Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 6;71(Pt 9):o650–o651. doi: 10.1107/S2056989015014450

Crystal structure of 3-amino-2-ethyl­quinazolin-4(3H)-one

Gamal A El-Hiti a,*, Keith Smith b, Amany S Hegazy b, Mohammed Baashen c, Benson M Kariuki b,
PMCID: PMC4555403  PMID: 26396885

Abstract

The mol­ecule of the title compound, C10H11N3O, is planar, including the ethyl group, as indicated by the N—C—C—C torsion angle of 1.5 (2)°. In the crystal, inversion-related mol­ecules are stacked along the a axis. Mol­ecules are oriented head-to-tail and display π–π inter­actions with a centroid-to-centroid distance of 3.6664 (8) Å. N—H⋯O hydrogen bonds between mol­ecules generate a ‘step’ structure through formation of an R 2 2(10) ring.

Keywords: crystal structure, 3-amino-2-ethyl­quinazolin-4(3H)-one, π–π inter­actions

Related literature  

For related compounds, see: Ma et al. (2013); Adib et al. (2012); Xu et al. (2012); Sasmal et al. (2012); Kumar et al. (2011); Rohini et al. (2010); Davies et al. (2010). For quinazolin-4(3H)-one ring-system modification through li­thia­tion, see: Smith et al. (2004, 1996, 1995). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).graphic file with name e-71-0o650-scheme1.jpg

Experimental  

Crystal data  

  • C10H11N3O

  • M r = 189.22

  • Triclinic, Inline graphic

  • a = 7.0230 (5) Å

  • b = 7.6198 (7) Å

  • c = 9.7868 (6) Å

  • α = 69.709 (7)°

  • β = 89.242 (5)°

  • γ = 75.191 (7)°

  • V = 473.27 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.08 mm

Data collection  

  • Agilent SuperNova Dual Source diffractometer with an Atlas detector

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2014) T min = 0.741, T max = 0.924

  • 3303 measured reflections

  • 1858 independent reflections

  • 1657 reflections with I > 2σ(I)

  • R int = 0.015

  • Standard reflections: 0

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.196

  • S = 1.07

  • 1858 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015014450/hg5454sup1.cif

e-71-0o650-sup1.cif (126.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014450/hg5454Isup2.hkl

e-71-0o650-Isup2.hkl (102.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014450/hg5454Isup3.cml

10 11 3 . DOI: 10.1107/S2056989015014450/hg5454fig1.tif

The asymmetric unit of C10H11N3O, with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

. DOI: 10.1107/S2056989015014450/hg5454fig2.tif

Crystal packing with hydrogen-bonding contacts shown as dotted lines.

CCDC reference: 1416070

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H3AO1i 0.91(2) 2.12(2) 2.974(2) 157.1(19)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

supplementary crystallographic information

S1. Introduction

Quinazolines have various inter­esting biological applications (Sasmal et al., 2012; Rohini et al., 2010). Quinazolin-4(3H)-ones synthesis involves use of various synthetic procedures. The most common starting materials are 2-amino­benzo­nitrile (Ma et al., 2013), 2-bromo­benzamides (Xu et al., 2012), isatoic anhydride (Adib et al., 2012), anthranilic acid (Kumar et al., 2011), methyl 2-amino­benzoate (Davies et al., 2010). Li­thia­tion of 2-n-alkyl- and 2-unsubstituted 3-acyl­amino­quinazolin-4(3H)-ones with a lithium reagent in tetra­hydro­furan at a low temperature followed by reactions of various electrophiles with the lithium reagents produced in-situ gave the corresponding 2-substituted derivatives in good to excellent yields (Smith et al., 2004, 1996, 1995). For the X-ray structures for related compounds, see: El-Hiti et al. (2014); Yang et al. (2009); Coogan et al. (1999).

S2. Experimental

S2.1. Synthesis and crystallization

A mixture of methyl 2-amino­benzoate and propionic anhydride (1.4 mole equivalents) was heated for 30 minutes at 105 °C. The mixture was cooled to 75 °C and diluted with ethanol (50 mL). Hydrazine monohydrate (10 mole equivalents) was added in a dropwise manner over 10 minutes and the mixture was refluxed for 1 h. The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue obtained was purified by column chromatography (silica gel hexane/di­ethyl ether in 4:1 by volume) to give 3-amino-2-ethyl­quinazolin-4(3H)-one in 82% yield (Davies et al., 2010). Crystallization from a mixture of ethyl acetate and di­ethyl ether (1:2 by volume) gave colourless crystals of the title compound. The spectroscopic data for the title compound were identical with those reported (Davies et al., 2010).

S2.2. Refinement

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. The amide hydrogen atoms were located in the difference Fourier map and refined freely.

S3. Results and discussion

The asymmetric unit comprises a molecule of C10H11N3O (Fig. 1). The molecule is planar, including the ethyl group as indicated by the N2—C1—C9—C10 torsion angle of 1.5 (2)°. Inversion related molecules are stacked along the a axis (Fig. 2). Molecules (x,y,z) and (1-x, -y,1-z) are oriented head-to-tail and display π - π inter­action with a centroid to centroid distance of 3.66 (2)Å. N—H···O hydrogen bonds between molecules (x,y,z) and (-x,-y+1, -z+1) generate a 'step' structure through formation of a R22(10) ring.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of C10H11N3O, with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

Fig. 2.

Fig. 2.

Crystal packing with hydrogen-bonding contacts shown as dotted lines.

Crystal data

C10H11N3O F(000) = 200
Mr = 189.22 Dx = 1.328 Mg m3
Triclinic, P1 Melting point: 398 K
a = 7.0230 (5) Å Cu Kα radiation, λ = 1.54184 Å
b = 7.6198 (7) Å Cell parameters from 1907 reflections
c = 9.7868 (6) Å θ = 6.5–73.7°
α = 69.709 (7)° µ = 0.73 mm1
β = 89.242 (5)° T = 293 K
γ = 75.191 (7)° Block, colourless
V = 473.27 (7) Å3 0.38 × 0.20 × 0.08 mm
Z = 2

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector 1657 reflections with I > 2σ(I)
ω scans Rint = 0.015
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) θmax = 73.9°, θmin = 6.5°
Tmin = 0.741, Tmax = 0.924 h = −8→8
3303 measured reflections k = −9→8
1858 independent reflections l = −10→12

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.1458P)2 + 0.021P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1858 reflections Δρmax = 0.35 e Å3
136 parameters Δρmin = −0.22 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.26318 (18) −0.0469 (2) 0.59059 (14) 0.0441 (4)
C2 0.18669 (19) 0.2641 (2) 0.38779 (16) 0.0485 (4)
C3 0.21085 (18) 0.1504 (2) 0.29325 (14) 0.0455 (4)
C4 0.25874 (19) −0.0513 (2) 0.35723 (14) 0.0453 (4)
C5 0.1873 (2) 0.2421 (3) 0.14073 (16) 0.0585 (4)
H5 0.1547 0.3768 0.0991 0.070*
C6 0.2123 (3) 0.1324 (3) 0.05335 (16) 0.0711 (5)
H6 0.1976 0.1923 −0.0478 0.085*
C7 0.2597 (3) −0.0691 (3) 0.11692 (19) 0.0738 (5)
H7 0.2761 −0.1428 0.0571 0.089*
C8 0.2829 (3) −0.1613 (2) 0.26567 (18) 0.0616 (5)
H8 0.3144 −0.2961 0.3059 0.074*
C9 0.2868 (2) −0.1443 (2) 0.75358 (14) 0.0541 (4)
H9A 0.1644 −0.0989 0.7931 0.065*
H9B 0.3894 −0.1063 0.7928 0.065*
C10 0.3393 (3) −0.3628 (3) 0.80379 (17) 0.0703 (5)
H10A 0.2385 −0.4018 0.7655 0.105*
H10B 0.3492 −0.4162 0.9087 0.105*
H10C 0.4636 −0.4096 0.7691 0.105*
N1 0.21763 (16) 0.15389 (17) 0.53566 (13) 0.0475 (4)
N2 0.28333 (17) −0.14907 (17) 0.50721 (12) 0.0479 (4)
N3 0.2043 (3) 0.2510 (2) 0.63756 (16) 0.0683 (5)
O1 0.14455 (19) 0.44171 (16) 0.34527 (14) 0.0704 (4)
H3A 0.080 (3) 0.329 (3) 0.630 (2) 0.079 (6)*
H3B 0.292 (4) 0.328 (5) 0.609 (3) 0.111 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0404 (6) 0.0519 (7) 0.0392 (7) −0.0129 (5) 0.0037 (5) −0.0148 (5)
C2 0.0494 (7) 0.0445 (7) 0.0510 (8) −0.0144 (5) 0.0072 (5) −0.0151 (6)
C3 0.0457 (7) 0.0494 (8) 0.0400 (7) −0.0154 (5) 0.0048 (5) −0.0122 (6)
C4 0.0494 (7) 0.0498 (7) 0.0403 (7) −0.0174 (5) 0.0067 (5) −0.0173 (6)
C5 0.0588 (8) 0.0659 (9) 0.0424 (8) −0.0201 (7) 0.0043 (6) −0.0066 (6)
C6 0.0789 (11) 0.0986 (14) 0.0375 (7) −0.0316 (10) 0.0073 (7) −0.0206 (8)
C7 0.0926 (12) 0.0963 (13) 0.0520 (9) −0.0368 (10) 0.0153 (8) −0.0421 (9)
C8 0.0781 (10) 0.0627 (9) 0.0559 (9) −0.0253 (8) 0.0121 (7) −0.0312 (7)
C9 0.0482 (7) 0.0729 (9) 0.0367 (7) −0.0158 (6) 0.0031 (5) −0.0142 (6)
C10 0.0729 (10) 0.0711 (10) 0.0464 (8) −0.0147 (8) −0.0002 (7) 0.0010 (7)
N1 0.0511 (6) 0.0505 (7) 0.0451 (7) −0.0128 (5) 0.0045 (4) −0.0227 (5)
N2 0.0556 (7) 0.0458 (6) 0.0408 (7) −0.0147 (5) 0.0055 (5) −0.0129 (5)
N3 0.0801 (10) 0.0733 (9) 0.0628 (9) −0.0136 (8) 0.0049 (7) −0.0428 (7)
O1 0.0890 (8) 0.0436 (6) 0.0744 (8) −0.0149 (5) 0.0118 (6) −0.0182 (5)

Geometric parameters (Å, º)

C1—N2 1.2937 (19) C6—H6 0.9300
C1—N1 1.3840 (19) C7—C8 1.370 (2)
C1—C9 1.4986 (18) C7—H7 0.9300
C2—O1 1.2245 (18) C8—H8 0.9300
C2—N1 1.3853 (19) C9—C10 1.508 (2)
C2—C3 1.453 (2) C9—H9A 0.9700
C3—C4 1.394 (2) C9—H9B 0.9700
C3—C5 1.4027 (19) C10—H10A 0.9600
C4—N2 1.3862 (18) C10—H10B 0.9600
C4—C8 1.406 (2) C10—H10C 0.9600
C5—C6 1.370 (3) N1—N3 1.4227 (16)
C5—H5 0.9300 N3—H3A 0.91 (2)
C6—C7 1.392 (3) N3—H3B 0.93 (3)
N2—C1—N1 122.58 (12) C7—C8—H8 120.1
N2—C1—C9 120.35 (13) C4—C8—H8 120.1
N1—C1—C9 117.07 (12) C1—C9—C10 113.52 (13)
O1—C2—N1 120.90 (14) C1—C9—H9A 108.9
O1—C2—C3 124.96 (14) C10—C9—H9A 108.9
N1—C2—C3 114.14 (12) C1—C9—H9B 108.9
C4—C3—C5 120.75 (14) C10—C9—H9B 108.9
C4—C3—C2 118.64 (13) H9A—C9—H9B 107.7
C5—C3—C2 120.61 (14) C9—C10—H10A 109.5
N2—C4—C3 123.07 (12) C9—C10—H10B 109.5
N2—C4—C8 118.33 (13) H10A—C10—H10B 109.5
C3—C4—C8 118.60 (14) C9—C10—H10C 109.5
C6—C5—C3 119.79 (16) H10A—C10—H10C 109.5
C6—C5—H5 120.1 H10B—C10—H10C 109.5
C3—C5—H5 120.1 C1—N1—C2 123.65 (12)
C5—C6—C7 119.60 (14) C1—N1—N3 117.72 (12)
C5—C6—H6 120.2 C2—N1—N3 118.63 (13)
C7—C6—H6 120.2 C1—N2—C4 117.90 (12)
C8—C7—C6 121.48 (16) N1—N3—H3A 110.0 (14)
C8—C7—H7 119.3 N1—N3—H3B 104.8 (18)
C6—C7—H7 119.3 H3A—N3—H3B 109 (2)
C7—C8—C4 119.78 (16)
O1—C2—C3—C4 −179.89 (12) N2—C1—C9—C10 1.5 (2)
N1—C2—C3—C4 0.7 (2) N1—C1—C9—C10 −179.13 (11)
O1—C2—C3—C5 0.4 (2) N2—C1—N1—C2 0.9 (2)
N1—C2—C3—C5 −178.98 (10) C9—C1—N1—C2 −178.40 (10)
C5—C3—C4—N2 −179.87 (11) N2—C1—N1—N3 −178.35 (11)
C2—C3—C4—N2 0.4 (2) C9—C1—N1—N3 2.30 (19)
C5—C3—C4—C8 0.0 (2) O1—C2—N1—C1 179.18 (12)
C2—C3—C4—C8 −179.75 (11) C3—C2—N1—C1 −1.4 (2)
C4—C3—C5—C6 −0.3 (2) O1—C2—N1—N3 −1.5 (2)
C2—C3—C5—C6 179.44 (12) C3—C2—N1—N3 177.87 (11)
C3—C5—C6—C7 0.4 (3) N1—C1—N2—C4 0.3 (2)
C5—C6—C7—C8 −0.2 (3) C9—C1—N2—C4 179.64 (10)
C6—C7—C8—C4 −0.1 (3) C3—C4—N2—C1 −1.0 (2)
N2—C4—C8—C7 −179.95 (14) C8—C4—N2—C1 179.19 (11)
C3—C4—C8—C7 0.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1i 0.91 (2) 2.12 (2) 2.974 (2) 157.1 (19)

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5454).

References

  1. Adib, M., Sheikhi, E. & Bijanzadeh, H. R. (2012). Synlett, pp. 85–88.
  2. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  3. Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  4. Coogan, M. P., Smart, E. & Hibbs, D. E. (1999). Chem. Commun. pp. 1991–1992.
  5. Davies, S. G., Ling, K. B., Roberts, P. M., Russell, A. J., Thomson, J. E. & Woods, P. A. (2010). Tetrahedron, 66, 6806–6813.
  6. El-Hiti, G. A., Smith, K., Hegazy, A. S., Jones, D. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o467. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Kumar, P., Shrivastava, B., Pandeya, S. N. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 1006–1018. [DOI] [PubMed]
  9. Ma, J., Han, B., Song, J., Hu, J., Lu, W., Yang, D., Zhang, Z., Jiang, T. & Hou, M. (2013). Green Chem. 15, 1485–1489.
  10. Rohini, R., Reddy, P. M., Shanker, K., Hu, A. & Ravinder, V. (2010). Eur. J. Med. Chem. 45, 1200–1205. [DOI] [PubMed]
  11. Sasmal, S., Balaji, G., Reddy, H. R. K., Balasubrahmanyam, D., Srinivas, G., Kyasa, S., Sasmal, P. K., Khanna, I., Talwar, R., Suresh, J., Jadhav, V. P., Muzeeb, S., Shashikumar, D., Reddy, K. H., Sebastian, V. J., Frimurer, T. M., Rist, Ø., Elster, L. & Högberg, T. (2012). Bioorg. Med. Chem. Lett. 22, 3157–3162. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121–2130.
  15. Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996). J. Org. Chem. 61, 647–655. [DOI] [PubMed]
  16. Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029–1033.
  17. Xu, L., Jiang, Y. & Ma, D. (2012). Org. Lett. 14, 1150–1153. [DOI] [PubMed]
  18. Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015014450/hg5454sup1.cif

e-71-0o650-sup1.cif (126.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014450/hg5454Isup2.hkl

e-71-0o650-Isup2.hkl (102.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014450/hg5454Isup3.cml

10 11 3 . DOI: 10.1107/S2056989015014450/hg5454fig1.tif

The asymmetric unit of C10H11N3O, with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

. DOI: 10.1107/S2056989015014450/hg5454fig2.tif

Crystal packing with hydrogen-bonding contacts shown as dotted lines.

CCDC reference: 1416070

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES