Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 22;71(Pt 9):o669. doi: 10.1107/S2056989015014905

Crystal structure of ethyl 4-(2-chloro­phen­yl)-2-methyl-4H-pyrimido[2,1-b][1,3]benzo­thia­zole-3-carboxyl­ate

Balbir Kumar a, Manmeet Kour b, Satya Paul b, Rajni Kant a, Vivek K Gupta a,*
PMCID: PMC4555405  PMID: 26396895

Abstract

In the title compound, C20H17ClN2O2S, the dihedral angle between the planes of the benzo­thia­zole fused ring system (r.m.s. deviation = 0.024 Å) and the chloro­benzene ring is 89.62 (12)°. The ester C—O—C—C side chain has an anti orientation [torsion angle = −155.2 (3)°]. In the crystal, weak aromatic π–π stacking inter­actions are observed between the phenyl and pyrimidine rings [centroid–centroid seperation = 3.666 (2) Å].

Keywords: crystal structure; pyrimido[2,1-b][1,3]benzo­thia­zole; ester; biological activity

Related literature  

For biological activities of benzo­thia­zoles, see: Landreau et al. (2002); Russo et al. (1985). For a related structure, see: Sankar et al. (2015).graphic file with name e-71-0o669-scheme1.jpg

Experimental  

Crystal data  

  • C20H17ClN2O2S

  • M r = 384.87

  • Triclinic, Inline graphic

  • a = 8.9049 (8) Å

  • b = 8.9275 (10) Å

  • c = 12.3564 (11) Å

  • α = 88.434 (8)°

  • β = 83.536 (7)°

  • γ = 66.201 (10)°

  • V = 892.90 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.880, T max = 1.000

  • 6440 measured reflections

  • 3477 independent reflections

  • 2275 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.142

  • S = 1.03

  • 3477 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015014905/hb7475sup1.cif

e-71-0o669-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014905/hb7475Isup2.hkl

e-71-0o669-Isup2.hkl (167KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014905/hb7475Isup3.cml

ORTEP . DOI: 10.1107/S2056989015014905/hb7475fig1.tif

ORTEP view of the mol­ecule with displacement ellipsoids drawn at the 40% probability level.

a . DOI: 10.1107/S2056989015014905/hb7475fig2.tif

The packing arrangement of mol­ecules viewed down the a axis.

CCDC reference: 1406433

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RK acknowledges the Department of Science & Technology for single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

S1. Experimental

To a mixture of ethylacetoacetate (1.0 mmol, 0.13 g), 2-chlorobenzadehyde (1.0 mmol, 0.14 g) and 2-aminobenzothiazole (1.0 mmol, 0.152 g) in a round bottom flask (25 ml), C/TiO2·SO3·SbCl2 (0.1 g) was added and the reaction mixture was heated at 363 K under solvent-free conditions for 1 h. Hot ethanol (2 × 5 ml) was added to the reaction mixture and the catalyst was separated by simple filteration. Removal of the solvent under reduced pressure afforded the product, which was further crystallized from ethanol as yellow crystals (Yield: 88%).

S2. Refinement

All the H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.96 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with displacement ellipsoids drawn at the 40% probability level.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis.

Crystal data

C20H17ClN2O2S Z = 2
Mr = 384.87 F(000) = 400
Triclinic, P1 Dx = 1.431 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9049 (8) Å Cell parameters from 1737 reflections
b = 8.9275 (10) Å θ = 4.1–27.4°
c = 12.3564 (11) Å µ = 0.35 mm1
α = 88.434 (8)° T = 293 K
β = 83.536 (7)° Block, colourless
γ = 66.201 (10)° 0.30 × 0.20 × 0.20 mm
V = 892.90 (15) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3477 independent reflections
Radiation source: fine-focus sealed tube 2275 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.9°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −10→10
Tmin = 0.880, Tmax = 1.000 l = −9→15
6440 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.235P] where P = (Fo2 + 2Fc2)/3
3477 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S7 0.83804 (10) 0.01946 (11) 0.38623 (8) 0.0592 (3)
Cl1 0.02890 (10) 0.33670 (11) 0.39074 (8) 0.0648 (3)
N9 0.5363 (3) 0.0924 (2) 0.35456 (18) 0.0370 (6)
C25 0.1519 (4) 0.3941 (3) 0.2942 (2) 0.0431 (7)
C12 0.4497 (3) −0.0172 (3) 0.2052 (2) 0.0368 (7)
O16 0.1721 (3) 0.0825 (2) 0.17927 (17) 0.0531 (6)
N10 0.7388 (3) −0.0979 (3) 0.2270 (2) 0.0503 (7)
C21 0.4011 (4) 0.3408 (3) 0.1786 (2) 0.0445 (7)
H21 0.5087 0.2715 0.1531 0.053*
C8 0.6924 (3) −0.0008 (3) 0.3117 (2) 0.0427 (7)
C20 0.3121 (3) 0.2857 (3) 0.2573 (2) 0.0345 (6)
C15 0.3219 (4) −0.0328 (3) 0.1475 (2) 0.0446 (7)
O19 0.3434 (3) −0.1335 (3) 0.0766 (2) 0.0719 (7)
C13 0.3919 (3) 0.1118 (3) 0.2977 (2) 0.0341 (6)
H13 0.3110 0.0911 0.3495 0.041*
C1 0.5264 (3) 0.1829 (3) 0.4491 (2) 0.0370 (7)
C11 0.6124 (4) −0.1115 (3) 0.1764 (2) 0.0443 (7)
C3 0.4058 (4) 0.3661 (4) 0.6003 (3) 0.0553 (9)
H3 0.3125 0.4372 0.6429 0.066*
C24 0.0834 (4) 0.5496 (4) 0.2540 (3) 0.0612 (10)
H24 −0.0238 0.6201 0.2795 0.073*
C2 0.3873 (4) 0.2860 (4) 0.5114 (2) 0.0473 (8)
H2 0.2829 0.3019 0.4944 0.057*
C17 0.0396 (4) 0.0912 (4) 0.1179 (3) 0.0608 (9)
H17A −0.0047 0.0128 0.1455 0.073*
H17B 0.0815 0.0642 0.0419 0.073*
C6 0.6823 (4) 0.1580 (3) 0.4765 (2) 0.0439 (7)
C14 0.6786 (4) −0.2416 (4) 0.0879 (3) 0.0640 (10)
H14A 0.6468 −0.3300 0.1087 0.096*
H14B 0.7969 −0.2819 0.0772 0.096*
H14C 0.6343 −0.1959 0.0214 0.096*
C5 0.6991 (4) 0.2383 (4) 0.5662 (3) 0.0561 (9)
H5 0.8031 0.2214 0.5845 0.067*
C4 0.5604 (4) 0.3422 (4) 0.6264 (3) 0.0601 (9)
H4 0.5697 0.3978 0.6861 0.072*
C23 0.1744 (5) 0.5998 (4) 0.1761 (3) 0.0675 (11)
H23 0.1283 0.7051 0.1491 0.081*
C18 −0.0923 (5) 0.2586 (5) 0.1279 (4) 0.0812 (12)
H18A −0.1419 0.2802 0.2021 0.122*
H18B −0.1747 0.2677 0.0813 0.122*
H18C −0.0457 0.3365 0.1069 0.122*
C22 0.3327 (5) 0.4969 (4) 0.1373 (3) 0.0594 (10)
H22 0.3932 0.5316 0.0839 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S7 0.0328 (4) 0.0641 (5) 0.0699 (6) −0.0056 (4) −0.0153 (4) −0.0055 (5)
Cl1 0.0374 (5) 0.0726 (6) 0.0751 (6) −0.0129 (4) −0.0018 (4) −0.0116 (5)
N9 0.0318 (13) 0.0316 (11) 0.0424 (14) −0.0058 (10) −0.0106 (11) 0.0003 (10)
C25 0.0382 (16) 0.0343 (14) 0.0534 (19) −0.0077 (13) −0.0169 (15) −0.0053 (13)
C12 0.0402 (16) 0.0244 (12) 0.0425 (16) −0.0089 (12) −0.0075 (14) −0.0002 (12)
O16 0.0401 (12) 0.0549 (12) 0.0632 (14) −0.0144 (10) −0.0165 (11) −0.0126 (11)
N10 0.0361 (14) 0.0421 (13) 0.0579 (17) −0.0002 (11) −0.0040 (13) −0.0080 (13)
C21 0.0514 (19) 0.0383 (15) 0.0456 (18) −0.0177 (14) −0.0141 (16) −0.0004 (13)
C8 0.0324 (16) 0.0349 (14) 0.0517 (18) −0.0028 (12) −0.0107 (14) 0.0046 (14)
C20 0.0341 (15) 0.0295 (13) 0.0395 (16) −0.0100 (12) −0.0131 (13) −0.0019 (12)
C15 0.0512 (19) 0.0349 (15) 0.0499 (18) −0.0189 (14) −0.0085 (16) 0.0017 (14)
O19 0.0711 (17) 0.0584 (14) 0.0851 (18) −0.0210 (13) −0.0161 (15) −0.0285 (13)
C13 0.0299 (14) 0.0297 (13) 0.0421 (16) −0.0097 (11) −0.0104 (13) 0.0026 (12)
C1 0.0351 (16) 0.0344 (14) 0.0413 (16) −0.0112 (12) −0.0152 (13) 0.0058 (13)
C11 0.0492 (18) 0.0291 (14) 0.0487 (18) −0.0092 (13) −0.0068 (15) −0.0011 (13)
C3 0.050 (2) 0.0590 (19) 0.0467 (19) −0.0105 (16) −0.0080 (16) −0.0088 (16)
C24 0.053 (2) 0.0373 (17) 0.081 (3) 0.0000 (16) −0.028 (2) −0.0075 (17)
C2 0.0403 (17) 0.0554 (18) 0.0430 (17) −0.0143 (15) −0.0111 (15) −0.0004 (15)
C17 0.052 (2) 0.068 (2) 0.074 (2) −0.0304 (18) −0.0224 (19) −0.0030 (18)
C6 0.0400 (17) 0.0410 (15) 0.0484 (18) −0.0121 (13) −0.0129 (15) 0.0037 (14)
C14 0.058 (2) 0.0497 (18) 0.068 (2) −0.0050 (17) −0.0011 (19) −0.0180 (18)
C5 0.048 (2) 0.064 (2) 0.060 (2) −0.0208 (17) −0.0246 (18) 0.0024 (18)
C4 0.065 (2) 0.066 (2) 0.053 (2) −0.0261 (19) −0.0207 (19) −0.0087 (18)
C23 0.087 (3) 0.0312 (16) 0.079 (3) −0.0107 (19) −0.042 (2) 0.0046 (18)
C18 0.064 (3) 0.082 (3) 0.098 (3) −0.022 (2) −0.043 (2) 0.008 (2)
C22 0.092 (3) 0.0491 (19) 0.051 (2) −0.039 (2) −0.021 (2) 0.0095 (16)

Geometric parameters (Å, º)

S7—C8 1.741 (3) C11—C14 1.505 (4)
S7—C6 1.744 (3) C3—C4 1.379 (4)
Cl1—C25 1.735 (3) C3—C2 1.388 (4)
N9—C8 1.353 (3) C3—H3 0.9300
N9—C1 1.413 (3) C24—C23 1.370 (5)
N9—C13 1.481 (3) C24—H24 0.9300
C25—C24 1.376 (4) C2—H2 0.9300
C25—C20 1.394 (4) C17—C18 1.479 (5)
C12—C11 1.360 (4) C17—H17A 0.9700
C12—C15 1.462 (4) C17—H17B 0.9700
C12—C13 1.536 (3) C6—C5 1.390 (4)
O16—C15 1.338 (3) C14—H14A 0.9600
O16—C17 1.448 (3) C14—H14B 0.9600
N10—C8 1.296 (4) C14—H14C 0.9600
N10—C11 1.394 (4) C5—C4 1.359 (4)
C21—C22 1.385 (4) C5—H5 0.9300
C21—C20 1.389 (4) C4—H4 0.9300
C21—H21 0.9300 C23—C22 1.374 (5)
C20—C13 1.521 (3) C23—H23 0.9300
C15—O19 1.216 (3) C18—H18A 0.9600
C13—H13 0.9800 C18—H18B 0.9600
C1—C2 1.370 (4) C18—H18C 0.9600
C1—C6 1.394 (4) C22—H22 0.9300
C8—S7—C6 91.01 (14) C23—C24—C25 119.5 (3)
C8—N9—C1 114.1 (2) C23—C24—H24 120.2
C8—N9—C13 121.6 (2) C25—C24—H24 120.2
C1—N9—C13 123.8 (2) C1—C2—C3 118.5 (3)
C24—C25—C20 121.5 (3) C1—C2—H2 120.7
C24—C25—Cl1 117.2 (3) C3—C2—H2 120.7
C20—C25—Cl1 121.3 (2) O16—C17—C18 109.4 (3)
C11—C12—C15 121.0 (2) O16—C17—H17A 109.8
C11—C12—C13 121.9 (2) C18—C17—H17A 109.8
C15—C12—C13 117.1 (2) O16—C17—H17B 109.8
C15—O16—C17 116.6 (2) C18—C17—H17B 109.8
C8—N10—C11 115.9 (2) H17A—C17—H17B 108.2
C22—C21—C20 121.3 (3) C5—C6—C1 120.7 (3)
C22—C21—H21 119.3 C5—C6—S7 128.0 (2)
C20—C21—H21 119.3 C1—C6—S7 111.2 (2)
N10—C8—N9 127.7 (3) C11—C14—H14A 109.5
N10—C8—S7 120.5 (2) C11—C14—H14B 109.5
N9—C8—S7 111.8 (2) H14A—C14—H14B 109.5
C21—C20—C25 117.5 (3) C11—C14—H14C 109.5
C21—C20—C13 119.1 (2) H14A—C14—H14C 109.5
C25—C20—C13 123.4 (3) H14B—C14—H14C 109.5
O19—C15—O16 121.7 (3) C4—C5—C6 118.6 (3)
O19—C15—C12 126.3 (3) C4—C5—H5 120.7
O16—C15—C12 112.0 (2) C6—C5—H5 120.7
N9—C13—C20 110.1 (2) C5—C4—C3 120.9 (3)
N9—C13—C12 108.4 (2) C5—C4—H4 119.6
C20—C13—C12 112.7 (2) C3—C4—H4 119.6
N9—C13—H13 108.5 C24—C23—C22 120.9 (3)
C20—C13—H13 108.5 C24—C23—H23 119.5
C12—C13—H13 108.5 C22—C23—H23 119.5
C2—C1—C6 120.2 (2) C17—C18—H18A 109.5
C2—C1—N9 128.0 (2) C17—C18—H18B 109.5
C6—C1—N9 111.9 (2) H18A—C18—H18B 109.5
C12—C11—N10 123.1 (2) C17—C18—H18C 109.5
C12—C11—C14 125.1 (3) H18A—C18—H18C 109.5
N10—C11—C14 111.8 (3) H18B—C18—H18C 109.5
C4—C3—C2 121.1 (3) C23—C22—C21 119.2 (4)
C4—C3—H3 119.5 C23—C22—H22 120.4
C2—C3—H3 119.5 C21—C22—H22 120.4
C11—N10—C8—N9 −2.2 (5) C15—C12—C13—C20 −65.5 (3)
C11—N10—C8—S7 176.9 (2) C8—N9—C1—C2 −179.2 (3)
C1—N9—C8—N10 178.7 (3) C13—N9—C1—C2 8.4 (4)
C13—N9—C8—N10 −8.7 (5) C8—N9—C1—C6 1.1 (3)
C1—N9—C8—S7 −0.4 (3) C13—N9—C1—C6 −171.3 (2)
C13—N9—C8—S7 172.18 (18) C15—C12—C11—N10 178.2 (3)
C6—S7—C8—N10 −179.5 (3) C13—C12—C11—N10 −0.7 (4)
C6—S7—C8—N9 −0.3 (2) C15—C12—C11—C14 −2.0 (5)
C22—C21—C20—C25 −0.7 (4) C13—C12—C11—C14 179.1 (3)
C22—C21—C20—C13 178.5 (2) C8—N10—C11—C12 6.8 (4)
C24—C25—C20—C21 0.4 (4) C8—N10—C11—C14 −173.1 (3)
Cl1—C25—C20—C21 178.98 (19) C20—C25—C24—C23 −0.2 (4)
C24—C25—C20—C13 −178.9 (2) Cl1—C25—C24—C23 −178.8 (2)
Cl1—C25—C20—C13 −0.3 (4) C6—C1—C2—C3 1.1 (4)
C17—O16—C15—O19 −5.8 (4) N9—C1—C2—C3 −178.6 (3)
C17—O16—C15—C12 172.5 (2) C4—C3—C2—C1 −0.5 (5)
C11—C12—C15—O19 5.4 (5) C15—O16—C17—C18 −155.2 (3)
C13—C12—C15—O19 −175.7 (3) C2—C1—C6—C5 −0.8 (4)
C11—C12—C15—O16 −172.8 (3) N9—C1—C6—C5 179.0 (3)
C13—C12—C15—O16 6.1 (4) C2—C1—C6—S7 179.0 (2)
C8—N9—C13—C20 −110.7 (3) N9—C1—C6—S7 −1.3 (3)
C1—N9—C13—C20 61.2 (3) C8—S7—C6—C5 −179.4 (3)
C8—N9—C13—C12 12.9 (3) C8—S7—C6—C1 0.9 (2)
C1—N9—C13—C12 −175.2 (2) C1—C6—C5—C4 −0.2 (5)
C21—C20—C13—N9 64.4 (3) S7—C6—C5—C4 −179.9 (3)
C25—C20—C13—N9 −116.4 (3) C6—C5—C4—C3 0.8 (5)
C21—C20—C13—C12 −56.7 (3) C2—C3—C4—C5 −0.5 (5)
C25—C20—C13—C12 122.5 (3) C25—C24—C23—C22 0.3 (5)
C11—C12—C13—N9 −8.7 (4) C24—C23—C22—C21 −0.6 (5)
C15—C12—C13—N9 172.4 (2) C20—C21—C22—C23 0.9 (4)
C11—C12—C13—C20 113.4 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7475).

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Landreau, C., Denaud, D., Elvain, M., Reliquet, A. & Meblic, J. C. (2002). J. Chem Soc. Perkin Trans. 1, pp. 741–745.
  3. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  4. Russo, F., Santagati, A. & Santagati, M. (1985). J. Heterocycl. Chem. 22, 297–299.
  5. Sankar, T., Naveen, S., Lokanath, N. K. & Gunasekaran, K. (2015). Acta Cryst. E71, o306–o307. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015014905/hb7475sup1.cif

e-71-0o669-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014905/hb7475Isup2.hkl

e-71-0o669-Isup2.hkl (167KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014905/hb7475Isup3.cml

ORTEP . DOI: 10.1107/S2056989015014905/hb7475fig1.tif

ORTEP view of the mol­ecule with displacement ellipsoids drawn at the 40% probability level.

a . DOI: 10.1107/S2056989015014905/hb7475fig2.tif

The packing arrangement of mol­ecules viewed down the a axis.

CCDC reference: 1406433

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES