Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 22;71(Pt 9):o674. doi: 10.1107/S2056989015014620

Crystal structure of 3-chloro-N-(2-nitro­phen­yl)benzamide

Rodolfo Moreno-Fuquen a,*, Alexis Azcárate a, Alan R Kennedy b
PMCID: PMC4555397  PMID: 26396898

Abstract

In the title compound, C13H9ClN2O3, the mean plane of the central amide fragment (r.m.s. deviation = 0.016 Å) subtends dihedral angles of 15.2 (2) and 8.2 (2)° with the chloro- and nitro-substituted benzene rings, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming C(7) chains which propagate along [010], but no Cl⋯Cl short contacts are observed.

Keywords: crystal structure, benzamide, hydrogen bonding, halogen–halogen inter­actions

Related literature  

For halogen–halogen inter­actions in benzanilide compounds, see: Vener et al. (2013); Nayak et al. (2011).graphic file with name e-71-0o674-scheme1.jpg

Experimental  

Crystal data  

  • C13H9ClN2O3

  • M r = 276.67

  • Monoclinic, Inline graphic

  • a = 12.6300 (9) Å

  • b = 14.1462 (12) Å

  • c = 6.7797 (6) Å

  • β = 105.475 (7)°

  • V = 1167.39 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 123 K

  • 0.40 × 0.08 × 0.05 mm

Data collection  

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.839, T max = 1.000

  • 10366 measured reflections

  • 10366 independent reflections

  • 7015 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.179

  • S = 1.00

  • 10367 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015014620/hb7476sup1.cif

e-71-0o674-sup1.cif (711KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014620/hb7476Isup2.hkl

e-71-0o674-Isup2.hkl (822.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014620/hb7476Isup3.cml

. DOI: 10.1107/S2056989015014620/hb7476fig1.tif

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

x y z . DOI: 10.1107/S2056989015014620/hb7476fig2.tif

Part of the crystal structure of (I), showing the formation of C(7) chains along [010] [Symmetry code: (i) −x + 1, y − Inline graphic, −z + Inline graphic].

CCDC reference: 1416793

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NO2 0.98(7) 1.75(7) 2.612(6) 144(6)
C10H10O1i 0.95 2.39 3.158(7) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

S1. Comment

The crystal structure determination of 3-chloro-N-(2-nitrophenyl)benzamide (I), is part of a study on benzanilides carried out in our research group, and it was obtained from the reaction between 3-chlorobenzoic acid and 2-nitroaniline mediated by the presence of thionyl chloride. The study of intermolecular halogen-halogen interactions is a current problem and several authors have presented interesting results. Halogen-halogen short interactions, in other similar studies, show Cl···Cl distances of the order of 3.8 Å. Theoretical studies of density analysis, varying the Cl···Cl distance from 3.0 to 4.0 Å, using DFT solid state program, have been undertaken (Vener et al., 2013). Geometric considerations in halogen-halogen interactions, for various benzanilide systems, showed different behaviors. Interactions of fluorine with other halogens Cl, Br, I, in different benzanilide systems, include interactions type: trans, cis or L-geometry (Nayak et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(═O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0164 Å) and it forms dihedral angles of 15.2 (2)° with the C1-C6 and 8.2 (2)° with the C8-C13 rings respectively. In the crystal structure (Fig. 2), molecules are linked by weak C-H···O intermolecular contacts. The C10-H10···O1 hydrogen bond interactions are responsible for crystal growth parallel to (2 0 -2). In this interaction, the C-H in the molecule at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (-x+1,+y-1/2,-z+3/2). These interactions generate C(7) chains of molecules along [010]. Other intra N-H···O and N-H···N are observed (see Table 1, Nardelli, 1995). The shorest Cl···Cl contact distance in this structure is 3.943 (3) Å.

S2. Experimental

The title molecule was synthesized taking 0.200 g (1.270 mmol) of 3-chlorobenzoic acid and it was placed under reflux with 2 mL of thionyl chloride for two hours. After this time an equimolar amount of o-nitroaniline, dissolved in 10 mL of acetonitrile and allowed to reflux at constant stirring for 3 hours was added. The final solution was left to slow evaporation to obtain yellow crystals. [m.p. 399 (1)K].

S3. Refinement

All Hm atoms were positioned in geometrically idealized positions, C—H = 0.95 Å, and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom. H1N atom was found from the Fourier maps and its coordinates were refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of C(7) chains along [010] [Symmetry code: (i) -x + 1, y - 1/2, -z + 3/2].

Crystal data

C13H9ClN2O3 Dx = 1.574 Mg m3
Mr = 276.67 Melting point: 399(1) K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.6300 (9) Å Cell parameters from 10366 reflections
b = 14.1462 (12) Å θ = 3.3–27.0°
c = 6.7797 (6) Å µ = 0.33 mm1
β = 105.475 (7)° T = 123 K
V = 1167.39 (17) Å3 Needle, yellow
Z = 4 0.40 × 0.08 × 0.05 mm
F(000) = 568

Data collection

Oxford Diffraction Gemini S diffractometer 10366 independent reflections
Radiation source: fine-focus sealed tube 7015 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
ω scans θmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −17→17
Tmin = 0.839, Tmax = 1.000 k = −17→17
10366 measured reflections l = −9→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0657P)2] where P = (Fo2 + 2Fc2)/3
10367 reflections (Δ/σ)max < 0.001
177 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Experimental. IR spectra was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. IR (KBr), cm-1, 3348 (amide N–H); 1684 (amide, C=O); 1499 and 1342 (-NO2)Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.34.46 (release 25-11-2010 CrysAlis171 .NET) (compiled Nov 25 2010,17:55:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.13525 (11) 0.17880 (10) 0.1877 (3) 0.0345 (4)
O1 0.3249 (3) 0.3758 (3) 0.5550 (7) 0.0413 (11)
O2 0.2403 (3) 0.0390 (3) 0.4902 (6) 0.0417 (12)
O3 0.3446 (4) −0.0604 (3) 0.6933 (7) 0.0467 (13)
N1 0.2996 (4) 0.2164 (3) 0.5084 (7) 0.0270 (11)
N2 0.3297 (4) 0.0170 (4) 0.6117 (7) 0.0306 (12)
C3 −0.0406 (4) 0.2702 (4) 0.2478 (9) 0.0246 (12)
C2 0.0686 (4) 0.2489 (4) 0.3410 (8) 0.0266 (14)
H2 0.0914 0.1852 0.3698 0.032*
C1 0.1440 (5) 0.3226 (4) 0.3914 (8) 0.0263 (13)
C6 0.1099 (5) 0.4148 (4) 0.3463 (9) 0.0344 (16)
H6 0.1616 0.4650 0.3786 0.041*
C5 −0.0006 (5) 0.4342 (4) 0.2534 (10) 0.0384 (15)
H5 −0.0242 0.4977 0.2241 0.046*
C4 −0.0754 (5) 0.3611 (4) 0.2040 (10) 0.0337 (14)
H4 −0.1505 0.3739 0.1401 0.040*
C7 0.2650 (5) 0.3091 (4) 0.4934 (8) 0.0264 (13)
C8 0.4049 (5) 0.1813 (4) 0.6035 (8) 0.0250 (13)
C9 0.4207 (4) 0.0857 (4) 0.6545 (8) 0.0262 (13)
C10 0.5238 (5) 0.0478 (4) 0.7497 (8) 0.0313 (14)
H10 0.5320 −0.0174 0.7838 0.038*
C11 0.6131 (5) 0.1073 (5) 0.7928 (9) 0.0346 (15)
H11 0.6841 0.0831 0.8575 0.042*
C12 0.6003 (5) 0.2006 (4) 0.7434 (8) 0.0339 (15)
H12 0.6630 0.2406 0.7739 0.041*
C13 0.4981 (4) 0.2388 (4) 0.6497 (8) 0.0298 (14)
H13 0.4916 0.3041 0.6167 0.036*
H1N 0.253 (6) 0.161 (5) 0.460 (10) 0.07 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0180 (6) 0.0357 (8) 0.0445 (8) −0.0025 (6) −0.0009 (8) −0.0003 (8)
O1 0.023 (2) 0.030 (3) 0.064 (3) −0.001 (2) −0.001 (2) −0.002 (2)
O2 0.021 (2) 0.035 (3) 0.061 (3) −0.0019 (19) −0.004 (2) 0.001 (2)
O3 0.034 (3) 0.028 (3) 0.072 (3) −0.002 (2) 0.003 (2) 0.012 (2)
N1 0.017 (2) 0.028 (3) 0.032 (3) −0.002 (2) −0.002 (2) 0.000 (2)
N2 0.017 (3) 0.032 (3) 0.041 (3) −0.002 (2) 0.006 (2) −0.001 (2)
C3 0.018 (3) 0.028 (3) 0.028 (3) −0.001 (2) 0.005 (3) −0.002 (3)
C2 0.018 (3) 0.030 (3) 0.031 (3) 0.001 (3) 0.004 (2) 0.003 (2)
C1 0.019 (3) 0.031 (4) 0.028 (3) 0.000 (3) 0.005 (2) 0.003 (2)
C6 0.023 (3) 0.028 (4) 0.048 (4) −0.001 (3) 0.002 (3) −0.001 (3)
C5 0.024 (3) 0.033 (4) 0.053 (4) 0.007 (2) 0.000 (4) 0.009 (4)
C4 0.022 (3) 0.039 (4) 0.039 (3) 0.007 (3) 0.005 (3) 0.005 (3)
C7 0.022 (3) 0.027 (3) 0.027 (3) −0.002 (3) 0.001 (2) 0.003 (3)
C8 0.016 (3) 0.031 (4) 0.025 (3) 0.001 (3) 0.001 (2) 0.000 (3)
C9 0.015 (3) 0.029 (3) 0.032 (3) −0.004 (2) 0.003 (2) −0.001 (3)
C10 0.023 (3) 0.029 (4) 0.040 (4) 0.001 (3) 0.005 (3) 0.003 (3)
C11 0.018 (3) 0.043 (4) 0.041 (4) −0.002 (3) 0.003 (3) −0.002 (3)
C12 0.017 (3) 0.042 (4) 0.040 (4) −0.004 (3) 0.005 (3) −0.004 (3)
C13 0.022 (3) 0.028 (3) 0.038 (3) 0.002 (3) 0.005 (3) 0.002 (3)

Geometric parameters (Å, º)

Cl1—C3 1.735 (5) C6—H6 0.9500
O1—C7 1.212 (6) C5—C4 1.381 (7)
O2—N2 1.247 (5) C5—H5 0.9500
O3—N2 1.219 (6) C4—H4 0.9500
N1—C7 1.376 (7) C8—C9 1.396 (7)
N1—C8 1.405 (7) C8—C13 1.397 (7)
N1—H1N 0.98 (7) C9—C10 1.397 (8)
N2—C9 1.474 (7) C10—C11 1.374 (8)
C3—C4 1.365 (7) C10—H10 0.9500
C3—C2 1.388 (7) C11—C12 1.360 (8)
C2—C1 1.392 (7) C11—H11 0.9500
C2—H2 0.9500 C12—C13 1.387 (7)
C1—C6 1.382 (7) C12—H12 0.9500
C1—C7 1.513 (8) C13—H13 0.9500
C6—C5 1.396 (7)
C7—N1—C8 127.8 (5) C5—C4—H4 120.2
C7—N1—H1N 126 (4) O1—C7—N1 124.1 (5)
C8—N1—H1N 106 (4) O1—C7—C1 121.3 (5)
O3—N2—O2 121.9 (5) N1—C7—C1 114.6 (5)
O3—N2—C9 119.0 (5) C9—C8—C13 116.8 (5)
O2—N2—C9 119.1 (5) C9—C8—N1 120.8 (5)
C4—C3—C2 121.8 (5) C13—C8—N1 122.4 (5)
C4—C3—Cl1 119.3 (4) C8—C9—C10 122.7 (5)
C2—C3—Cl1 118.9 (4) C8—C9—N2 122.5 (5)
C3—C2—C1 118.7 (5) C10—C9—N2 114.8 (5)
C3—C2—H2 120.6 C11—C10—C9 118.3 (6)
C1—C2—H2 120.6 C11—C10—H10 120.9
C6—C1—C2 120.0 (5) C9—C10—H10 120.9
C6—C1—C7 116.0 (5) C12—C11—C10 120.3 (6)
C2—C1—C7 124.0 (5) C12—C11—H11 119.8
C1—C6—C5 120.0 (6) C10—C11—H11 119.8
C1—C6—H6 120.0 C11—C12—C13 121.7 (6)
C5—C6—H6 120.0 C11—C12—H12 119.2
C4—C5—C6 119.9 (6) C13—C12—H12 119.2
C4—C5—H5 120.0 C12—C13—C8 120.1 (5)
C6—C5—H5 120.0 C12—C13—H13 119.9
C3—C4—C5 119.5 (5) C8—C13—H13 119.9
C3—C4—H4 120.2
O2—O2—N2—O3 0.0 (3) C7—N1—C8—C13 −18.1 (9)
O2—O2—N2—C9 0.0 (6) C13—C8—C9—C10 0.9 (9)
C4—C3—C2—C1 0.2 (9) N1—C8—C9—C10 −179.8 (5)
Cl1—C3—C2—C1 −179.1 (4) C13—C8—C9—N2 −179.1 (5)
C3—C2—C1—C6 −0.8 (8) N1—C8—C9—N2 0.2 (8)
C3—C2—C1—C7 179.9 (5) O3—N2—C9—C8 −166.2 (6)
C2—C1—C6—C5 1.1 (9) O2—N2—C9—C8 15.1 (8)
C7—C1—C6—C5 −179.6 (5) O2—N2—C9—C8 15.1 (8)
C1—C6—C5—C4 −0.9 (10) O3—N2—C9—C10 13.8 (7)
C2—C3—C4—C5 0.0 (10) O2—N2—C9—C10 −164.8 (5)
Cl1—C3—C4—C5 179.3 (5) O2—N2—C9—C10 −164.8 (5)
C6—C5—C4—C3 0.3 (10) C8—C9—C10—C11 −0.6 (9)
C8—N1—C7—O1 3.7 (10) N2—C9—C10—C11 179.4 (5)
C8—N1—C7—C1 −176.5 (5) C9—C10—C11—C12 0.0 (9)
C6—C1—C7—O1 9.1 (8) C10—C11—C12—C13 0.2 (9)
C2—C1—C7—O1 −171.5 (6) C11—C12—C13—C8 0.1 (9)
C6—C1—C7—N1 −170.6 (5) C9—C8—C13—C12 −0.6 (8)
C2—C1—C7—N1 8.7 (8) N1—C8—C13—C12 −179.9 (5)
C7—N1—C8—C9 162.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2 0.98 (7) 1.75 (7) 2.612 (6) 144 (6)
C10—H10···O1i 0.95 2.39 3.158 (7) 138

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7476).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  4. Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596.
  5. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  7. Vener, M. V., Shishkina, A. V., Rykounov, A. A. & Tsirelson, V. G. (2013). J. Phys. Chem. A, 117, 8459–8467. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015014620/hb7476sup1.cif

e-71-0o674-sup1.cif (711KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014620/hb7476Isup2.hkl

e-71-0o674-Isup2.hkl (822.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014620/hb7476Isup3.cml

. DOI: 10.1107/S2056989015014620/hb7476fig1.tif

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

x y z . DOI: 10.1107/S2056989015014620/hb7476fig2.tif

Part of the crystal structure of (I), showing the formation of C(7) chains along [010] [Symmetry code: (i) −x + 1, y − Inline graphic, −z + Inline graphic].

CCDC reference: 1416793

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES