Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 26;71(Pt 9):1077–1080. doi: 10.1107/S2056989015015601

Crystal structure of aqua-1κO-{μ-2-[(2-hydroxy­ethyl)methylamino]ethanolato-2:1κ4 O 1,N,O 2:O 1}[μ-2,2′-(methylimino)diethanolato-1:2κ4 O,N,O′:O]dithiocyanato-1κN,2κN-chromium(III)copper(II)

Julia A Rusanova a,*, Valentina V Semenaka a, Viktoriya V Dyakonenko b, Oleg V Shishkin b
PMCID: PMC4555407  PMID: 26396853

[Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methyldi­ethano­lamine) is formed as a neutral heterometal CuII/CrIII complex whose mol­ecular structure is based on a binuclear {CuCr(μ-O)2} core. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis.

Keywords: crystal structure, N-methyldi­ethano­lamine, heterometal CuII/CrIII complex

Abstract

The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal CuII/CrIII complex. The mol­ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio­cyanato ligands. The CuII ion adopts a distorted square-pyramidal coordination while the CrIII ion has a distorted octa­hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two –CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).

Chemical context  

The search for heterometallic complexes has been stimulated by the general inter­est in combining different metal atoms within one assembly, since even the synthesis of such complexes often represents a non-trivial task. In addition, it was found that such compounds are potential novel magnetic materials (Gheorghe et al., 2010; Long et al., 2010; Visinescu et al., 2009; Amiri et al., 2010; Timco et al., 2008). Polydentate alkoxido ligands possessing versatile bridging modes were recognized as promising reagents for the synthesis of new heterometallic complexes. In particular di­ethano­lamine and its N-alkyl derivatives are recognized N,O ligands that possess an inter­esting coordination chemistry and are thus often used for the design of various multimetallic cores and polymeric assemblies (Allen, 2002; Singh & Mehrotra, 2004; Verkade, 1993; Stamatatos et al., 2008; Beedle et al., 2008; Kirillov et al., 2008). Great inter­est in the synthesis and investigation of polynuclear chromium containing compounds dates from the late 90s, mostly due to the works of Winpenny and co-workers devoted to magnetic studies of high-nuclear cages and wheels (McInnes et al., 2005; Affronte et al., 2005). As has been shown in our previous publications, the synthetic approach named ‘direct synthesis of coordination compounds’ [Pryma et al., 2003; Nesterov et al., 2011, 2012; Nesterova (Pryma) et al., 2004; Nesterova et al. 2005; Buvaylo et al., 2005] is an efficient method to obtain novel heterobi- (Buvaylo et al., 2005), heterotrimetallic (Nesterov et al., 2011), polymeric [Nesterova (Pryma) et al., 2004; Nesterova et al., 2005, 2008] and polynuclear (Nesterov et al., 2012) complexes. In a continuation of our investigations in the field of the ammonium salt route for direct synthesis (Pryma et al., 2003; Nikitina et al., 2008) the title compound [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O] (where mdeaH2 is N-methylethanolamine) was prepared using copper powder, Reineckes salt, ammonium thio­cyanate and a non-aqueous solution of mdeaH2 in air.graphic file with name e-71-01077-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title complex (Fig. 1) is based on a binuclear {CuCr(μ-O)2} core. Each ligand (protonated and deprotonated) displays tridentate coordination by N and O atoms to a specific metal atom as well by a bridging O atom to the neighbouring metal atom. Thus the CuII ion is penta­coordinated by the μ-oxygen (O1, O3) atoms of the proton­ated and deprotonated ligands, the N3 amino nitro­gen atom of the mdea ligand and atom N1 of the ­thio­cyanato ligand in the basal plane, and by the remaining oxygen atom (O4) of the Hmdea ligand in the apical site, and displays a distorted square-pyramidal coordination geometry. The apical oxygen atom is bound through the Cu1—O4 [2.259 (4) Å] bond, which is typically elongated in comparison to those in basal sites, i.e. Cu1—O1 [1.994 (3) Å] and Cu1—O3 [1.909 (4) Å]. The coordination environment of the CrIII atom is completed in a distorted octa­hedral geometry by the additional coordination of atom O5 of the water mol­ecule in an axial position trans to the N4 amino nitro­gen atom of the ligand. The Cr—(O,N) bond lengths are within the range 1.912 (4)–2.118 (5) Å.

Figure 1.

Figure 1

The mol­ecular structure of the title complex with 30% probability displacement ellipsoids

The binding of each mdea ligand involves two five-membered M–N–C–C–O chelate rings (M = Cu, Cr). The angles N3—Cu1—O4 and N3—Cu1—O3 are 82.2 (2) and 84.0 (2)° respectively. The analogous N4—Cr1—O1 and N4—Cr1—O2 angles are 84.2 (2) and 82.9 (2)°, respectively.

The Cu1–O1–Cr1–O3 core is non-planar, and has both atoms O1 and O3 shifted opposite to the direction of apical oxygen O5 atom of the water mol­ecule. In this core, the Cu1⋯Cr1 separation is 2.998 (1) Å. The representative Cu1—O1—Cr1 and Cu1—O3—Cr1 bond angles are 97.8 (1) and 101.5 (2)° respectively, while the O1—Cr1—O3 and O1—Cu1—O3 bond angles are 78.6 (2) and 79.6 (1)°. The dihedral angle between two Cu–O–Cr planes is 18.49 (15)°.

In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related amino­alcohol complexes (Figiel et al., 2010; Kirillov et al., 2008; Gruenwald et al., 2009; Vinogradova et al., 2002).

Supra­molecular features  

In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds (Table 1) to form inversion dimers (Fig. 2), which are arranged in columns parallel to the a axis (Fig. 3).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O4H4O2i 0.86 1.86 2.595(7) 142
O5H5BO1i 0.86 2.18 3.014(7) 162

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

An inversion dimer of title compound connected via two pairs of O—H⋯O hydrogen bonds (dashed lines). [Symmetry code: (A) −x, −y, -z.]

Figure 3.

Figure 3

Crystal packing of the title compound viewed along the a axis.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom & Allen, 2014) for related complexes with N-methyldi­ethano­lamine gave 109 hits. Therein closely related structures with a metal–O–metal–O core are heteronuclear complexes with Cu (Figiel et al., 2010), Ga (Pugh et al., 2012) and heterometallic with Zn, Co and Cu (Nesterov et al., 2011).

Synthesis and crystallization  

Copper powder (0.079 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), NH4SCN (0.095 g, 1.25 mmol), N-methyldi­ethano­lamine (1.3 ml, 1.25 mmol) and methanol (20 ml) were heated in air at 323–333 K and stirred magnetically for 30 min. Deep-blue crystals suitable for crystallographic study were formed by slow evaporation of the resulting solution in air. The crystals were filtered off, washed with dry isopropanol and finally dried in vacuo at room temperature. Yield: 0.11 g, 17.7%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were located in difference Fourier maps and refined in a riding-model approximation with U iso = nU eq of the carrier atom (n = 1.5 for methyl group and n = 1.2 for other hydrogen atoms). Atoms C5, C6 and C7 were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).

Table 2. Experimental details.

Crystal data
Chemical formula [Cr(C5H11NO2)Cu(C5H12NO2)(NCS)2(H2O)]
M r 485.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c () 10.570(3), 14.543(4), 13.940(3)
() 105.571(3)
V (3) 2064.2(9)
Z 4
Radiation type Mo K
(mm1) 1.79
Crystal size (mm) 0.50 0.30 0.20
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2011)
T min, T max 0.829, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 3596, 3596, 3173
R int 0.038
(sin /)max (1) 0.596
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.057, 0.150, 1.06
No. of reflections 3596
No. of parameters 257
No. of restraints 10
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.55, 0.85

Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2011), SHELXT (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015601/lh5774sup1.cif

e-71-01077-sup1.cif (169.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015601/lh5774Isup2.hkl

e-71-01077-Isup2.hkl (287KB, hkl)

CCDC reference: 1419706

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] F(000) = 1000
Mr = 485.02 Dx = 1.561 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.570 (3) Å Cell parameters from 6922 reflections
b = 14.543 (4) Å θ = 3.2–32.9°
c = 13.940 (3) Å µ = 1.79 mm1
β = 105.571 (3)° T = 294 K
V = 2064.2 (9) Å3 Block, blue
Z = 4 0.50 × 0.30 × 0.20 mm

Data collection

Agilent Xcalibur, Sapphire3 diffractometer 3173 reflections with I > 2σ(I)
ω scans Rint = 0.038
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011) θmax = 25.0°, θmin = 3.3°
Tmin = 0.829, Tmax = 1.000 h = −12→12
3596 measured reflections k = −17→17
3596 independent reflections l = −6→16

Refinement

Refinement on F2 10 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0602P)2 + 5.4768P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.009
3596 reflections Δρmax = 0.55 e Å3
257 parameters Δρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.16459 (6) 0.02434 (4) 0.21704 (5) 0.0350 (2)
Cr1 0.20912 (8) 0.12817 (5) 0.04319 (6) 0.0337 (2)
S1 −0.2054 (2) 0.05346 (15) 0.3310 (2) 0.0948 (8)
S2 0.5965 (2) 0.21482 (17) −0.04740 (19) 0.0889 (8)
N1 0.0246 (5) 0.0129 (4) 0.2820 (4) 0.0490 (12)
N2 0.3744 (5) 0.1577 (4) 0.0039 (4) 0.0525 (13)
N3 0.3150 (5) −0.0412 (3) 0.3195 (3) 0.0429 (11)
N4 0.1924 (5) 0.2607 (3) 0.1015 (3) 0.0421 (11)
O1 0.0620 (3) 0.0968 (2) 0.1007 (3) 0.0334 (8)
O2 0.0997 (4) 0.1807 (2) −0.0761 (3) 0.0450 (9)
O3 0.3039 (3) 0.0790 (3) 0.1737 (3) 0.0437 (9)
O4 0.1365 (4) −0.1172 (2) 0.1477 (3) 0.0428 (9)
H4 0.0773 −0.1495 0.1068 0.051*
O5 0.1979 (5) 0.0010 (3) −0.0255 (4) 0.0679 (13)
H5A 0.2330 0.0023 −0.0727 0.102*
H5B 0.1162 −0.0153 −0.0470 0.102*
C1 −0.0721 (6) 0.0276 (4) 0.3021 (5) 0.0473 (14)
C2 0.4661 (6) 0.1810 (4) −0.0151 (5) 0.0486 (14)
C3 −0.0017 (6) 0.1781 (4) 0.1221 (5) 0.0444 (13)
H3A −0.0513 0.1643 0.1696 0.053*
H3B −0.0620 0.2012 0.0617 0.053*
C4 0.1026 (6) 0.2502 (4) 0.1650 (5) 0.0506 (15)
H4A 0.0606 0.3086 0.1701 0.061*
H4B 0.1520 0.2319 0.2314 0.061*
C5A 0.320 (3) 0.307 (3) 0.154 (3) 0.057 (9) 0.5
H5AA 0.3630 0.3283 0.1053 0.085* 0.5
H5AB 0.3759 0.2643 0.1979 0.085* 0.5
H5AC 0.3024 0.3587 0.1914 0.085* 0.5
C6A 0.1142 (18) 0.3163 (13) 0.0171 (12) 0.049 (5) 0.5
H6AA 0.1444 0.3795 0.0237 0.059* 0.5
H6AB 0.0223 0.3155 0.0167 0.059* 0.5
C5B 0.318 (4) 0.289 (3) 0.171 (3) 0.073 (12) 0.5
H5BA 0.3888 0.2752 0.1426 0.110* 0.5
H5BB 0.3301 0.2572 0.2329 0.110* 0.5
H5BC 0.3160 0.3544 0.1826 0.110* 0.5
C6B 0.164 (2) 0.3234 (16) 0.0147 (14) 0.079 (9) 0.5
H6BA 0.2454 0.3415 0.0006 0.095* 0.5
H6BB 0.1211 0.3785 0.0298 0.095* 0.5
C7A 0.1305 (17) 0.2756 (5) −0.0783 (18) 0.049 (5) 0.5
H7AA 0.0718 0.3052 −0.1354 0.059* 0.5
H7AB 0.2201 0.2835 −0.0823 0.059* 0.5
C7B 0.076 (2) 0.2768 (5) −0.075 (2) 0.069 (7) 0.5
H7BA −0.0149 0.2872 −0.0764 0.083* 0.5
H7BB 0.0905 0.3041 −0.1351 0.083* 0.5
C8 0.4311 (5) 0.0428 (5) 0.2170 (5) 0.0512 (16)
H8A 0.4976 0.0891 0.2184 0.061*
H8B 0.4477 −0.0096 0.1791 0.061*
C9 0.4334 (6) 0.0140 (5) 0.3215 (5) 0.0563 (17)
H9A 0.5116 −0.0221 0.3501 0.068*
H9B 0.4356 0.0681 0.3627 0.068*
C10 0.2951 (8) −0.0468 (5) 0.4206 (4) 0.067 (2)
H10A 0.2880 0.0142 0.4451 0.100*
H10B 0.3684 −0.0778 0.4643 0.100*
H10C 0.2159 −0.0803 0.4177 0.100*
C11 0.3280 (5) −0.1354 (4) 0.2823 (4) 0.0468 (14)
H11A 0.3705 −0.1746 0.3380 0.056*
H11B 0.3834 −0.1335 0.2370 0.056*
C12 0.1970 (5) −0.1760 (4) 0.2294 (5) 0.0529 (15)
H12A 0.2087 −0.2371 0.2053 0.063*
H12B 0.1419 −0.1807 0.2748 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0319 (4) 0.0335 (4) 0.0395 (4) 0.0032 (2) 0.0092 (3) 0.0029 (3)
Cr1 0.0290 (4) 0.0312 (4) 0.0411 (5) −0.0031 (3) 0.0101 (4) 0.0001 (3)
S1 0.0677 (13) 0.0636 (12) 0.177 (3) 0.0141 (10) 0.0743 (16) 0.0278 (14)
S2 0.0747 (14) 0.1043 (17) 0.1101 (17) −0.0397 (12) 0.0634 (13) −0.0378 (14)
N1 0.049 (3) 0.056 (3) 0.049 (3) 0.006 (2) 0.024 (2) 0.009 (2)
N2 0.041 (3) 0.052 (3) 0.071 (3) −0.007 (2) 0.026 (3) 0.001 (3)
N3 0.044 (3) 0.045 (3) 0.035 (2) 0.009 (2) 0.001 (2) 0.003 (2)
N4 0.044 (3) 0.034 (2) 0.047 (3) −0.009 (2) 0.010 (2) −0.002 (2)
O1 0.0272 (18) 0.0287 (17) 0.0445 (19) 0.0019 (14) 0.0100 (15) 0.0030 (15)
O2 0.049 (2) 0.040 (2) 0.043 (2) −0.0046 (18) 0.0085 (18) 0.0030 (16)
O3 0.0278 (19) 0.049 (2) 0.052 (2) −0.0018 (16) 0.0070 (17) 0.0112 (18)
O4 0.042 (2) 0.0336 (19) 0.048 (2) −0.0010 (16) 0.0045 (17) 0.0009 (16)
O5 0.066 (3) 0.062 (3) 0.079 (3) −0.009 (2) 0.025 (3) −0.015 (3)
C1 0.049 (4) 0.034 (3) 0.061 (4) −0.001 (3) 0.019 (3) 0.005 (3)
C2 0.049 (4) 0.046 (3) 0.058 (4) −0.003 (3) 0.026 (3) −0.013 (3)
C3 0.039 (3) 0.032 (3) 0.066 (4) 0.006 (2) 0.021 (3) 0.002 (3)
C4 0.057 (4) 0.035 (3) 0.067 (4) −0.005 (3) 0.029 (3) −0.009 (3)
C5A 0.043 (12) 0.041 (13) 0.076 (13) −0.023 (8) −0.002 (11) 0.000 (9)
C6A 0.079 (12) 0.015 (7) 0.053 (9) −0.008 (8) 0.020 (8) 0.011 (6)
C5B 0.076 (17) 0.049 (18) 0.11 (2) −0.035 (13) 0.053 (17) −0.049 (19)
C6B 0.13 (2) 0.039 (11) 0.079 (14) −0.018 (13) 0.041 (14) 0.014 (9)
C7A 0.035 (9) 0.046 (9) 0.055 (9) −0.007 (5) −0.011 (9) 0.015 (6)
C7B 0.077 (17) 0.043 (9) 0.064 (11) −0.008 (7) −0.022 (14) 0.019 (8)
C8 0.020 (3) 0.060 (4) 0.067 (4) −0.005 (2) 0.000 (3) 0.012 (3)
C9 0.040 (3) 0.057 (4) 0.058 (4) 0.006 (3) −0.009 (3) 0.001 (3)
C10 0.079 (5) 0.079 (5) 0.036 (3) 0.026 (4) 0.004 (3) 0.006 (3)
C11 0.046 (3) 0.042 (3) 0.053 (3) 0.008 (3) 0.013 (3) 0.003 (3)
C12 0.057 (4) 0.033 (3) 0.067 (4) 0.000 (3) 0.014 (3) 0.007 (3)

Geometric parameters (Å, º)

Cu1—O3 1.909 (4) C3—H3A 0.9700
Cu1—N1 1.938 (5) C3—H3B 0.9700
Cu1—O1 1.994 (3) C4—H4A 0.9700
Cu1—N3 2.064 (4) C4—H4B 0.9700
Cu1—O4 2.259 (4) C5A—H5AA 0.9600
Cu1—Cr1 2.9979 (11) C5A—H5AB 0.9600
Cr1—O2 1.912 (4) C5A—H5AC 0.9600
Cr1—O3 1.961 (4) C6A—C7A 1.507 (5)
Cr1—O1 1.984 (3) C6A—H6AA 0.9700
Cr1—N2 2.012 (5) C6A—H6AB 0.9700
Cr1—O5 2.071 (5) C5B—H5BA 0.9600
Cr1—N4 2.118 (5) C5B—H5BB 0.9600
S1—C1 1.610 (7) C5B—H5BC 0.9600
S2—C2 1.636 (6) C6B—C7B 1.507 (5)
N1—C1 1.150 (8) C6B—H6BA 0.9700
N2—C2 1.124 (8) C6B—H6BB 0.9700
N3—C10 1.481 (8) C7A—H7AA 0.9700
N3—C9 1.481 (8) C7A—H7AB 0.9700
N3—C11 1.484 (7) C7B—H7BA 0.9700
N4—C4 1.469 (8) C7B—H7BB 0.9700
N4—C6B 1.481 (5) C8—C9 1.510 (9)
N4—C6A 1.483 (5) C8—H8A 0.9700
N4—C5B 1.48 (4) C8—H8B 0.9700
N4—C5A 1.51 (4) C9—H9A 0.9700
O1—C3 1.431 (6) C9—H9B 0.9700
O2—C7A 1.420 (5) C10—H10A 0.9600
O2—C7B 1.420 (5) C10—H10B 0.9600
O3—C8 1.419 (6) C10—H10C 0.9600
O4—C12 1.430 (6) C11—C12 1.504 (4)
O4—H4 0.8635 C11—H11A 0.9700
O5—H5A 0.8379 C11—H11B 0.9700
O5—H5B 0.8680 C12—H12A 0.9700
C3—C4 1.522 (8) C12—H12B 0.9700
O3—Cu1—N1 159.1 (2) C4—C3—H3B 110.0
O3—Cu1—O1 79.60 (14) H3A—C3—H3B 108.3
N1—Cu1—O1 96.24 (18) N4—C4—C3 110.6 (5)
O3—Cu1—N3 83.98 (18) N4—C4—H4A 109.5
N1—Cu1—N3 100.4 (2) C3—C4—H4A 109.5
O1—Cu1—N3 163.20 (17) N4—C4—H4B 109.5
O3—Cu1—O4 105.57 (16) C3—C4—H4B 109.5
N1—Cu1—O4 95.29 (19) H4A—C4—H4B 108.1
O1—Cu1—O4 98.81 (14) N4—C5A—H5AA 109.5
N3—Cu1—O4 82.15 (16) N4—C5A—H5AB 109.5
O3—Cu1—Cr1 39.87 (11) H5AA—C5A—H5AB 109.5
N1—Cu1—Cr1 136.55 (15) N4—C5A—H5AC 109.5
O1—Cu1—Cr1 40.97 (10) H5AA—C5A—H5AC 109.5
N3—Cu1—Cr1 122.24 (14) H5AB—C5A—H5AC 109.5
O4—Cu1—Cr1 98.30 (10) N4—C6A—C7A 108.3 (16)
O2—Cr1—O3 172.67 (17) N4—C6A—H6AA 110.0
O2—Cr1—O1 94.96 (16) C7A—C6A—H6AA 110.0
O3—Cr1—O1 78.60 (15) N4—C6A—H6AB 110.0
O2—Cr1—N2 92.6 (2) C7A—C6A—H6AB 110.0
O3—Cr1—N2 93.75 (19) H6AA—C6A—H6AB 108.4
O1—Cr1—N2 172.14 (19) N4—C5B—H5BA 109.5
O2—Cr1—O5 90.49 (18) N4—C5B—H5BB 109.5
O3—Cr1—O5 93.16 (19) H5BA—C5B—H5BB 109.5
O1—Cr1—O5 91.57 (17) N4—C5B—H5BC 109.5
N2—Cr1—O5 90.6 (2) H5BA—C5B—H5BC 109.5
O2—Cr1—N4 82.93 (16) H5BB—C5B—H5BC 109.5
O3—Cr1—N4 92.86 (17) N4—C6B—C7B 110.4 (18)
O1—Cr1—N4 84.21 (16) N4—C6B—H6BA 109.6
N2—Cr1—N4 94.5 (2) C7B—C6B—H6BA 109.6
O5—Cr1—N4 171.83 (19) N4—C6B—H6BB 109.6
O2—Cr1—Cu1 135.64 (13) C7B—C6B—H6BB 109.6
O3—Cr1—Cu1 38.60 (11) H6BA—C6B—H6BB 108.1
O1—Cr1—Cu1 41.21 (10) O2—C7A—C6A 106.3 (16)
N2—Cr1—Cu1 131.57 (16) O2—C7A—H7AA 110.5
O5—Cr1—Cu1 85.52 (15) C6A—C7A—H7AA 110.5
N4—Cr1—Cu1 95.78 (12) O2—C7A—H7AB 110.5
C1—N1—Cu1 159.7 (5) C6A—C7A—H7AB 110.5
C2—N2—Cr1 174.5 (5) H7AA—C7A—H7AB 108.7
C10—N3—C9 110.3 (5) O2—C7B—C6B 112.2 (19)
C10—N3—C11 109.4 (5) O2—C7B—H7BA 109.2
C9—N3—C11 110.5 (5) C6B—C7B—H7BA 109.2
C10—N3—Cu1 113.8 (4) O2—C7B—H7BB 109.2
C9—N3—Cu1 104.6 (3) C6B—C7B—H7BB 109.2
C11—N3—Cu1 108.1 (3) H7BA—C7B—H7BB 107.9
C4—N4—C6B 122.3 (13) O3—C8—C9 106.3 (5)
C4—N4—C6A 102.8 (9) O3—C8—H8A 110.5
C4—N4—C5B 104.2 (17) C9—C8—H8A 110.5
C6B—N4—C5B 108 (2) O3—C8—H8B 110.5
C4—N4—C5A 113.2 (18) C9—C8—H8B 110.5
C6A—N4—C5A 112.0 (18) H8A—C8—H8B 108.7
C4—N4—Cr1 105.7 (3) N3—C9—C8 109.8 (5)
C6B—N4—Cr1 105.4 (13) N3—C9—H9A 109.7
C6A—N4—Cr1 106.1 (9) C8—C9—H9A 109.7
C5B—N4—Cr1 110.9 (15) N3—C9—H9B 109.7
C5A—N4—Cr1 115.9 (16) C8—C9—H9B 109.7
C3—O1—Cr1 110.9 (3) H9A—C9—H9B 108.2
C3—O1—Cu1 116.8 (3) N3—C10—H10A 109.5
Cr1—O1—Cu1 97.82 (14) N3—C10—H10B 109.5
C7A—O2—Cr1 108.6 (9) H10A—C10—H10B 109.5
C7B—O2—Cr1 117.0 (10) N3—C10—H10C 109.5
C8—O3—Cu1 115.7 (3) H10A—C10—H10C 109.5
C8—O3—Cr1 136.0 (4) H10B—C10—H10C 109.5
Cu1—O3—Cr1 101.53 (16) N3—C11—C12 111.9 (5)
C12—O4—Cu1 103.0 (3) N3—C11—H11A 109.2
C12—O4—H4 106.9 C12—C11—H11A 109.2
Cu1—O4—H4 140.0 N3—C11—H11B 109.2
Cr1—O5—H5A 111.1 C12—C11—H11B 109.2
Cr1—O5—H5B 109.4 H11A—C11—H11B 107.9
H5A—O5—H5B 110.2 O4—C12—C11 108.2 (4)
N1—C1—S1 177.1 (6) O4—C12—H12A 110.1
N2—C2—S2 177.8 (6) C11—C12—H12A 110.1
O1—C3—C4 108.6 (4) O4—C12—H12B 110.1
O1—C3—H3A 110.0 C11—C12—H12B 110.1
C4—C3—H3A 110.0 H12A—C12—H12B 108.4
O1—C3—H3B 110.0
Cr1—O1—C3—C4 −40.1 (5) N4—C6A—C7A—O2 52.7 (17)
Cu1—O1—C3—C4 70.8 (5) Cr1—O2—C7B—C6B 11 (2)
C6B—N4—C4—C3 86.1 (13) N4—C6B—C7B—O2 −33 (3)
C6A—N4—C4—C3 76.9 (10) Cu1—O3—C8—C9 −32.5 (6)
C5B—N4—C4—C3 −151.0 (17) Cr1—O3—C8—C9 −177.5 (4)
C5A—N4—C4—C3 −162.0 (17) C10—N3—C9—C8 −163.4 (5)
Cr1—N4—C4—C3 −34.1 (5) C11—N3—C9—C8 75.5 (6)
O1—C3—C4—N4 50.2 (6) Cu1—N3—C9—C8 −40.6 (6)
C4—N4—C6A—C7A −136.0 (11) O3—C8—C9—N3 48.3 (7)
C5A—N4—C6A—C7A 102 (2) C10—N3—C11—C12 88.3 (6)
Cr1—N4—C6A—C7A −25.3 (14) C9—N3—C11—C12 −150.1 (5)
C4—N4—C6B—C7B −84 (2) Cu1—N3—C11—C12 −36.2 (6)
C5B—N4—C6B—C7B 155 (2) Cu1—O4—C12—C11 −46.7 (5)
Cr1—N4—C6B—C7B 36 (2) N3—C11—C12—O4 59.0 (7)
Cr1—O2—C7A—C6A −55.6 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2i 0.86 1.86 2.595 (7) 142
O5—H5B···O1i 0.86 2.18 3.014 (7) 162

Symmetry code: (i) −x, −y, −z.

References

  1. Affronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). Angew. Chem. Int. Ed. 44, 6496–6500. [DOI] [PubMed]
  2. Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.
  3. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  4. Amiri, H., Mariani, M., Lascialfari, A., Borsa, F., Timco, G. A., Tuna, F. & Winpenny, R. E. P. (2010). Phys. Rev. B, 81, 104408.
  5. Beedle, C. C., Stephenson, C. J., Heroux, K. J., Wernsdorfer, W. & Hendrickson, D. N. (2008). Inorg. Chem. 47, 10798–10800. [DOI] [PubMed]
  6. Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. [DOI] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Figiel, P. J., Kirillov, A. M., da Silva, M. F. C. G., Lasri, J. & Pombeiro, A. J. L. (2010). Dalton Trans. 39, 9879–9888. [DOI] [PubMed]
  9. Gheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. & Andruh, M. (2010). Dalton Trans. 39, 4734–4736. [DOI] [PubMed]
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Gruenwald, K. R., Kirillov, A. M., Haukka, M., Sanchiz, J. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 2109–2120. [DOI] [PubMed]
  12. Kirillov, A. M., Karabach, Y. Y., Haukka, M., da Silva, M. F. C. G., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162–175. [DOI] [PubMed]
  13. Long, J., Chamoreau, L.-M. & Marvaud, V. (2010). Dalton Trans. 39, 2188–2190. [DOI] [PubMed]
  14. McInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577–2590.
  15. Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.
  16. Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. [DOI] [PubMed]
  17. Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110–9122. [DOI] [PubMed]
  18. Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411. [DOI] [PubMed]
  19. Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.
  20. Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.
  21. Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.
  22. Pugh, D., Bloor, L. G., Parkin, I. P. & Carmalt, C. J. (2012). Eur. J. Inorg. Chem. pp. 6079–6087. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Singh, A. & Mehrotra, R. C. (2004). Coord. Chem. Rev. 248, 101–118.
  26. Stamatatos, T. C., Poole, K. M., Foguet-Albiol, D., Abboud, K. A., O’Brien, T. A. & Christou, G. (2008). Inorg. Chem. 47, 6593–6595. [DOI] [PubMed]
  27. Timco, G. A., McInnes, E. L., Pritchard, R. G., Tuna, F. & Winpenny, R. P. (2008). Angew. Chem. Int. Ed. 47, 9681–9684. [DOI] [PubMed]
  28. Verkade, J. G. (1993). Acc. Chem. Res. 26, 483–489.
  29. Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.
  30. Visinescu, D., Madalan, A. M., Andruh, M., Duhayon, C., Sutter, J.-P., Ungur, L., Van den Heuvel, W. & Chibotaru, L. F. (2009). Chem. Eur. J. 15, 11808–11814. [DOI] [PubMed]
  31. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015601/lh5774sup1.cif

e-71-01077-sup1.cif (169.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015601/lh5774Isup2.hkl

e-71-01077-Isup2.hkl (287KB, hkl)

CCDC reference: 1419706

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES