Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 6;71(Pt 9):o648–o649. doi: 10.1107/S2056989015014553

Crystal structure of 4-(6-bromo-4-oxo-4H-chromen-3-yl)-2-methyl­amino-3-nitro­pyrano[3,2-c]chromen-5(4H)-one chloro­form monosolvate

Rajamani Raja a, Subramani Kandhasamy b, Paramasivam T Perumal b, A SubbiahPandi a,*
PMCID: PMC4555410  PMID: 26396884

Abstract

In the title compound, C22H13BrN2O7·CHCl3, the pyran ring adopts a shallow sofa conformation with the C atom bearing the bromo­chromene system as the flap [deviation = 0.291 (3) Å]. The dihedral angle between the pyran fused-ring system (all atoms; r.m.s. deviation = 0.032 Å) and the bromo­chromene ring system (r.m.s. deviation = 0.027 Å) is 87.56 (9)°. An intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. The Cl atoms of the solvent mol­ecule are disordered over two sets of sites in a 0.515 (6):0.485 (6) ratio. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(12) loops. The packing also features C—H⋯O and very weak π–π [centroid–centroid separation = 3.960 (2) Å] inter­actions, which link the dimers into a three-dimensional network.

Keywords: crystal structure, chromenone, hydrogen bonding

Related literature  

For background to chromene derivatives, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For a related structure, see: Raja et al. (2015).graphic file with name e-71-0o648-scheme1.jpg

Experimental  

Crystal data  

  • C22H13BrN2O7·CHCl3

  • M r = 616.62

  • Triclinic, Inline graphic

  • a = 9.8816 (2) Å

  • b = 11.9237 (3) Å

  • c = 12.0616 (3) Å

  • α = 80.804 (1)°

  • β = 68.422 (1)°

  • γ = 70.735 (1)°

  • V = 1246.36 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.539, T max = 0.632

  • 17277 measured reflections

  • 4389 independent reflections

  • 3672 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.120

  • S = 1.04

  • 4389 reflections

  • 353 parameters

  • 114 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014553/hb7473sup1.cif

e-71-0o648-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014553/hb7473Isup2.hkl

e-71-0o648-Isup2.hkl (215KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014553/hb7473Isup3.cml

S . DOI: 10.1107/S2056989015014553/hb7473fig1.tif

The mol­ecular structure of the title mol­ecule, with displacement ellipsoids drawn at 30% probability level. The intra­molecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.

. DOI: 10.1107/S2056989015014553/hb7473fig2.tif

Packing diagram showing the chain motif Inline graphic(12) along the [100] direction.

CCDC reference: 1416576

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2O5 0.86 2.00 2.622(5) 128
N2H2O5i 0.86 2.37 3.063(5) 138
C4H4O7ii 0.93 2.59 3.383(6) 144
C15H15O4iii 0.93 2.36 3.221(4) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors the thank Department of Chemistry, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

S1. Comment

Chromene derivatives are heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer, etc. (Khan et al., 2010; Raj et al., 2010). Against this background an X-ray diffraction study of the title compound and its structural aspects are presented herein.

The asymmetric unit of the title compound is shown in Fig.1. The six-membered central pyran ring is very similar to a screw boat conformation as evidenced by the puckering parameters q2 = 0.204 (4) Å, θ = 112.7 (11) and φ = 6.7 (12)°, respectively. The atoms C10 and O3 are deviating from the mean plane of C8—C9—C11—C12 by -0.266 and -0.644 Å, respectively. The chromene ring (O2/C1—C9) and (O7/C14—C22) are almost planar and normal to one another with a dihedral angle of 88.20 (2)° between their mean planes. The nitro group is bonded to the pyran ring at CC with the torsion angle C12—C11—N1—O5 0f 3.5 (5)°, indicating a (+) syn-periplanar conformation for this group. The chromene ring attached to the pyran ring at C10 with torsion angle C11—C10—C14—C15 of 117.6 (4)°, indicating a (+) anti-clinal conformation for this group. The title compound exhibits structural similarities with already reported related structure (Raja et al., 2015).

In the crystal structure, the molecules are linked to form an infinite chain along [100], through N2—H···O5 hydrogen bonds, generating graph set motifs R22(12) (Fig.2). In addition, there is a N—H···O intramolecular interaction.

S2. Experimental

4-Hydroxycoumarin (0.81 g, 5 mmol), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (0.78 g, 5 mmol) and NMSM (0.74 g, 5 mmol) were mixed in ethanol at room temperature (3 h) in the presence of TEA (triethylamine 0.1 eq), as a catalyst. Upon completion of the reaction, the mixture was filtered, and washed with ethanol to obtained desired white product in 93% yield. Colourless blocks of the title compound were recrystallised from chloroform solution.

S3. Refinement

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with displacement ellipsoids drawn at 30% probability level. The intramolecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.

Fig. 2.

Fig. 2.

Packing diagram showing the chain motif R22(12) along the [100] direction.

Crystal data

C22H13BrN2O7·CHCl3 Z = 2
Mr = 616.62 F(000) = 616
Triclinic, P1 Dx = 1.643 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8816 (2) Å Cell parameters from 3672 reflections
b = 11.9237 (3) Å θ = 1.8–25.0°
c = 12.0616 (3) Å µ = 2.02 mm1
α = 80.804 (1)° T = 293 K
β = 68.422 (1)° Colourless, block
γ = 70.735 (1)° 0.35 × 0.30 × 0.25 mm
V = 1246.36 (5) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 4389 independent reflections
Radiation source: fine-focus sealed tube 3672 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω and φ scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→10
Tmin = 0.539, Tmax = 0.632 k = −14→14
17277 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.1978P] where P = (Fo2 + 2Fc2)/3
4389 reflections (Δ/σ)max < 0.001
353 parameters Δρmax = 0.63 e Å3
114 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6175 (4) 0.6474 (3) 0.0736 (4) 0.0442 (9)
C2 0.5491 (5) 0.6922 (3) −0.1038 (3) 0.0447 (9)
C3 0.5920 (6) 0.7284 (4) −0.2223 (4) 0.0592 (11)
H3 0.6853 0.7436 −0.2601 0.071*
C4 0.4958 (6) 0.7418 (5) −0.2839 (4) 0.0678 (13)
H4 0.5237 0.7667 −0.3640 0.081*
C5 0.3578 (6) 0.7189 (5) −0.2288 (4) 0.0675 (13)
H5 0.2936 0.7283 −0.2721 0.081*
C6 0.3140 (5) 0.6820 (4) −0.1098 (4) 0.0545 (11)
H6 0.2211 0.6660 −0.0732 0.065*
C7 0.4101 (4) 0.6691 (3) −0.0449 (3) 0.0402 (8)
C8 0.3759 (4) 0.6353 (3) 0.0800 (3) 0.0351 (8)
C9 0.4701 (4) 0.6296 (3) 0.1389 (3) 0.0355 (8)
C10 0.4260 (4) 0.6090 (3) 0.2719 (3) 0.0341 (8)
H10 0.5132 0.5529 0.2910 0.041*
C11 0.2968 (4) 0.5549 (3) 0.3146 (3) 0.0362 (8)
C12 0.2024 (4) 0.5667 (3) 0.2490 (3) 0.0395 (8)
C13 −0.0189 (6) 0.5523 (5) 0.2111 (5) 0.0758 (16)
H13A −0.1049 0.5241 0.2563 0.114*
H13B 0.0393 0.5076 0.1405 0.114*
H13C −0.0538 0.6349 0.1888 0.114*
C14 0.3830 (4) 0.7256 (3) 0.3303 (3) 0.0344 (8)
C15 0.4574 (4) 0.7360 (3) 0.3991 (3) 0.0415 (8)
H15 0.5365 0.6704 0.4080 0.050*
C16 0.3129 (4) 0.9334 (3) 0.4428 (3) 0.0406 (8)
C17 0.2842 (5) 1.0337 (4) 0.5026 (4) 0.0530 (10)
H17 0.3397 1.0319 0.5509 0.064*
C18 0.1736 (5) 1.1350 (4) 0.4898 (4) 0.0528 (10)
H18 0.1529 1.2026 0.5296 0.063*
C19 0.0923 (4) 1.1360 (3) 0.4165 (3) 0.0423 (9)
C20 0.1176 (4) 1.0372 (3) 0.3593 (3) 0.0396 (8)
H20 0.0607 1.0391 0.3120 0.047*
C21 0.2297 (4) 0.9331 (3) 0.3724 (3) 0.0362 (8)
C22 0.2577 (4) 0.8247 (3) 0.3136 (3) 0.0368 (8)
N1 0.2703 (4) 0.4975 (3) 0.4251 (3) 0.0405 (7)
N2 0.0763 (4) 0.5375 (3) 0.2832 (3) 0.0519 (9)
H2 0.0471 0.5069 0.3543 0.062*
O1 0.7135 (3) 0.6371 (3) 0.1160 (3) 0.0648 (9)
O2 0.6502 (3) 0.6786 (3) −0.0456 (2) 0.0533 (7)
O3 0.2394 (3) 0.6112 (2) 0.1340 (2) 0.0408 (6)
O4 0.3527 (3) 0.4944 (2) 0.4837 (2) 0.0506 (7)
O5 0.1646 (3) 0.4491 (3) 0.4673 (3) 0.0514 (7)
O6 0.1798 (3) 0.8194 (2) 0.2569 (3) 0.0525 (7)
O7 0.4263 (3) 0.8351 (2) 0.4569 (2) 0.0498 (7)
Br1 −0.05894 (5) 1.27713 (4) 0.39770 (4) 0.05830 (19)
C23 0.7698 (6) 0.9052 (8) 0.0829 (5) 0.146 (3)
H23A 0.7777 0.8283 0.0580 0.175* 0.515 (6)
H23B 0.7592 0.8259 0.1122 0.175* 0.485 (6)
Cl1 0.9143 (5) 0.8826 (4) 0.1496 (4) 0.1075 (15) 0.515 (6)
Cl2 0.5958 (5) 0.9568 (5) 0.1863 (5) 0.140 (2) 0.515 (6)
Cl3 0.8013 (6) 0.9975 (5) −0.0393 (3) 0.131 (2) 0.515 (6)
Cl1' 0.8251 (14) 0.9193 (11) 0.1864 (7) 0.260 (6) 0.485 (6)
Cl2' 0.5804 (9) 0.9669 (10) 0.0975 (13) 0.317 (8) 0.485 (6)
Cl3' 0.8819 (8) 0.8620 (7) −0.0529 (4) 0.174 (3) 0.485 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.043 (2) 0.044 (2) 0.046 (2) −0.0120 (17) −0.0174 (18) 0.0013 (17)
C2 0.052 (2) 0.040 (2) 0.042 (2) −0.0108 (18) −0.0176 (18) −0.0028 (16)
C3 0.067 (3) 0.062 (3) 0.044 (2) −0.019 (2) −0.014 (2) −0.001 (2)
C4 0.087 (4) 0.071 (3) 0.044 (3) −0.020 (3) −0.027 (3) 0.003 (2)
C5 0.086 (4) 0.074 (3) 0.055 (3) −0.018 (3) −0.046 (3) 0.001 (2)
C6 0.065 (3) 0.058 (3) 0.052 (3) −0.017 (2) −0.034 (2) −0.001 (2)
C7 0.051 (2) 0.0308 (18) 0.041 (2) −0.0077 (16) −0.0213 (18) −0.0040 (15)
C8 0.0380 (19) 0.0290 (17) 0.041 (2) −0.0087 (15) −0.0175 (16) −0.0025 (14)
C9 0.0356 (19) 0.0303 (17) 0.042 (2) −0.0076 (15) −0.0170 (16) −0.0012 (14)
C10 0.0339 (18) 0.0322 (17) 0.0410 (19) −0.0075 (14) −0.0215 (15) 0.0021 (14)
C11 0.0377 (19) 0.0330 (18) 0.041 (2) −0.0105 (15) −0.0187 (16) 0.0043 (15)
C12 0.041 (2) 0.0343 (18) 0.049 (2) −0.0137 (16) −0.0212 (17) 0.0053 (16)
C13 0.066 (3) 0.096 (4) 0.094 (4) −0.045 (3) −0.055 (3) 0.032 (3)
C14 0.0360 (19) 0.0353 (18) 0.0355 (18) −0.0116 (15) −0.0174 (15) 0.0042 (14)
C15 0.045 (2) 0.0393 (19) 0.045 (2) −0.0096 (17) −0.0255 (18) 0.0016 (16)
C16 0.045 (2) 0.043 (2) 0.038 (2) −0.0138 (17) −0.0176 (17) −0.0001 (16)
C17 0.061 (3) 0.058 (3) 0.051 (2) −0.018 (2) −0.028 (2) −0.010 (2)
C18 0.061 (3) 0.046 (2) 0.053 (2) −0.019 (2) −0.014 (2) −0.0124 (19)
C19 0.041 (2) 0.0357 (19) 0.044 (2) −0.0124 (16) −0.0075 (17) −0.0007 (16)
C20 0.039 (2) 0.039 (2) 0.041 (2) −0.0134 (16) −0.0146 (16) 0.0035 (16)
C21 0.0376 (19) 0.0354 (18) 0.0376 (19) −0.0126 (15) −0.0144 (16) 0.0011 (15)
C22 0.039 (2) 0.0373 (19) 0.0399 (19) −0.0118 (16) −0.0210 (16) 0.0021 (15)
N1 0.0407 (18) 0.0347 (16) 0.0451 (18) −0.0081 (14) −0.0186 (15) 0.0046 (13)
N2 0.048 (2) 0.062 (2) 0.059 (2) −0.0286 (17) −0.0291 (17) 0.0172 (17)
O1 0.0446 (17) 0.098 (3) 0.0627 (19) −0.0300 (17) −0.0268 (15) 0.0082 (17)
O2 0.0475 (16) 0.0693 (19) 0.0447 (16) −0.0225 (14) −0.0151 (13) 0.0028 (14)
O3 0.0430 (15) 0.0440 (14) 0.0461 (15) −0.0173 (12) −0.0265 (12) 0.0064 (11)
O4 0.0554 (17) 0.0539 (17) 0.0505 (16) −0.0164 (14) −0.0336 (14) 0.0148 (13)
O5 0.0497 (16) 0.0521 (16) 0.0548 (17) −0.0239 (14) −0.0188 (13) 0.0133 (13)
O6 0.0569 (17) 0.0432 (15) 0.0710 (19) −0.0030 (13) −0.0450 (16) −0.0083 (13)
O7 0.0592 (18) 0.0485 (16) 0.0545 (17) −0.0080 (13) −0.0388 (14) −0.0067 (13)
Br1 0.0560 (3) 0.0359 (2) 0.0753 (3) −0.00750 (19) −0.0191 (2) −0.00208 (19)
C23 0.127 (7) 0.178 (8) 0.117 (6) −0.035 (6) −0.027 (5) −0.024 (6)
Cl1 0.125 (3) 0.100 (3) 0.118 (4) −0.038 (2) −0.061 (3) −0.005 (2)
Cl2 0.107 (3) 0.123 (4) 0.134 (4) −0.031 (3) 0.019 (3) −0.002 (3)
Cl3 0.157 (4) 0.152 (5) 0.084 (2) −0.078 (3) −0.028 (2) 0.028 (2)
Cl1' 0.426 (17) 0.233 (10) 0.126 (5) −0.091 (11) −0.083 (8) −0.056 (6)
Cl2' 0.257 (11) 0.154 (7) 0.425 (19) 0.054 (7) −0.078 (12) −0.041 (11)
Cl3' 0.214 (7) 0.215 (8) 0.098 (3) −0.102 (6) −0.032 (4) 0.009 (4)

Geometric parameters (Å, º)

C1—O1 1.199 (5) C14—C15 1.337 (5)
C1—O2 1.370 (5) C14—C22 1.453 (5)
C1—C9 1.446 (5) C15—O7 1.358 (5)
C2—C3 1.374 (6) C15—H15 0.9300
C2—O2 1.374 (5) C16—O7 1.367 (5)
C2—C7 1.391 (6) C16—C21 1.383 (5)
C3—C4 1.365 (7) C16—C17 1.390 (6)
C3—H3 0.9300 C17—C18 1.368 (6)
C4—C5 1.377 (7) C17—H17 0.9300
C4—H4 0.9300 C18—C19 1.392 (6)
C5—C6 1.381 (7) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.366 (5)
C6—C7 1.397 (5) C19—Br1 1.893 (4)
C6—H6 0.9300 C20—C21 1.397 (5)
C7—C8 1.437 (5) C20—H20 0.9300
C8—C9 1.344 (5) C21—C22 1.470 (5)
C8—O3 1.369 (4) C22—O6 1.223 (4)
C9—C10 1.501 (5) N1—O4 1.248 (4)
C10—C11 1.505 (5) N1—O5 1.264 (4)
C10—C14 1.521 (5) N2—H2 0.8600
C10—H10 0.9800 C23—Cl1' 1.587 (7)
C11—N1 1.372 (5) C23—Cl3' 1.653 (6)
C11—C12 1.391 (5) C23—Cl3 1.688 (7)
C12—N2 1.307 (5) C23—Cl2 1.691 (6)
C12—O3 1.364 (4) C23—Cl2' 1.721 (7)
C13—N2 1.454 (5) C23—Cl1 1.812 (6)
C13—H13A 0.9600 C23—H23A 0.9800
C13—H13B 0.9600 C23—H23B 0.9800
C13—H13C 0.9600
O1—C1—O2 117.3 (4) C18—C17—H17 120.3
O1—C1—C9 124.9 (4) C16—C17—H17 120.3
O2—C1—C9 117.8 (3) C17—C18—C19 119.4 (4)
C3—C2—O2 117.1 (4) C17—C18—H18 120.3
C3—C2—C7 121.8 (4) C19—C18—H18 120.3
O2—C2—C7 121.1 (3) C20—C19—C18 121.6 (4)
C4—C3—C2 119.0 (5) C20—C19—Br1 119.3 (3)
C4—C3—H3 120.5 C18—C19—Br1 119.1 (3)
C2—C3—H3 120.5 C19—C20—C21 119.5 (3)
C3—C4—C5 120.9 (4) C19—C20—H20 120.3
C3—C4—H4 119.6 C21—C20—H20 120.3
C5—C4—H4 119.6 C16—C21—C20 118.8 (3)
C4—C5—C6 120.5 (4) C16—C21—C22 120.5 (3)
C4—C5—H5 119.8 C20—C21—C22 120.7 (3)
C6—C5—H5 119.8 O6—C22—C14 123.5 (3)
C5—C6—C7 119.6 (4) O6—C22—C21 122.1 (3)
C5—C6—H6 120.2 C14—C22—C21 114.4 (3)
C7—C6—H6 120.2 O4—N1—O5 120.4 (3)
C2—C7—C6 118.3 (4) O4—N1—C11 118.6 (3)
C2—C7—C8 116.7 (3) O5—N1—C11 120.9 (3)
C6—C7—C8 125.0 (4) C12—N2—C13 125.5 (4)
C9—C8—O3 122.9 (3) C12—N2—H2 117.3
C9—C8—C7 122.3 (3) C13—N2—H2 117.3
O3—C8—C7 114.8 (3) C1—O2—C2 122.3 (3)
C8—C9—C1 119.5 (3) C12—O3—C8 119.7 (3)
C8—C9—C10 122.2 (3) C15—O7—C16 118.5 (3)
C1—C9—C10 118.3 (3) Cl1'—C23—Cl3' 125.6 (5)
C9—C10—C11 108.5 (3) Cl1'—C23—Cl3 117.6 (7)
C9—C10—C14 109.8 (3) Cl3'—C23—Cl3 55.4 (3)
C11—C10—C14 112.0 (3) Cl1'—C23—Cl2 82.4 (5)
C9—C10—H10 108.8 Cl3'—C23—Cl2 151.9 (5)
C11—C10—H10 108.8 Cl3—C23—Cl2 112.8 (5)
C14—C10—H10 108.8 Cl1'—C23—Cl2' 118.9 (5)
N1—C11—C12 120.7 (3) Cl3'—C23—Cl2' 114.1 (5)
N1—C11—C10 117.0 (3) Cl3—C23—Cl2' 85.0 (6)
C12—C11—C10 122.3 (3) Cl2—C23—Cl2' 38.2 (5)
N2—C12—O3 112.1 (3) Cl1'—C23—Cl1 27.2 (4)
N2—C12—C11 127.7 (3) Cl3'—C23—Cl1 99.0 (4)
O3—C12—C11 120.3 (3) Cl3—C23—Cl1 109.5 (5)
N2—C13—H13A 109.5 Cl2—C23—Cl1 109.1 (4)
N2—C13—H13B 109.5 Cl2'—C23—Cl1 146.1 (5)
H13A—C13—H13B 109.5 Cl1'—C23—H23A 123.7
N2—C13—H13C 109.5 Cl3'—C23—H23A 60.5
H13A—C13—H13C 109.5 Cl3—C23—H23A 108.4
H13B—C13—H13C 109.5 Cl2—C23—H23A 108.4
C15—C14—C22 120.1 (3) Cl2'—C23—H23A 94.7
C15—C14—C10 120.2 (3) Cl1—C23—H23A 108.4
C22—C14—C10 119.6 (3) Cl1'—C23—H23B 93.9
C14—C15—O7 124.9 (3) Cl3'—C23—H23B 93.9
C14—C15—H15 117.6 Cl3—C23—H23B 144.5
O7—C15—H15 117.6 Cl2—C23—H23B 85.5
O7—C16—C21 121.5 (3) Cl2'—C23—H23B 93.9
O7—C16—C17 117.2 (3) Cl1—C23—H23B 90.9
C21—C16—C17 121.4 (4) H23A—C23—H23B 36.2
C18—C17—C16 119.4 (4)
O2—C2—C3—C4 179.3 (4) C10—C14—C15—O7 −178.8 (3)
C7—C2—C3—C4 −0.1 (7) O7—C16—C17—C18 178.9 (4)
C2—C3—C4—C5 −0.4 (7) C21—C16—C17—C18 −1.4 (6)
C3—C4—C5—C6 0.1 (8) C16—C17—C18—C19 −0.3 (7)
C4—C5—C6—C7 0.6 (7) C17—C18—C19—C20 1.7 (6)
C3—C2—C7—C6 0.7 (6) C17—C18—C19—Br1 −179.2 (3)
O2—C2—C7—C6 −178.5 (3) C18—C19—C20—C21 −1.3 (6)
C3—C2—C7—C8 −178.1 (4) Br1—C19—C20—C21 179.6 (3)
O2—C2—C7—C8 2.6 (5) O7—C16—C21—C20 −178.6 (3)
C5—C6—C7—C2 −1.0 (6) C17—C16—C21—C20 1.7 (6)
C5—C6—C7—C8 177.8 (4) O7—C16—C21—C22 2.1 (5)
C2—C7—C8—C9 1.9 (5) C17—C16—C21—C22 −177.5 (4)
C6—C7—C8—C9 −176.9 (4) C19—C20—C21—C16 −0.4 (5)
C2—C7—C8—O3 −178.9 (3) C19—C20—C21—C22 178.9 (3)
C6—C7—C8—O3 2.3 (5) C15—C14—C22—O6 −176.2 (4)
O3—C8—C9—C1 175.2 (3) C10—C14—C22—O6 2.2 (6)
C7—C8—C9—C1 −5.7 (5) C15—C14—C22—C21 3.0 (5)
O3—C8—C9—C10 −6.7 (5) C10—C14—C22—C21 −178.7 (3)
C7—C8—C9—C10 172.4 (3) C16—C21—C22—O6 175.4 (4)
O1—C1—C9—C8 −175.3 (4) C20—C21—C22—O6 −3.9 (6)
O2—C1—C9—C8 4.9 (5) C16—C21—C22—C14 −3.8 (5)
O1—C1—C9—C10 6.6 (6) C20—C21—C22—C14 176.9 (3)
O2—C1—C9—C10 −173.2 (3) C12—C11—N1—O4 −176.3 (3)
C8—C9—C10—C11 19.9 (4) C10—C11—N1—O4 0.6 (5)
C1—C9—C10—C11 −162.0 (3) C12—C11—N1—O5 3.5 (5)
C8—C9—C10—C14 −102.7 (4) C10—C11—N1—O5 −179.6 (3)
C1—C9—C10—C14 75.4 (4) O3—C12—N2—C13 −1.6 (6)
C9—C10—C11—N1 161.2 (3) C11—C12—N2—C13 179.6 (4)
C14—C10—C11—N1 −77.5 (4) O1—C1—O2—C2 179.6 (4)
C9—C10—C11—C12 −22.0 (5) C9—C1—O2—C2 −0.5 (5)
C14—C10—C11—C12 99.3 (4) C3—C2—O2—C1 177.5 (4)
N1—C11—C12—N2 6.3 (6) C7—C2—O2—C1 −3.2 (6)
C10—C11—C12—N2 −170.4 (4) N2—C12—O3—C8 −173.6 (3)
N1—C11—C12—O3 −172.3 (3) C11—C12—O3—C8 5.3 (5)
C10—C11—C12—O3 11.0 (5) C9—C8—O3—C12 −7.5 (5)
C9—C10—C14—C15 −121.8 (4) C7—C8—O3—C12 173.3 (3)
C11—C10—C14—C15 117.6 (4) C14—C15—O7—C16 −1.5 (6)
C9—C10—C14—C22 59.9 (4) C21—C16—O7—C15 0.6 (5)
C11—C10—C14—C22 −60.7 (4) C17—C16—O7—C15 −179.7 (4)
C22—C14—C15—O7 −0.4 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O5 0.86 2.00 2.622 (5) 128
N2—H2···O5i 0.86 2.37 3.063 (5) 138
C4—H4···O7ii 0.93 2.59 3.383 (6) 144
C15—H15···O4iii 0.93 2.36 3.221 (4) 153

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7473).

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
  5. Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. [DOI] [PubMed]
  6. Raja, R., Suresh, M., Raghunathan, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, 574–577. [DOI] [PMC free article] [PubMed]
  7. Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014553/hb7473sup1.cif

e-71-0o648-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014553/hb7473Isup2.hkl

e-71-0o648-Isup2.hkl (215KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014553/hb7473Isup3.cml

S . DOI: 10.1107/S2056989015014553/hb7473fig1.tif

The mol­ecular structure of the title mol­ecule, with displacement ellipsoids drawn at 30% probability level. The intra­molecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.

. DOI: 10.1107/S2056989015014553/hb7473fig2.tif

Packing diagram showing the chain motif Inline graphic(12) along the [100] direction.

CCDC reference: 1416576

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES