 0.067*
C4B 0.1935 (2) 0.00281 (18) −0.03917 (14) 0.0583 (4)
H4B 0.0991 −0.0567 −0.0746 0.070*
C5A 0.44741 (19) 0.67175 (15) 0.55092 (13) 0.0469 (4)
H5A 0.5396 0.7379 0.5777 0.056*
C5B 0.27612 (18) −0.01695 (15) 0.04054 (13) 0.0484 (4)
H5B 0.2384 −0.0890 0.0592 0.058*
C6A 0.41249 (17) 0.57126 (13) 0.59034 (11) 0.0392 (3)
C6B 0.41774 (17) 0.07334 (13) 0.09293 (11) 0.0397 (3)
C7A 0.48985 (17) 0.53962 (13) 0.67042 (12) 0.0410 (3)
C7B 0.53358 (17) 0.08518 (14) 0.17716 (12) 0.0409 (3)
C8A 0.39943 (18) 0.42812 (13) 0.67492 (12) 0.0416 (3)
C8B 0.64817 (17) 0.19489 (14) 0.19660 (12) 0.0414 (3)
C9A 0.16768 (17) 0.15117 (13) 0.48222 (13) 0.0438 (3)
C9B 0.83862 (18) 0.35206 (12) 0.03001 (12) 0.0430 (3)
C10A 0.12748 (19) 0.14631 (16) 0.37681 (14) 0.0530 (4)
H10A 0.0776 0.1920 0.3583 0.064*
C10B 0.7815 (2) 0.32544 (15) −0.07768 (14) 0.0538 (4)
H10B 0.6897 0.3264 −0.1016 0.065*
C11A 0.1624 (2) 0.07259 (18) 0.29923 (15) 0.0611 (5)
H11A 0.1363 0.0685 0.2278 0.073*
C11B 0.8642 (3) 0.29730 (16) −0.14913 (15) 0.0642 (5)
H11B 0.8293 0.2815 −0.2220 0.077*
C12A 0.2354 (2) 0.00561 (15) 0.32725 (16) 0.0616 (5)
H12A 0.2574 −0.0448 0.2745 0.074*
C12B 0.9973 (2) 0.29264 (17) −0.11305 (17) 0.0668 (6)
H12B 1.0522 0.2738 −0.1616 0.080*
C13A 0.2767 (3) 0.01193 (16) 0.43244 (18) 0.0669 (5)
H13A 0.3274 −0.0335 0.4503 0.080*
C13B 1.0500 (2) 0.31548 (18) −0.00588 (17) 0.0669 (5)
H13B 1.1387 0.3094 0.0175 0.080*
C14A 0.2435 (2) 0.08522 (15) 0.51197 (15) 0.0577 (4)
H14A 0.2714 0.0901 0.5834 0.069*
C14B 0.97249 (19) 0.34730 (15) 0.06729 (14) 0.0552 (4)
H14B 1.0093 0.3652 0.1401 0.066*
C15A 0.6302 (2) 0.58497 (15) 0.74785 (13) 0.0503 (4)
C15B 0.57228 (19) 0.01988 (15) 0.24752 (13) 0.0468 (4)
C16A 0.6165 (2) 0.48606 (17) 0.80306 (15) 0.0602 (5)
H16A 0.6269 0.5180 0.8792 0.072*
H16B 0.6947 0.4579 0.7924 0.072*
C16B 0.7286 (2) 0.10394 (17) 0.31390 (14) 0.0572 (4)
H16C 0.7971 0.0655 0.3016 0.069*
H16D 0.7271 0.1215 0.3893 0.069*
C17A 0.4624 (2) 0.38091 (16) 0.75460 (14) 0.0542 (4)
H17A 0.4707 0.3065 0.7206 0.065*
H17B 0.4026 0.3669 0.8079 0.065*
C17B 0.78018 (19) 0.22189 (16) 0.28064 (14) 0.0523 (4)
H17C 0.7982 0.2917 0.3398 0.063*
H17D 0.8697 0.2356 0.2522 0.063*
N1A 0.26446 (15) 0.38410 (11) 0.60335 (10) 0.0431 (3)
N1B 0.61497 (14) 0.25901 (12) 0.13099 (10) 0.0433 (3)
O1A −0.00723 (13) 0.25534 (12) 0.53947 (12) 0.0686 (4)
O1B 0.64889 (16) 0.44484 (11) 0.07644 (11) 0.0635 (3)
O2A 0.14420 (16) 0.21454 (12) 0.67831 (10) 0.0668 (4)
O2B 0.83407 (15) 0.45097 (11) 0.22453 (10) 0.0605 (3)
O3A 0.73912 (16) 0.68021 (13) 0.76796 (12) 0.0735 (4)
O3B 0.49962 (15) −0.08050 (11) 0.25493 (11) 0.0632 (3)
S1A 0.12615 (5) 0.24657 (4) 0.58169 (3) 0.04932 (12)
S1B 0.73718 (5) 0.39203 (3) 0.12199 (3) 0.04713 (12)

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0439 (8) 0.0406 (7) 0.0421 (8) 0.0219 (6) 0.0132 (6) 0.0088 (6)
C1B 0.0434 (8) 0.0484 (8) 0.0403 (8) 0.0227 (7) 0.0146 (6) 0.0136 (6)
C2A 0.0457 (9) 0.0564 (10) 0.0506 (9) 0.0246 (8) 0.0034 (7) 0.0062 (7)
C2B 0.0642 (11) 0.0614 (10) 0.0525 (9) 0.0346 (9) 0.0153 (8) 0.0252 (8)
C3A 0.0622 (11) 0.0711 (12) 0.0498 (9) 0.0417 (10) 0.0065 (8) 0.0173 (8)
C3B 0.0628 (11) 0.0791 (13) 0.0516 (10) 0.0414 (10) 0.0020 (8) 0.0172 (9)
C4A 0.0688 (11) 0.0601 (10) 0.0552 (10) 0.0380 (9) 0.0178 (9) 0.0267 (8)
C4B 0.0478 (10) 0.0657 (11) 0.0546 (10) 0.0241 (9) 0.0013 (8) 0.0077 (8)
C5A 0.0502 (9) 0.0458 (8) 0.0501 (9) 0.0221 (7) 0.0142 (7) 0.0182 (7)
C5B 0.0444 (8) 0.0485 (9) 0.0490 (9) 0.0177 (7) 0.0091 (7) 0.0109 (7)
C6A 0.0430 (8) 0.0408 (7) 0.0376 (7) 0.0213 (6) 0.0115 (6) 0.0097 (6)
C6B 0.0416 (8) 0.0438 (8) 0.0378 (7) 0.0205 (6) 0.0137 (6) 0.0120 (6)
C7A 0.0447 (8) 0.0411 (7) 0.0398 (7) 0.0199 (6) 0.0100 (6) 0.0121 (6)
C7B 0.0409 (8) 0.0438 (8) 0.0401 (7) 0.0179 (6) 0.0123 (6) 0.0134 (6)
C8A 0.0483 (8) 0.0401 (7) 0.0400 (8) 0.0216 (7) 0.0134 (6) 0.0103 (6)
C8B 0.0425 (8) 0.0447 (8) 0.0392 (7) 0.0184 (6) 0.0142 (6) 0.0130 (6)
C9A 0.0434 (8) 0.0342 (7) 0.0500 (8) 0.0108 (6) 0.0174 (7) 0.0105 (6)
C9B 0.0507 (9) 0.0310 (7) 0.0464 (8) 0.0132 (6) 0.0203 (7) 0.0109 (6)
C10A 0.0453 (9) 0.0544 (9) 0.0537 (10) 0.0193 (8) 0.0067 (7) 0.0093 (8)
C10B 0.0752 (12) 0.0466 (9) 0.0519 (9) 0.0316 (9) 0.0212 (8) 0.0221 (7)
C11A 0.0570 (10) 0.0623 (11) 0.0489 (10) 0.0166 (9) 0.0086 (8) 0.0027 (8)
C11B 0.1041 (17) 0.0489 (9) 0.0459 (9) 0.0319 (10) 0.0305 (10) 0.0177 (8)
C12A 0.0670 (11) 0.0396 (8) 0.0674 (12) 0.0131 (8) 0.0285 (9) 0.0027 (8)
C12B 0.0731 (13) 0.0489 (10) 0.0719 (13) 0.0158 (9) 0.0433 (11) 0.0075 (9)
C13A 0.0870 (14) 0.0439 (9) 0.0859 (14) 0.0360 (10) 0.0339 (12) 0.0256 (9)
C13B 0.0450 (10) 0.0636 (11) 0.0735 (13) 0.0128 (8) 0.0195 (9) −0.0026 (9)
C14A 0.0819 (13) 0.0444 (9) 0.0598 (10) 0.0309 (9) 0.0271 (9) 0.0249 (8)
C14B 0.0431 (9) 0.0528 (9) 0.0521 (9) 0.0083 (7) 0.0127 (7) 0.0005 (7)
C15A 0.0519 (9) 0.0510 (9) 0.0461 (9) 0.0207 (8) 0.0049 (7) 0.0142 (7)
C15B 0.0500 (9) 0.0506 (9) 0.0467 (8) 0.0244 (7) 0.0143 (7) 0.0185 (7)
C16A 0.0644 (11) 0.0656 (11) 0.0548 (10) 0.0294 (9) 0.0046 (8) 0.0252 (9)
C16B 0.0551 (10) 0.0635 (11) 0.0517 (10) 0.0233 (9) 0.0022 (8) 0.0211 (8)
C17A 0.0673 (11) 0.0493 (9) 0.0537 (10) 0.0282 (8) 0.0129 (8) 0.0220 (8)
C17B 0.0444 (9) 0.0566 (10) 0.0498 (9) 0.0152 (7) 0.0058 (7) 0.0157 (8)
N1A 0.0447 (7) 0.0368 (6) 0.0466 (7) 0.0166 (5) 0.0114 (6) 0.0091 (5)
N1B 0.0432 (7) 0.0438 (7) 0.0450 (7) 0.0162 (6) 0.0137 (6) 0.0177 (5)
O1A 0.0418 (7) 0.0585 (8) 0.0975 (10) 0.0183 (6) 0.0212 (7) 0.0079 (7)
O1B 0.0782 (9) 0.0517 (7) 0.0823 (9) 0.0379 (7) 0.0373 (7) 0.0308 (6)
O2A 0.0813 (9) 0.0575 (7) 0.0601 (8) 0.0179 (7) 0.0396 (7) 0.0208 (6)
O2B 0.0677 (8) 0.0458 (6) 0.0519 (7) 0.0111 (6) 0.0213 (6) 0.0005 (5)
O3A 0.0600 (8) 0.0635 (8) 0.0764 (9) 0.0067 (7) −0.0095 (7) 0.0261 (7)
O3B 0.0633 (8) 0.0541 (7) 0.0765 (9) 0.0214 (6) 0.0129 (7) 0.0332 (6)
S1A 0.0464 (2) 0.0416 (2) 0.0574 (2) 0.01393 (17) 0.02450 (19) 0.01016 (17)
S1B 0.0567 (2) 0.0362 (2) 0.0518 (2) 0.01897 (17) 0.02448 (19) 0.01275 (16)

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Geometric parameters (Å, º)

C1A—C2A 1.385 (2) C10A—C11A 1.378 (3)
C1A—C6A 1.410 (2) C10A—H10A 0.9300
C1A—N1A 1.4259 (19) C10B—C11B 1.383 (3)
C1B—C2B 1.385 (2) C10B—H10B 0.9300
C1B—C6B 1.408 (2) C11A—C12A 1.366 (3)
C1B—N1B 1.428 (2) C11A—H11A 0.9300
C2A—C3A 1.380 (3) C11B—C12B 1.371 (3)
C2A—H2A 0.9300 C11B—H11B 0.9300
C2B—C3B 1.380 (3) C12A—C13A 1.373 (3)
C2B—H2B 0.9300 C12A—H12A 0.9300
C3A—C4A 1.388 (3) C12B—C13B 1.372 (3)
C3A—H3A 0.9300 C12B—H12B 0.9300
C3B—C4B 1.392 (3) C13A—C14A 1.381 (3)
C3B—H3B 0.9300 C13A—H13A 0.9300
C4A—C5A 1.380 (2) C13B—C14B 1.376 (2)
C4A—H4A 0.9300 C13B—H13B 0.9300
C4B—C5B 1.375 (2) C14A—H14A 0.9300
C4B—H4B 0.9300 C14B—H14B 0.9300
C5A—C6A 1.393 (2) C15A—O3A 1.211 (2)
C5A—H5A 0.9300 C15A—C16A 1.529 (2)
C5B—C6B 1.397 (2) C15B—O3B 1.213 (2)
C5B—H5B 0.9300 C15B—C16B 1.522 (2)
C6A—C7A 1.438 (2) C16A—C17A 1.532 (3)
C6B—C7B 1.438 (2) C16A—H16A 0.9700
C7A—C8A 1.354 (2) C16A—H16B 0.9700
C7A—C15A 1.454 (2) C16B—C17B 1.537 (2)
C7B—C8B 1.350 (2) C16B—H16C 0.9700
C7B—C15B 1.461 (2) C16B—H16D 0.9700
C8A—N1A 1.379 (2) C17A—H17A 0.9700
C8A—C17A 1.489 (2) C17A—H17B 0.9700
C8B—N1B 1.3836 (19) C17B—H17C 0.9700
C8B—C17B 1.488 (2) C17B—H17D 0.9700
C9A—C10A 1.379 (2) N1A—S1A 1.6747 (13)
C9A—C14A 1.383 (2) N1B—S1B 1.6779 (13)
C9A—S1A 1.7552 (15) O1A—S1A 1.4212 (14)
C9B—C10B 1.380 (2) O1B—S1B 1.4236 (14)
C9B—C14B 1.383 (2) O2A—S1A 1.4232 (14)
C9B—S1B 1.7591 (15) O2B—S1B 1.4194 (13)
C2A—C1A—C6A 121.90 (15) C11A—C12A—C13A 120.74 (17)
C2A—C1A—N1A 130.49 (15) C11A—C12A—H12A 119.6
C6A—C1A—N1A 107.60 (13) C13A—C12A—H12A 119.6
C2B—C1B—C6B 121.92 (15) C11B—C12B—C13B 120.56 (17)
C2B—C1B—N1B 130.29 (15) C11B—C12B—H12B 119.7
C6B—C1B—N1B 107.79 (13) C13B—C12B—H12B 119.7
C3A—C2A—C1A 117.45 (16) C12A—C13A—C14A 120.55 (18)
C3A—C2A—H2A 121.3 C12A—C13A—H13A 119.7
C1A—C2A—H2A 121.3 C14A—C13A—H13A 119.7
C3B—C2B—C1B 117.40 (17) C12B—C13B—C14B 120.44 (19)
C3B—C2B—H2B 121.3 C12B—C13B—H13B 119.8
C1B—C2B—H2B 121.3 C14B—C13B—H13B 119.8
C2A—C3A—C4A 121.67 (16) C13A—C14A—C9A 118.03 (18)
C2A—C3A—H3A 119.2 C13A—C14A—H14A 121.0
C4A—C3A—H3A 119.2 C9A—C14A—H14A 121.0
C2B—C3B—C4B 121.58 (17) C13B—C14B—C9B 118.47 (17)
C2B—C3B—H3B 119.2 C13B—C14B—H14B 120.8
C4B—C3B—H3B 119.2 C9B—C14B—H14B 120.8
C5A—C4A—C3A 120.92 (17) O3A—C15A—C7A 129.48 (16)
C5A—C4A—H4A 119.5 O3A—C15A—C16A 124.52 (16)
C3A—C4A—H4A 119.5 C7A—C15A—C16A 106.00 (14)
C5B—C4B—C3B 121.08 (17) O3B—C15B—C7B 129.37 (16)
C5B—C4B—H4B 119.5 O3B—C15B—C16B 124.58 (15)
C3B—C4B—H4B 119.5 C7B—C15B—C16B 106.05 (14)
C4A—C5A—C6A 118.87 (16) C15A—C16A—C17A 108.11 (14)
C4A—C5A—H5A 120.6 C15A—C16A—H16A 110.1
C6A—C5A—H5A 120.6 C17A—C16A—H16A 110.1
C4B—C5B—C6B 118.72 (16) C15A—C16A—H16B 110.1
C4B—C5B—H5B 120.6 C17A—C16A—H16B 110.1
C6B—C5B—H5B 120.6 H16A—C16A—H16B 108.4
C5A—C6A—C1A 119.19 (14) C15B—C16B—C17B 108.15 (14)
C5A—C6A—C7A 134.54 (15) C15B—C16B—H16C 110.1
C1A—C6A—C7A 106.27 (13) C17B—C16B—H16C 110.1
C5B—C6B—C1B 119.29 (14) C15B—C16B—H16D 110.1
C5B—C6B—C7B 134.51 (15) C17B—C16B—H16D 110.1
C1B—C6B—C7B 106.19 (13) H16C—C16B—H16D 108.4
C8A—C7A—C6A 108.37 (13) C8A—C17A—C16A 101.00 (13)
C8A—C7A—C15A 109.33 (14) C8A—C17A—H17A 111.6
C6A—C7A—C15A 142.31 (14) C16A—C17A—H17A 111.6
C8B—C7B—C6B 108.49 (13) C8A—C17A—H17B 111.6
C8B—C7B—C15B 109.08 (14) C16A—C17A—H17B 111.6
C6B—C7B—C15B 142.41 (14) H17A—C17A—H17B 109.4
C7A—C8A—N1A 110.37 (13) C8B—C17B—C16B 100.85 (13)
C7A—C8A—C17A 115.56 (14) C8B—C17B—H17C 111.6
N1A—C8A—C17A 134.06 (14) C16B—C17B—H17C 111.6
C7B—C8B—N1B 110.48 (14) C8B—C17B—H17D 111.6
C7B—C8B—C17B 115.87 (14) C16B—C17B—H17D 111.6
N1B—C8B—C17B 133.65 (14) H17C—C17B—H17D 109.4
C10A—C9A—C14A 121.70 (15) C8A—N1A—C1A 107.38 (12)
C10A—C9A—S1A 119.24 (13) C8A—N1A—S1A 124.58 (11)
C14A—C9A—S1A 119.04 (13) C1A—N1A—S1A 127.90 (11)
C10B—C9B—C14B 121.83 (15) C8B—N1B—C1B 107.02 (12)
C10B—C9B—S1B 118.86 (13) C8B—N1B—S1B 124.27 (11)
C14B—C9B—S1B 119.31 (12) C1B—N1B—S1B 128.00 (11)
C11A—C10A—C9A 118.95 (17) O1A—S1A—O2A 121.68 (9)
C11A—C10A—H10A 120.5 O1A—S1A—N1A 105.98 (7)
C9A—C10A—H10A 120.5 O2A—S1A—N1A 105.50 (8)
C9B—C10B—C11B 118.34 (18) O1A—S1A—C9A 109.32 (8)
C9B—C10B—H10B 120.8 O2A—S1A—C9A 108.57 (8)
C11B—C10B—H10B 120.8 N1A—S1A—C9A 104.38 (7)
C12A—C11A—C10A 120.02 (18) O2B—S1B—O1B 121.55 (8)
C12A—C11A—H11A 120.0 O2B—S1B—N1B 105.48 (7)
C10A—C11A—H11A 120.0 O1B—S1B—N1B 105.67 (7)
C12B—C11B—C10B 120.29 (18) O2B—S1B—C9B 108.96 (8)
C12B—C11B—H11B 119.9 O1B—S1B—C9B 109.18 (8)
C10B—C11B—H11B 119.9 N1B—S1B—C9B 104.63 (7)
C6A—C1A—C2A—C3A 0.5 (2) C8A—C7A—C15A—C16A −0.11 (19)
N1A—C1A—C2A—C3A 179.23 (15) C6A—C7A—C15A—C16A 179.9 (2)
C6B—C1B—C2B—C3B 0.1 (2) C8B—C7B—C15B—O3B 179.72 (17)
N1B—C1B—C2B—C3B −179.08 (16) C6B—C7B—C15B—O3B −1.9 (3)
C1A—C2A—C3A—C4A −0.1 (3) C8B—C7B—C15B—C16B −0.37 (18)
C1B—C2B—C3B—C4B 0.7 (3) C6B—C7B—C15B—C16B 177.98 (19)
C2A—C3A—C4A—C5A −0.6 (3) O3A—C15A—C16A—C17A −179.90 (18)
C2B—C3B—C4B—C5B −0.7 (3) C7A—C15A—C16A—C17A 0.1 (2)
C3A—C4A—C5A—C6A 0.8 (3) O3B—C15B—C16B—C17B −179.60 (16)
C3B—C4B—C5B—C6B 0.0 (3) C7B—C15B—C16B—C17B 0.49 (19)
C4A—C5A—C6A—C1A −0.4 (2) C7A—C8A—C17A—C16A −0.07 (19)
C4A—C5A—C6A—C7A −179.85 (16) N1A—C8A—C17A—C16A −178.58 (17)
C2A—C1A—C6A—C5A −0.3 (2) C15A—C16A—C17A—C8A 0.00 (19)
N1A—C1A—C6A—C5A −179.22 (13) C7B—C8B—C17B—C16B 0.19 (19)
C2A—C1A—C6A—C7A 179.30 (14) N1B—C8B—C17B—C16B −179.56 (16)
N1A—C1A—C6A—C7A 0.35 (16) C15B—C16B—C17B—C8B −0.40 (18)
C4B—C5B—C6B—C1B 0.8 (2) C7A—C8A—N1A—C1A 1.23 (16)
C4B—C5B—C6B—C7B −179.66 (16) C17A—C8A—N1A—C1A 179.79 (16)
C2B—C1B—C6B—C5B −0.9 (2) C7A—C8A—N1A—S1A 177.23 (10)
N1B—C1B—C6B—C5B 178.48 (13) C17A—C8A—N1A—S1A −4.2 (2)
C2B—C1B—C6B—C7B 179.50 (14) C2A—C1A—N1A—C8A −179.78 (16)
N1B—C1B—C6B—C7B −1.16 (16) C6A—C1A—N1A—C8A −0.95 (16)
C5A—C6A—C7A—C8A 179.87 (16) C2A—C1A—N1A—S1A 4.4 (2)
C1A—C6A—C7A—C8A 0.39 (16) C6A—C1A—N1A—S1A −176.78 (10)
C5A—C6A—C7A—C15A −0.1 (3) C7B—C8B—N1B—C1B −1.70 (16)
C1A—C6A—C7A—C15A −179.6 (2) C17B—C8B—N1B—C1B 178.06 (16)
C5B—C6B—C7B—C8B −179.42 (16) C7B—C8B—N1B—S1B −172.72 (11)
C1B—C6B—C7B—C8B 0.15 (17) C17B—C8B—N1B—S1B 7.0 (2)
C5B—C6B—C7B—C15B 2.2 (3) C2B—C1B—N1B—C8B −178.99 (16)
C1B—C6B—C7B—C15B −178.21 (19) C6B—C1B—N1B—C8B 1.75 (16)
C6A—C7A—C8A—N1A −1.02 (17) C2B—C1B—N1B—S1B −8.4 (2)
C15A—C7A—C8A—N1A 178.98 (13) C6B—C1B—N1B—S1B 172.33 (11)
C6A—C7A—C8A—C17A −179.87 (13) C8A—N1A—S1A—O1A 156.83 (13)
C15A—C7A—C8A—C17A 0.12 (19) C1A—N1A—S1A—O1A −28.01 (14)
C6B—C7B—C8B—N1B 0.98 (17) C8A—N1A—S1A—O2A 26.56 (14)
C15B—C7B—C8B—N1B 179.92 (13) C1A—N1A—S1A—O2A −158.28 (13)
C6B—C7B—C8B—C17B −178.83 (13) C8A—N1A—S1A—C9A −87.78 (14)
C15B—C7B—C8B—C17B 0.12 (19) C1A—N1A—S1A—C9A 87.38 (13)
C14A—C9A—C10A—C11A 0.8 (3) C10A—C9A—S1A—O1A 31.18 (15)
S1A—C9A—C10A—C11A 179.04 (13) C14A—C9A—S1A—O1A −150.53 (14)
C14B—C9B—C10B—C11B −2.2 (2) C10A—C9A—S1A—O2A 166.00 (13)
S1B—C9B—C10B—C11B 178.29 (12) C14A—C9A—S1A—O2A −15.71 (16)
C9A—C10A—C11A—C12A 0.1 (3) C10A—C9A—S1A—N1A −81.84 (14)
C9B—C10B—C11B—C12B 2.0 (3) C14A—C9A—S1A—N1A 96.45 (14)
C10A—C11A—C12A—C13A −0.9 (3) C8B—N1B—S1B—O2B −31.16 (14)
C10B—C11B—C12B—C13B 0.1 (3) C1B—N1B—S1B—O2B 159.75 (13)
C11A—C12A—C13A—C14A 0.7 (3) C8B—N1B—S1B—O1B −161.07 (12)
C11B—C12B—C13B—C14B −2.1 (3) C1B—N1B—S1B—O1B 29.84 (15)
C12A—C13A—C14A—C9A 0.2 (3) C8B—N1B—S1B—C9B 83.72 (14)
C10A—C9A—C14A—C13A −1.0 (3) C1B—N1B—S1B—C9B −85.37 (14)
S1A—C9A—C14A—C13A −179.20 (14) C10B—C9B—S1B—O2B −161.96 (12)
C12B—C13B—C14B—C9B 1.9 (3) C14B—C9B—S1B—O2B 18.49 (15)
C10B—C9B—C14B—C13B 0.3 (3) C10B—C9B—S1B—O1B −27.11 (15)
S1B—C9B—C14B—C13B 179.80 (14) C14B—C9B—S1B—O1B 153.34 (13)
C8A—C7A—C15A—O3A 179.85 (19) C10B—C9B—S1B—N1B 85.62 (13)
C6A—C7A—C15A—O3A −0.2 (4) C14B—C9B—S1B—N1B −93.92 (13)

(II) 4-Phenylsulfonyl-3H,4H-cyclopenta[b]indol-1(2H)-one . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the benzene rings C9A–C14A and C1A–C6A.

D—H···A D—H H···A D···A D—H···A
C2A—H2A···O1A 0.93 2.44 3.007 (2) 119
C2B—H2B···O1B 0.93 2.44 3.010 (2) 120
C12B—H12B···O2Ai 0.93 2.46 3.369 (3) 166
C5A—H5A···Cg1ii 0.93 2.65 3.550 (2) 164
C17B—H17C···Cg2ii 0.97 2.85 3.729 (2) 151

Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y+1, −z+1.

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Crystal data

C24H17ClN2O5S·CHCl3 Z = 2
Mr = 600.27 F(000) = 612
Triclinic, P1 Dx = 1.535 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5856 (3) Å Cell parameters from 4579 reflections
b = 11.2767 (4) Å θ = 2.2–25.0°
c = 13.1782 (4) Å µ = 0.58 mm1
α = 104.9070 (11)° T = 296 K
β = 108.2350 (9)° Block, yellow
γ = 91.581 (1)° 0.35 × 0.30 × 0.25 mm
V = 1298.31 (7) Å3

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Data collection

Bruker Kappa APEXII CCD diffractometer 4579 independent reflections
Radiation source: fine-focus sealed tube 4054 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω & φ scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.817, Tmax = 0.866 k = −13→13
25757 measured reflections l = −15→15

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0647P)2 + 1.2652P] where P = (Fo2 + 2Fc2)/3
4579 reflections (Δ/σ)max < 0.001
335 parameters Δρmax = 0.99 e Å3
0 restraints Δρmin = −0.77 e Å3

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7086 (3) 0.6423 (2) 0.02468 (19) 0.0363 (5)
C2 0.8118 (3) 0.6193 (3) −0.0308 (2) 0.0473 (6)
H2 0.8776 0.5613 −0.0183 0.057*
C3 0.8119 (3) 0.6861 (3) −0.1048 (2) 0.0532 (7)
H3 0.8811 0.6744 −0.1416 0.064*
C4 0.7121 (3) 0.7699 (3) −0.1258 (2) 0.0551 (7)
H4 0.7147 0.8127 −0.1769 0.066*
C5 0.6085 (3) 0.7915 (3) −0.0725 (2) 0.0475 (6)
H5 0.5402 0.8468 −0.0882 0.057*
C6 0.6088 (3) 0.7281 (2) 0.00587 (19) 0.0363 (5)
C7 0.5194 (3) 0.7305 (2) 0.0770 (2) 0.0358 (5)
C8 0.5670 (3) 0.6490 (2) 0.13771 (19) 0.0344 (5)
C9 0.9272 (3) 0.6604 (2) 0.2892 (2) 0.0396 (5)
C10 1.0367 (3) 0.7193 (3) 0.2653 (2) 0.0511 (7)
H10 1.0507 0.6906 0.1968 0.061*
C11 1.1244 (3) 0.8211 (3) 0.3445 (3) 0.0575 (7)
H11 1.1975 0.8622 0.3293 0.069*
C12 1.1042 (3) 0.8619 (3) 0.4457 (3) 0.0587 (8)
H12 1.1652 0.9297 0.4994 0.070*
C13 0.9946 (4) 0.8035 (3) 0.4685 (2) 0.0610 (8)
H13 0.9811 0.8326 0.5371 0.073*
C14 0.9049 (3) 0.7025 (3) 0.3905 (2) 0.0503 (7)
H14 0.8304 0.6630 0.4056 0.060*
C15 0.4027 (3) 0.8131 (3) 0.0797 (2) 0.0456 (6)
C16 0.2636 (3) 0.7740 (3) 0.0972 (3) 0.0602 (8)
H16A 0.2515 0.8334 0.1598 0.090*
H16B 0.2693 0.6945 0.1112 0.090*
H16C 0.1806 0.7690 0.0318 0.090*
C17 0.5195 (3) 0.6202 (2) 0.2245 (2) 0.0382 (5)
H17 0.4982 0.5376 0.2199 0.046*
C18 0.5051 (3) 0.7060 (2) 0.3097 (2) 0.0391 (5)
H18 0.5314 0.7884 0.3164 0.047*
C19 0.4498 (3) 0.6776 (2) 0.3943 (2) 0.0390 (5)
C20 0.3520 (3) 0.5708 (3) 0.3647 (2) 0.0448 (6)
H20 0.3261 0.5177 0.2931 0.054*
C21 0.2930 (3) 0.5427 (3) 0.4399 (2) 0.0519 (7)
C22 0.3259 (4) 0.6188 (3) 0.5464 (2) 0.0604 (8)
H22 0.2855 0.5983 0.5962 0.072*
C23 0.4196 (3) 0.7252 (3) 0.5773 (2) 0.0600 (8)
H23 0.4420 0.7788 0.6484 0.072*
C24 0.4811 (3) 0.7533 (3) 0.5031 (2) 0.0467 (6)
C25 0.8075 (4) 0.0412 (3) 0.1647 (3) 0.0617 (8)
H25 0.7224 0.0110 0.0962 0.074*
N1 0.6811 (2) 0.58988 (18) 0.10476 (16) 0.0369 (4)
N2 0.5838 (3) 0.8666 (3) 0.5447 (2) 0.0634 (7)
O1 0.8948 (2) 0.46826 (18) 0.12207 (18) 0.0575 (5)
O2 0.7418 (2) 0.46633 (17) 0.24146 (17) 0.0525 (5)
O3 0.4195 (3) 0.9128 (2) 0.0629 (2) 0.0737 (7)
O4 0.6820 (3) 0.8730 (3) 0.5074 (2) 0.0892 (9)
O5 0.5675 (5) 0.9504 (3) 0.6176 (3) 0.1267 (14)
Cl1 0.16953 (12) 0.40958 (9) 0.39577 (8) 0.0810 (3)
Cl2 0.96400 (19) 0.00280 (16) 0.13322 (15) 0.1285 (5)
Cl3 0.81010 (14) 0.20089 (8) 0.21320 (9) 0.0866 (3)
Cl4 0.78435 (12) −0.03140 (9) 0.26121 (8) 0.0817 (3)
S1 0.81424 (7) 0.53154 (6) 0.18933 (5) 0.04142 (19)

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0407 (12) 0.0370 (12) 0.0305 (11) −0.0002 (10) 0.0139 (10) 0.0063 (9)
C2 0.0486 (15) 0.0550 (16) 0.0426 (14) 0.0093 (12) 0.0225 (12) 0.0115 (12)
C3 0.0511 (16) 0.0723 (19) 0.0420 (14) 0.0022 (14) 0.0261 (12) 0.0135 (13)
C4 0.0577 (17) 0.073 (2) 0.0445 (15) 0.0004 (15) 0.0214 (13) 0.0290 (14)
C5 0.0469 (14) 0.0583 (16) 0.0434 (14) 0.0057 (12) 0.0147 (12) 0.0249 (13)
C6 0.0365 (12) 0.0397 (12) 0.0313 (12) −0.0014 (10) 0.0109 (10) 0.0087 (10)
C7 0.0357 (12) 0.0370 (12) 0.0359 (12) 0.0015 (10) 0.0131 (10) 0.0106 (10)
C8 0.0370 (12) 0.0307 (11) 0.0344 (12) −0.0012 (9) 0.0139 (10) 0.0053 (9)
C9 0.0398 (13) 0.0424 (13) 0.0416 (13) 0.0119 (10) 0.0140 (11) 0.0191 (11)
C10 0.0478 (15) 0.0629 (18) 0.0515 (16) 0.0089 (13) 0.0246 (13) 0.0208 (14)
C11 0.0441 (15) 0.0681 (19) 0.0625 (19) −0.0015 (14) 0.0174 (14) 0.0233 (15)
C12 0.0485 (16) 0.0659 (19) 0.0512 (17) −0.0020 (14) 0.0067 (13) 0.0116 (14)
C13 0.0602 (18) 0.077 (2) 0.0407 (15) 0.0004 (16) 0.0149 (13) 0.0103 (14)
C14 0.0493 (15) 0.0634 (18) 0.0431 (15) 0.0029 (13) 0.0178 (12) 0.0204 (13)
C15 0.0471 (14) 0.0532 (16) 0.0409 (14) 0.0117 (12) 0.0168 (11) 0.0172 (12)
C16 0.0443 (15) 0.081 (2) 0.0624 (19) 0.0175 (15) 0.0227 (14) 0.0241 (16)
C17 0.0412 (13) 0.0372 (12) 0.0420 (13) 0.0025 (10) 0.0180 (10) 0.0162 (10)
C18 0.0396 (13) 0.0409 (13) 0.0394 (13) 0.0006 (10) 0.0158 (10) 0.0129 (11)
C19 0.0377 (12) 0.0468 (14) 0.0361 (12) 0.0068 (10) 0.0142 (10) 0.0152 (11)
C20 0.0504 (15) 0.0506 (15) 0.0378 (13) 0.0015 (12) 0.0184 (11) 0.0157 (11)
C21 0.0533 (16) 0.0619 (18) 0.0509 (16) 0.0021 (13) 0.0225 (13) 0.0278 (14)
C22 0.0656 (19) 0.083 (2) 0.0458 (16) 0.0061 (17) 0.0297 (14) 0.0277 (16)
C23 0.0609 (18) 0.085 (2) 0.0359 (14) 0.0089 (16) 0.0198 (13) 0.0149 (14)
C24 0.0439 (14) 0.0563 (16) 0.0388 (14) 0.0054 (12) 0.0133 (11) 0.0117 (12)
C25 0.082 (2) 0.0456 (16) 0.0510 (17) 0.0156 (15) 0.0141 (16) 0.0110 (13)
N1 0.0429 (11) 0.0347 (10) 0.0373 (11) 0.0060 (8) 0.0182 (9) 0.0109 (8)
N2 0.0646 (16) 0.0686 (17) 0.0474 (14) −0.0064 (13) 0.0206 (13) −0.0011 (13)
O1 0.0719 (13) 0.0485 (11) 0.0639 (13) 0.0291 (10) 0.0362 (11) 0.0168 (10)
O2 0.0672 (12) 0.0381 (10) 0.0651 (12) 0.0101 (9) 0.0292 (10) 0.0269 (9)
O3 0.0833 (16) 0.0643 (14) 0.1028 (19) 0.0341 (12) 0.0477 (15) 0.0496 (14)
O4 0.0786 (17) 0.0919 (19) 0.0841 (18) −0.0295 (14) 0.0401 (15) −0.0097 (15)
O5 0.159 (3) 0.097 (2) 0.107 (2) −0.040 (2) 0.083 (2) −0.0418 (19)
Cl1 0.0973 (7) 0.0836 (6) 0.0723 (6) −0.0251 (5) 0.0390 (5) 0.0293 (5)
Cl2 0.1388 (12) 0.1330 (12) 0.1541 (13) 0.0563 (10) 0.0941 (11) 0.0482 (10)
Cl3 0.1221 (8) 0.0440 (4) 0.0838 (6) 0.0152 (5) 0.0248 (6) 0.0123 (4)
Cl4 0.1012 (7) 0.0670 (5) 0.0664 (5) −0.0109 (5) 0.0135 (5) 0.0207 (4)
S1 0.0523 (4) 0.0331 (3) 0.0470 (4) 0.0137 (3) 0.0231 (3) 0.0160 (3)

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Geometric parameters (Å, º)

C1—C6 1.392 (4) C15—C16 1.496 (4)
C1—C2 1.396 (3) C16—H16A 0.9600
C1—N1 1.421 (3) C16—H16B 0.9600
C2—C3 1.378 (4) C16—H16C 0.9600
C2—H2 0.9300 C17—C18 1.327 (3)
C3—C4 1.380 (4) C17—H17 0.9300
C3—H3 0.9300 C18—C19 1.473 (3)
C4—C5 1.378 (4) C18—H18 0.9300
C4—H4 0.9300 C19—C20 1.396 (4)
C5—C6 1.398 (3) C19—C24 1.401 (4)
C5—H5 0.9300 C20—C21 1.380 (4)
C6—C7 1.450 (3) C20—H20 0.9300
C7—C8 1.366 (3) C21—C22 1.377 (4)
C7—C15 1.479 (4) C21—Cl1 1.736 (3)
C8—N1 1.420 (3) C22—C23 1.369 (5)
C8—C17 1.460 (3) C22—H22 0.9300
C9—C14 1.383 (4) C23—C24 1.383 (4)
C9—C10 1.385 (4) C23—H23 0.9300
C9—S1 1.748 (3) C24—N2 1.461 (4)
C10—C11 1.376 (4) C25—Cl2 1.716 (4)
C10—H10 0.9300 C25—Cl4 1.744 (3)
C11—C12 1.371 (4) C25—Cl3 1.746 (3)
C11—H11 0.9300 C25—H25 0.9800
C12—C13 1.375 (5) N1—S1 1.685 (2)
C12—H12 0.9300 N2—O4 1.199 (3)
C13—C14 1.372 (4) N2—O5 1.214 (4)
C13—H13 0.9300 O1—S1 1.4229 (19)
C14—H14 0.9300 O2—S1 1.423 (2)
C15—O3 1.217 (4)
C6—C1—C2 121.9 (2) H16A—C16—H16B 109.5
C6—C1—N1 107.5 (2) C15—C16—H16C 109.5
C2—C1—N1 130.6 (2) H16A—C16—H16C 109.5
C3—C2—C1 117.1 (3) H16B—C16—H16C 109.5
C3—C2—H2 121.5 C18—C17—C8 123.2 (2)
C1—C2—H2 121.5 C18—C17—H17 118.4
C2—C3—C4 121.7 (3) C8—C17—H17 118.4
C2—C3—H3 119.2 C17—C18—C19 123.4 (2)
C4—C3—H3 119.2 C17—C18—H18 118.3
C5—C4—C3 121.4 (3) C19—C18—H18 118.3
C5—C4—H4 119.3 C20—C19—C24 115.7 (2)
C3—C4—H4 119.3 C20—C19—C18 119.1 (2)
C4—C5—C6 118.3 (3) C24—C19—C18 125.2 (2)
C4—C5—H5 120.8 C21—C20—C19 121.2 (3)
C6—C5—H5 120.8 C21—C20—H20 119.4
C1—C6—C5 119.6 (2) C19—C20—H20 119.4
C1—C6—C7 107.9 (2) C22—C21—C20 121.9 (3)
C5—C6—C7 132.5 (2) C22—C21—Cl1 119.8 (2)
C8—C7—C6 107.9 (2) C20—C21—Cl1 118.3 (2)
C8—C7—C15 129.5 (2) C23—C22—C21 118.4 (3)
C6—C7—C15 122.5 (2) C23—C22—H22 120.8
C7—C8—N1 108.7 (2) C21—C22—H22 120.8
C7—C8—C17 130.2 (2) C22—C23—C24 120.2 (3)
N1—C8—C17 121.1 (2) C22—C23—H23 119.9
C14—C9—C10 121.1 (3) C24—C23—H23 119.9
C14—C9—S1 119.4 (2) C23—C24—C19 122.7 (3)
C10—C9—S1 119.5 (2) C23—C24—N2 116.4 (3)
C11—C10—C9 118.9 (3) C19—C24—N2 120.9 (2)
C11—C10—H10 120.6 Cl2—C25—Cl4 110.46 (18)
C9—C10—H10 120.6 Cl2—C25—Cl3 111.9 (2)
C12—C11—C10 120.2 (3) Cl4—C25—Cl3 110.68 (18)
C12—C11—H11 119.9 Cl2—C25—H25 107.9
C10—C11—H11 119.9 Cl4—C25—H25 107.9
C11—C12—C13 120.5 (3) Cl3—C25—H25 107.9
C11—C12—H12 119.8 C8—N1—C1 107.92 (19)
C13—C12—H12 119.8 C8—N1—S1 123.02 (16)
C14—C13—C12 120.4 (3) C1—N1—S1 121.85 (16)
C14—C13—H13 119.8 O4—N2—O5 122.5 (3)
C12—C13—H13 119.8 O4—N2—C24 119.2 (3)
C13—C14—C9 118.9 (3) O5—N2—C24 118.3 (3)
C13—C14—H14 120.5 O2—S1—O1 120.19 (12)
C9—C14—H14 120.5 O2—S1—N1 106.27 (11)
O3—C15—C7 118.3 (2) O1—S1—N1 105.64 (11)
O3—C15—C16 120.2 (3) O2—S1—C9 109.28 (12)
C7—C15—C16 121.5 (2) O1—S1—C9 109.29 (13)
C15—C16—H16A 109.5 N1—S1—C9 105.06 (11)
C15—C16—H16B 109.5
C6—C1—C2—C3 0.6 (4) C18—C19—C20—C21 −177.6 (3)
N1—C1—C2—C3 −179.8 (3) C19—C20—C21—C22 0.9 (5)
C1—C2—C3—C4 −1.7 (4) C19—C20—C21—Cl1 178.8 (2)
C2—C3—C4—C5 0.7 (5) C20—C21—C22—C23 0.2 (5)
C3—C4—C5—C6 1.4 (4) Cl1—C21—C22—C23 −177.7 (3)
C2—C1—C6—C5 1.5 (4) C21—C22—C23—C24 −1.2 (5)
N1—C1—C6—C5 −178.2 (2) C22—C23—C24—C19 1.1 (5)
C2—C1—C6—C7 −179.3 (2) C22—C23—C24—N2 −177.9 (3)
N1—C1—C6—C7 1.0 (3) C20—C19—C24—C23 0.0 (4)
C4—C5—C6—C1 −2.4 (4) C18—C19—C24—C23 176.4 (3)
C4—C5—C6—C7 178.6 (3) C20—C19—C24—N2 179.0 (2)
C1—C6—C7—C8 0.8 (3) C18—C19—C24—N2 −4.6 (4)
C5—C6—C7—C8 179.8 (3) C7—C8—N1—C1 3.0 (3)
C1—C6—C7—C15 179.1 (2) C17—C8—N1—C1 −176.4 (2)
C5—C6—C7—C15 −1.8 (4) C7—C8—N1—S1 153.61 (17)
C6—C7—C8—N1 −2.3 (3) C17—C8—N1—S1 −25.8 (3)
C15—C7—C8—N1 179.5 (2) C6—C1—N1—C8 −2.4 (3)
C6—C7—C8—C17 177.0 (2) C2—C1—N1—C8 178.0 (3)
C15—C7—C8—C17 −1.2 (4) C6—C1—N1—S1 −153.47 (17)
C14—C9—C10—C11 0.3 (4) C2—C1—N1—S1 26.9 (4)
S1—C9—C10—C11 179.7 (2) C23—C24—N2—O4 150.3 (3)
C9—C10—C11—C12 0.8 (5) C19—C24—N2—O4 −28.8 (4)
C10—C11—C12—C13 −1.3 (5) C23—C24—N2—O5 −28.5 (5)
C11—C12—C13—C14 0.8 (5) C19—C24—N2—O5 152.5 (4)
C12—C13—C14—C9 0.3 (5) C8—N1—S1—O2 44.5 (2)
C10—C9—C14—C13 −0.8 (4) C1—N1—S1—O2 −168.77 (18)
S1—C9—C14—C13 179.8 (2) C8—N1—S1—O1 173.28 (19)
C8—C7—C15—O3 146.2 (3) C1—N1—S1—O1 −40.0 (2)
C6—C7—C15—O3 −31.7 (4) C8—N1—S1—C9 −71.2 (2)
C8—C7—C15—C16 −36.6 (4) C1—N1—S1—C9 75.5 (2)
C6—C7—C15—C16 145.5 (3) C14—C9—S1—O2 −17.3 (2)
C7—C8—C17—C18 −48.3 (4) C10—C9—S1—O2 163.2 (2)
N1—C8—C17—C18 130.9 (3) C14—C9—S1—O1 −150.7 (2)
C8—C17—C18—C19 176.7 (2) C10—C9—S1—O1 29.9 (2)
C17—C18—C19—C20 −28.2 (4) C14—C9—S1—N1 96.3 (2)
C17—C18—C19—C24 155.4 (3) C10—C9—S1—N1 −83.1 (2)
C24—C19—C20—C21 −0.9 (4)

(III) 1-{2-[(E)-2-(5-Chloro-2-nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethan-1-one chloroform monosolvate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1 0.93 2.32 2.903 (4) 121
C22—H22···O2i 0.93 2.51 3.412 (4) 162
C25—H25···O3ii 0.98 2.49 3.283 (4) 138

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

References

  1. Allen, F. H. (1981). Acta Cryst. B37, 900–906.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.
  3. Amal Raj, A., Raghunathan, R., Sridevikumar, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419. [DOI] [PubMed]
  4. Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvani, L. & Garaliene, V. (2001). Anti-Cancer Drug. Des. 16, 167–174. [PubMed]
  5. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917. [DOI] [PubMed]
  9. Fargasova, A. (1994). Bull. Environ. Contam. Toxicol. 52, 706–711. [DOI] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  12. Hendi, S. & Basangoudar, L. D. (1981). Indian J. Chem. 208, 285–288.
  13. Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662. [DOI] [PMC free article] [PubMed]
  14. Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902. [DOI] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Moore, C. T. (1989). Biochemistry and Physiology of Plant Hormones, ch. 2, p. 33. New Delhi: Narosa Publishing House.
  17. Nigović, B., Antolić, S., Kojić-Prodić, B., Kiralj, R., Magnus, V. & Salopek-Sondi, B. (2000). Acta Cryst. B56, 94–111. [DOI] [PubMed]
  18. Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192. [PubMed]
  19. Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.
  20. Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Matrinez-Ripoll, M. & Gracia-Balanco, S. (1985). Tetrahedron, 41, 3813–3823.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176. [DOI] [PubMed]
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Stevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989015014917/bg2558sup1.cif

e-71-01036-sup1.cif (96.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014917/bg2558Isup2.hkl

e-71-01036-Isup2.hkl (281.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015014917/bg2558IIsup3.hkl

e-71-01036-IIsup3.hkl (287.3KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015014917/bg2558IIIsup4.hkl

e-71-01036-IIIsup4.hkl (224.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014917/bg2558IIsup5.cml

Supporting information file. DOI: 10.1107/S2056989015014917/bg2558IIIsup6.cml

CCDC references: 1417660, 1417659, 1417658

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES