Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 26;71(Pt 9):o688–o689. doi: 10.1107/S2056989015014966

Crystal structure of 10-benzyl-9-(3,4-di­meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

N Sureshbabu a, V Sughanya a,*
PMCID: PMC4555413  PMID: 26396906

Abstract

In the acridinedione moiety of the title compound, C32H37NO4, the central di­hydro­pyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclo­hexenone rings adopt envelope conformations, with the tetra­subsituted C atoms as the flap atoms. The 3,4-di­meth­oxy­­benzene and benzyl rings are almost normal to the di­hydro­pyridine mean plane, with dihedral angles of 89.47 (9) and 82.90 (11)°, respectively. In the crystal, mol­ecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which are, in turn, linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to (001).

Keywords: crystal structure, dimedone, benzyl­amine, acridinedione

Related literature  

For therapeutic properties of acridine derivatives, see: Nasim & Brychcy (1979); Thull & Testa (1994). For the crystal structures of similar deca­hydro­acridine-1,8-diones, see: Sughanya & Sureshbabu (2012); Abdelhamid et al. (2011); Akkurt et al. (2014); Khalilov et al. (2011); Tang et al. (2008); Tu et al. (2004). For a related synthesis, see: Li et al. (2003); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).graphic file with name e-71-0o688-scheme1.jpg

Experimental  

Crystal data  

  • C32H37NO4

  • M r = 499.63

  • Orthorhombic, Inline graphic

  • a = 10.7068 (3) Å

  • b = 17.8750 (4) Å

  • c = 28.1694 (7) Å

  • V = 5391.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.35 × 0.30 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.958, T max = 0.989

  • 23489 measured reflections

  • 4661 independent reflections

  • 2966 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.01

  • 4661 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014966/su5190sup1.cif

e-71-0o688-sup1.cif (35.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014966/su5190Isup2.hkl

e-71-0o688-Isup2.hkl (228.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014966/su5190Isup3.cml

. DOI: 10.1107/S2056989015014966/su5190fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

b . DOI: 10.1107/S2056989015014966/su5190fig2.tif

A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1).

CCDC reference: 1417923

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C29H29O2i 0.93 2.39 3.293(3) 165
C6H6BO1ii 0.97 2.40 3.292(2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese and SAIF, IIT Madras, for collection of the intensity data.

supplementary crystallographic information

S1. Comment

\ Acridine derivatives with a di­hydro­pyridine unit belong to a special class of compounds, which are important because of their wide range of applications in the pharmaceutical and dye industries. They are also well known as therapeutic agents (Nasim & Brychcy, 1979; Thull & Testa, 1994).

In the title compound, Fig. 1, the bond lengths are close to those reported for similar compounds, for example 10-benzyl-9-(4-eth­oxy­phenyl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-\ hexa­hydro­acridine-1,8(2H,5H)-dione (Sughanya & Sureshbabu, 2012). In the di­hydro­pyridine ring bonds C4–C5 and C1–C2 are double bonds as indicated by the bond distances (C4–C5 = 1.349 (2) Å and C1–C2 = 1.348 (2) Å), . The C5–C4–C9 [119.84 (18)°] and C1–C2–C15 [120.15 (17)°] angles are almost the same. The central di­hydro­pyridine ring is almost planar with a mean deviation from the mean plane of 0.0509 (6) Å and with a maximum deviation of 0.0973 (3) Å for atom C3. The planar 3,4-di­meth­oxy­phenyl and benzyl rings form dihedral angles of 89.47 (9)° and 82.90 (11)° with the di­hydro­pyridine mean plane. Rings A (C4–C9), B (N1/C1—C5) and C (C1/C2/C12—C15) show total puckering amplitudes Q(T) of 0.469 (2) Å, 0.142 (1) Å and 0.484 (3) Å, respectively. The cyclo­hexenone rings A and C adopt envelope conformations, whereas the central ring B adopts a flattened boat conformation. This can be understood from the puckering parameters (Cremer & Pople, 1975): φ = 185.73 (2)° and θ = 58.67 (2)° (for A); φ = 0.3 (4)°, and θ = 111.1 (3)° (for B) and φ = 62.69 (2)°, θ = 120.98 (2)° (for C), respectively. In this conformation atoms C7 and C13 must be described as the flap atoms, being situated out of the plane of the respective rings with deviations of 0.3302 (2) Å and 0.3411 Å, respectively.

In the crystal, molecules are linked via a pair of C—H···O hydrogen bonds forming inversion dimers, which in turn are linked by C—H···O hydrogen bonds forming slabs lying parallel to (001); see Table 1 and Fig. 2

S2. Synthesis and crystallization

The title compound was prepared in two stages. In the first stage, a mixture of 3,4-di­meth­oxy­benzaldehyde (0.83 g, 5 mmol), 5,5-di­methyl­cyclo­hexane-1,3-dione (dimedone) (1.40 g, 10 mmol) and 20 ml of ethanol was heated to 343 K for ca 10 min. The reaction mixture was allowed to cool to room temperature and the resulting solid inter­mediate, 2,2'-((3,4- di­meth­oxy­phenyl) methyl­ene)bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) was filtered and dried (m.p.: 411 - 413 K; yield: 96%). In the second stage, ca 1.0 g (2.4 mmol) of this inter­mediate was dissolved in 25 ml of acetic acid. The solution was refluxed together with benzyl­amine (0.33 g, 3 mmol) for 8 h with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid that separated was filtered and dried and then recrystallized from ethanol to yield yellow crystals of the title compound (m.p.: 449 - 451 K; yield: 76%).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were identified from difference electron density maps and subsequently treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1).

Crystal data

C32H37NO4 Dx = 1.231 Mg m3
Mr = 499.63 Melting point = 449–451 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a c2 ab Cell parameters from 3680 reflections
a = 10.7068 (3) Å θ = 2.3–23.8°
b = 17.8750 (4) Å µ = 0.08 mm1
c = 28.1694 (7) Å T = 296 K
V = 5391.2 (2) Å3 Block, yellow
Z = 8 0.35 × 0.35 × 0.30 mm
F(000) = 2144

Data collection

Bruker Kappa APEXII CCD diffractometer 4661 independent reflections
Radiation source: fine-focus sealed tube 2966 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
ω and φ scan θmax = 24.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.958, Tmax = 0.989 k = −20→20
23489 measured reflections l = −33→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9815P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.002
4661 reflections Δρmax = 0.14 e Å3
335 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0024 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.14368 (15) 0.30051 (11) 0.61594 (6) 0.0354 (5)
C2 0.18793 (16) 0.36442 (10) 0.59693 (6) 0.0357 (5)
C3 0.28362 (16) 0.36551 (10) 0.55767 (7) 0.0376 (5)
H3 0.2530 0.3996 0.5330 0.045*
C4 0.29413 (16) 0.28887 (10) 0.53588 (6) 0.0354 (5)
C5 0.24760 (15) 0.22657 (10) 0.55628 (6) 0.0332 (4)
C6 0.26823 (17) 0.15026 (11) 0.53557 (7) 0.0404 (5)
H6A 0.1936 0.1354 0.5185 0.048*
H6B 0.2805 0.1149 0.5613 0.048*
C7 0.37920 (17) 0.14543 (11) 0.50209 (7) 0.0436 (5)
C8 0.3691 (2) 0.20922 (12) 0.46697 (8) 0.0563 (6)
H8A 0.4436 0.2098 0.4473 0.068*
H8B 0.2982 0.2002 0.4463 0.068*
C9 0.35425 (19) 0.28421 (12) 0.48963 (7) 0.0478 (5)
C10 0.50057 (19) 0.15092 (14) 0.53043 (9) 0.0641 (7)
H10A 0.5048 0.1104 0.5527 0.096*
H10B 0.5027 0.1976 0.5472 0.096*
H10C 0.5705 0.1482 0.5092 0.096*
C11 0.3746 (2) 0.07038 (13) 0.47679 (8) 0.0628 (7)
H11A 0.3813 0.0308 0.4997 0.094*
H11B 0.4427 0.0671 0.4547 0.094*
H11C 0.2969 0.0659 0.4600 0.094*
C12 0.05426 (17) 0.30154 (11) 0.65704 (7) 0.0442 (5)
H12A 0.0690 0.2577 0.6766 0.053*
H12B −0.0304 0.2984 0.6449 0.053*
C13 0.06601 (17) 0.37125 (12) 0.68782 (7) 0.0465 (5)
C14 0.05534 (19) 0.43847 (12) 0.65534 (7) 0.0523 (6)
H14A −0.0299 0.4418 0.6439 0.063*
H14B 0.0724 0.4833 0.6736 0.063*
C15 0.14163 (17) 0.43654 (12) 0.61355 (7) 0.0428 (5)
C16 0.1906 (2) 0.37117 (14) 0.71379 (8) 0.0638 (7)
H16A 0.1968 0.4152 0.7331 0.096*
H16B 0.2574 0.3707 0.6911 0.096*
H16C 0.1961 0.3275 0.7335 0.096*
C17 −0.0396 (2) 0.37115 (15) 0.72388 (8) 0.0689 (7)
H17A −0.0336 0.4149 0.7435 0.103*
H17B −0.0336 0.3272 0.7434 0.103*
H17C −0.1183 0.3712 0.7076 0.103*
C18 0.12476 (18) 0.16313 (11) 0.61951 (7) 0.0467 (5)
H18A 0.1285 0.1225 0.5967 0.056*
H18B 0.0375 0.1718 0.6270 0.056*
C19 0.19151 (19) 0.13942 (11) 0.66410 (7) 0.0464 (5)
C20 0.1352 (2) 0.08931 (14) 0.69419 (9) 0.0724 (7)
H20 0.0572 0.0699 0.6864 0.087*
C21 0.1919 (3) 0.06730 (17) 0.73565 (11) 0.0921 (9)
H21 0.1520 0.0334 0.7556 0.111*
C22 0.3054 (3) 0.09451 (16) 0.74766 (10) 0.0839 (8)
H22 0.3432 0.0801 0.7759 0.101*
C23 0.3631 (3) 0.14294 (16) 0.71809 (10) 0.0874 (9)
H23 0.4418 0.1614 0.7258 0.105*
C24 0.3064 (2) 0.16514 (14) 0.67670 (9) 0.0708 (7)
H24 0.3476 0.1985 0.6568 0.085*
C25 0.40789 (16) 0.39613 (10) 0.57537 (7) 0.0377 (5)
C26 0.48182 (18) 0.35503 (11) 0.60659 (7) 0.0446 (5)
H26 0.4570 0.3071 0.6153 0.054*
C27 0.59087 (18) 0.38395 (12) 0.62477 (7) 0.0467 (5)
C28 0.62704 (17) 0.45648 (11) 0.61294 (7) 0.0446 (5)
C29 0.55694 (18) 0.49609 (11) 0.58102 (8) 0.0484 (5)
H29 0.5821 0.5437 0.5718 0.058*
C30 0.44861 (18) 0.46556 (11) 0.56234 (7) 0.0463 (5)
H30 0.4026 0.4930 0.5404 0.056*
C31 0.6482 (2) 0.26982 (14) 0.66202 (10) 0.0810 (8)
H31A 0.7101 0.2501 0.6833 0.121*
H31B 0.6522 0.2437 0.6323 0.121*
H31C 0.5668 0.2634 0.6757 0.121*
C32 0.7733 (2) 0.55530 (13) 0.62149 (9) 0.0683 (7)
H32A 0.8487 0.5674 0.6382 0.102*
H32B 0.7093 0.5906 0.6297 0.102*
H32C 0.7884 0.5574 0.5879 0.102*
N1 0.17583 (13) 0.23059 (8) 0.59747 (5) 0.0367 (4)
O1 0.16937 (14) 0.49427 (8) 0.59302 (6) 0.0620 (4)
O2 0.38837 (17) 0.34063 (9) 0.46896 (6) 0.0783 (5)
O3 0.67062 (14) 0.34610 (9) 0.65443 (6) 0.0707 (5)
O4 0.73418 (13) 0.48237 (8) 0.63413 (5) 0.0607 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0291 (9) 0.0384 (12) 0.0388 (11) 0.0007 (8) −0.0010 (8) −0.0018 (9)
C2 0.0320 (9) 0.0352 (12) 0.0401 (11) 0.0017 (8) −0.0044 (8) 0.0013 (9)
C3 0.0385 (10) 0.0331 (11) 0.0411 (11) 0.0010 (8) −0.0008 (8) 0.0075 (9)
C4 0.0362 (10) 0.0337 (12) 0.0363 (11) −0.0002 (8) 0.0001 (8) 0.0058 (9)
C5 0.0314 (9) 0.0356 (11) 0.0326 (10) 0.0012 (8) −0.0012 (8) 0.0016 (9)
C6 0.0412 (10) 0.0377 (12) 0.0423 (11) −0.0003 (9) 0.0003 (9) 0.0022 (9)
C7 0.0463 (11) 0.0430 (13) 0.0416 (12) 0.0050 (9) 0.0058 (9) −0.0002 (10)
C8 0.0738 (15) 0.0527 (15) 0.0423 (13) 0.0035 (11) 0.0132 (11) 0.0024 (11)
C9 0.0567 (12) 0.0444 (13) 0.0424 (13) 0.0012 (10) 0.0068 (10) 0.0110 (11)
C10 0.0453 (12) 0.0692 (17) 0.0777 (17) 0.0092 (11) 0.0012 (12) −0.0047 (13)
C11 0.0737 (16) 0.0539 (15) 0.0607 (15) 0.0107 (12) 0.0109 (12) −0.0092 (12)
C12 0.0354 (10) 0.0514 (14) 0.0459 (12) 0.0003 (9) 0.0040 (9) 0.0001 (10)
C13 0.0384 (11) 0.0563 (14) 0.0449 (12) 0.0082 (10) 0.0009 (9) −0.0064 (11)
C14 0.0471 (12) 0.0513 (14) 0.0586 (14) 0.0118 (10) −0.0035 (10) −0.0107 (11)
C15 0.0381 (11) 0.0385 (13) 0.0518 (13) 0.0045 (9) −0.0090 (9) −0.0009 (11)
C16 0.0562 (13) 0.0824 (18) 0.0527 (14) 0.0055 (12) −0.0120 (11) −0.0073 (13)
C17 0.0598 (14) 0.0882 (19) 0.0586 (15) 0.0104 (13) 0.0165 (12) −0.0123 (13)
C18 0.0490 (11) 0.0409 (13) 0.0501 (13) −0.0135 (9) 0.0134 (10) −0.0001 (10)
C19 0.0533 (12) 0.0352 (12) 0.0505 (13) −0.0025 (10) 0.0139 (10) 0.0038 (10)
C20 0.0720 (16) 0.0712 (18) 0.0739 (18) −0.0128 (13) 0.0129 (14) 0.0256 (15)
C21 0.104 (2) 0.092 (2) 0.081 (2) −0.0020 (19) 0.0204 (18) 0.0411 (17)
C22 0.104 (2) 0.081 (2) 0.0658 (18) 0.0075 (18) −0.0068 (17) 0.0229 (16)
C23 0.091 (2) 0.084 (2) 0.087 (2) −0.0144 (16) −0.0244 (17) 0.0286 (18)
C24 0.0705 (16) 0.0709 (18) 0.0711 (17) −0.0179 (13) −0.0053 (14) 0.0282 (14)
C25 0.0371 (10) 0.0325 (11) 0.0434 (11) −0.0015 (8) 0.0034 (9) 0.0048 (9)
C26 0.0468 (12) 0.0356 (12) 0.0515 (13) −0.0091 (9) −0.0009 (10) 0.0125 (10)
C27 0.0438 (11) 0.0437 (13) 0.0525 (13) −0.0022 (10) −0.0051 (10) 0.0100 (10)
C28 0.0363 (11) 0.0419 (13) 0.0557 (13) −0.0057 (9) 0.0024 (9) 0.0009 (11)
C29 0.0431 (11) 0.0326 (12) 0.0694 (14) −0.0042 (9) 0.0043 (11) 0.0075 (11)
C30 0.0425 (11) 0.0403 (13) 0.0560 (13) 0.0010 (9) 0.0001 (10) 0.0108 (10)
C31 0.0877 (19) 0.0586 (18) 0.097 (2) −0.0042 (14) −0.0341 (16) 0.0275 (15)
C32 0.0583 (14) 0.0491 (15) 0.0973 (19) −0.0173 (12) −0.0052 (13) −0.0046 (14)
N1 0.0393 (8) 0.0320 (9) 0.0389 (9) −0.0048 (7) 0.0072 (7) 0.0022 (7)
O1 0.0742 (11) 0.0371 (9) 0.0748 (11) 0.0078 (8) 0.0049 (8) 0.0051 (8)
O2 0.1186 (14) 0.0546 (11) 0.0617 (11) −0.0040 (10) 0.0373 (10) 0.0168 (9)
O3 0.0679 (10) 0.0570 (11) 0.0873 (12) −0.0124 (8) −0.0327 (9) 0.0247 (9)
O4 0.0490 (8) 0.0525 (10) 0.0807 (11) −0.0145 (7) −0.0122 (8) 0.0048 (8)

Geometric parameters (Å, º)

C1—C2 1.348 (2) C16—H16B 0.9600
C1—N1 1.397 (2) C16—H16C 0.9600
C1—C12 1.503 (3) C17—H17A 0.9600
C2—C15 1.458 (3) C17—H17B 0.9600
C2—C3 1.508 (2) C17—H17C 0.9600
C3—C4 1.505 (3) C18—N1 1.462 (2)
C3—C25 1.523 (2) C18—C19 1.506 (3)
C3—H3 0.9800 C18—H18A 0.9700
C4—C5 1.349 (2) C18—H18B 0.9700
C4—C9 1.456 (3) C19—C24 1.361 (3)
C5—N1 1.393 (2) C19—C20 1.373 (3)
C5—C6 1.500 (3) C20—C21 1.374 (4)
C6—C7 1.519 (3) C20—H20 0.9300
C6—H6A 0.9700 C21—C22 1.352 (4)
C6—H6B 0.9700 C21—H21 0.9300
C7—C8 1.513 (3) C22—C23 1.351 (4)
C7—C11 1.520 (3) C22—H22 0.9300
C7—C10 1.528 (3) C23—C24 1.373 (3)
C8—C9 1.493 (3) C23—H23 0.9300
C8—H8A 0.9700 C24—H24 0.9300
C8—H8B 0.9700 C25—C30 1.366 (3)
C9—O2 1.220 (2) C25—C26 1.393 (3)
C10—H10A 0.9600 C26—C27 1.376 (3)
C10—H10B 0.9600 C26—H26 0.9300
C10—H10C 0.9600 C27—O3 1.373 (2)
C11—H11A 0.9600 C27—C28 1.393 (3)
C11—H11B 0.9600 C28—C29 1.369 (3)
C11—H11C 0.9600 C28—O4 1.373 (2)
C12—C13 1.523 (3) C29—C30 1.386 (3)
C12—H12A 0.9700 C29—H29 0.9300
C12—H12B 0.9700 C30—H30 0.9300
C13—C14 1.515 (3) C31—O3 1.401 (3)
C13—C17 1.520 (3) C31—H31A 0.9600
C13—C16 1.521 (3) C31—H31B 0.9600
C14—C15 1.497 (3) C31—H31C 0.9600
C14—H14A 0.9700 C32—O4 1.415 (3)
C14—H14B 0.9700 C32—H32A 0.9600
C15—O1 1.220 (2) C32—H32B 0.9600
C16—H16A 0.9600 C32—H32C 0.9600
C2—C1—N1 121.59 (16) C13—C16—H16A 109.5
C2—C1—C12 121.32 (17) C13—C16—H16B 109.5
N1—C1—C12 117.06 (16) H16A—C16—H16B 109.5
C1—C2—C15 120.15 (17) C13—C16—H16C 109.5
C1—C2—C3 122.78 (17) H16A—C16—H16C 109.5
C15—C2—C3 117.06 (16) H16B—C16—H16C 109.5
C4—C3—C2 109.76 (15) C13—C17—H17A 109.5
C4—C3—C25 113.28 (15) C13—C17—H17B 109.5
C2—C3—C25 110.99 (15) H17A—C17—H17B 109.5
C4—C3—H3 107.5 C13—C17—H17C 109.5
C2—C3—H3 107.5 H17A—C17—H17C 109.5
C25—C3—H3 107.5 H17B—C17—H17C 109.5
C5—C4—C9 119.84 (18) N1—C18—C19 114.13 (16)
C5—C4—C3 123.38 (16) N1—C18—H18A 108.7
C9—C4—C3 116.74 (16) C19—C18—H18A 108.7
C4—C5—N1 121.06 (17) N1—C18—H18B 108.7
C4—C5—C6 122.06 (16) C19—C18—H18B 108.7
N1—C5—C6 116.87 (15) H18A—C18—H18B 107.6
C5—C6—C7 114.09 (16) C24—C19—C20 117.2 (2)
C5—C6—H6A 108.7 C24—C19—C18 123.47 (19)
C7—C6—H6A 108.7 C20—C19—C18 119.3 (2)
C5—C6—H6B 108.7 C19—C20—C21 121.1 (3)
C7—C6—H6B 108.7 C19—C20—H20 119.4
H6A—C6—H6B 107.6 C21—C20—H20 119.4
C8—C7—C6 107.90 (16) C22—C21—C20 120.5 (3)
C8—C7—C11 110.87 (17) C22—C21—H21 119.8
C6—C7—C11 108.41 (16) C20—C21—H21 119.8
C8—C7—C10 110.71 (18) C23—C22—C21 119.2 (3)
C6—C7—C10 109.70 (16) C23—C22—H22 120.4
C11—C7—C10 109.21 (17) C21—C22—H22 120.4
C9—C8—C7 113.86 (17) C22—C23—C24 120.4 (3)
C9—C8—H8A 108.8 C22—C23—H23 119.8
C7—C8—H8A 108.8 C24—C23—H23 119.8
C9—C8—H8B 108.8 C19—C24—C23 121.6 (2)
C7—C8—H8B 108.8 C19—C24—H24 119.2
H8A—C8—H8B 107.7 C23—C24—H24 119.2
O2—C9—C4 120.81 (19) C30—C25—C26 117.88 (17)
O2—C9—C8 120.39 (19) C30—C25—C3 121.17 (17)
C4—C9—C8 118.76 (18) C26—C25—C3 120.92 (16)
C7—C10—H10A 109.5 C27—C26—C25 121.28 (18)
C7—C10—H10B 109.5 C27—C26—H26 119.4
H10A—C10—H10B 109.5 C25—C26—H26 119.4
C7—C10—H10C 109.5 O3—C27—C26 124.69 (18)
H10A—C10—H10C 109.5 O3—C27—C28 115.54 (17)
H10B—C10—H10C 109.5 C26—C27—C28 119.76 (18)
C7—C11—H11A 109.5 C29—C28—O4 124.68 (18)
C7—C11—H11B 109.5 C29—C28—C27 119.09 (18)
H11A—C11—H11B 109.5 O4—C28—C27 116.22 (18)
C7—C11—H11C 109.5 C28—C29—C30 120.31 (19)
H11A—C11—H11C 109.5 C28—C29—H29 119.8
H11B—C11—H11C 109.5 C30—C29—H29 119.8
C1—C12—C13 113.33 (16) C25—C30—C29 121.54 (19)
C1—C12—H12A 108.9 C25—C30—H30 119.2
C13—C12—H12A 108.9 C29—C30—H30 119.2
C1—C12—H12B 108.9 O3—C31—H31A 109.5
C13—C12—H12B 108.9 O3—C31—H31B 109.5
H12A—C12—H12B 107.7 H31A—C31—H31B 109.5
C14—C13—C17 110.40 (17) O3—C31—H31C 109.5
C14—C13—C16 110.94 (18) H31A—C31—H31C 109.5
C17—C13—C16 109.33 (17) H31B—C31—H31C 109.5
C14—C13—C12 107.39 (16) O4—C32—H32A 109.5
C17—C13—C12 108.54 (17) O4—C32—H32B 109.5
C16—C13—C12 110.20 (17) H32A—C32—H32B 109.5
C15—C14—C13 114.23 (16) O4—C32—H32C 109.5
C15—C14—H14A 108.7 H32A—C32—H32C 109.5
C13—C14—H14A 108.7 H32B—C32—H32C 109.5
C15—C14—H14B 108.7 C5—N1—C1 119.48 (15)
C13—C14—H14B 108.7 C5—N1—C18 121.14 (15)
H14A—C14—H14B 107.6 C1—N1—C18 119.18 (15)
O1—C15—C2 120.86 (18) C27—O3—C31 117.76 (17)
O1—C15—C14 120.25 (18) C28—O4—C32 116.64 (17)
C2—C15—C14 118.85 (18)
N1—C1—C2—C15 173.04 (16) C13—C14—C15—C2 23.8 (3)
C12—C1—C2—C15 −5.0 (3) N1—C18—C19—C24 −16.1 (3)
N1—C1—C2—C3 −5.7 (3) N1—C18—C19—C20 163.84 (19)
C12—C1—C2—C3 176.20 (16) C24—C19—C20—C21 1.1 (4)
C1—C2—C3—C4 14.5 (2) C18—C19—C20—C21 −178.8 (2)
C15—C2—C3—C4 −164.33 (15) C19—C20—C21—C22 −0.3 (4)
C1—C2—C3—C25 −111.51 (19) C20—C21—C22—C23 −0.8 (5)
C15—C2—C3—C25 69.7 (2) C21—C22—C23—C24 1.0 (5)
C2—C3—C4—C5 −14.7 (2) C20—C19—C24—C23 −1.0 (4)
C25—C3—C4—C5 110.01 (19) C18—C19—C24—C23 178.9 (2)
C2—C3—C4—C9 163.11 (16) C22—C23—C24—C19 −0.1 (4)
C25—C3—C4—C9 −72.2 (2) C4—C3—C25—C30 128.47 (19)
C9—C4—C5—N1 −171.74 (16) C2—C3—C25—C30 −107.5 (2)
C3—C4—C5—N1 6.0 (3) C4—C3—C25—C26 −53.5 (2)
C9—C4—C5—C6 7.1 (3) C2—C3—C25—C26 70.5 (2)
C3—C4—C5—C6 −175.15 (16) C30—C25—C26—C27 1.6 (3)
C4—C5—C6—C7 20.8 (2) C3—C25—C26—C27 −176.42 (18)
N1—C5—C6—C7 −160.26 (15) C25—C26—C27—O3 −177.78 (19)
C5—C6—C7—C8 −49.3 (2) C25—C26—C27—C28 1.8 (3)
C5—C6—C7—C11 −169.41 (16) O3—C27—C28—C29 175.64 (18)
C5—C6—C7—C10 71.4 (2) C26—C27—C28—C29 −4.0 (3)
C6—C7—C8—C9 53.0 (2) O3—C27—C28—O4 −3.1 (3)
C11—C7—C8—C9 171.55 (18) C26—C27—C28—O4 177.31 (18)
C10—C7—C8—C9 −67.1 (2) O4—C28—C29—C30 −178.64 (19)
C5—C4—C9—O2 174.36 (19) C27—C28—C29—C30 2.7 (3)
C3—C4—C9—O2 −3.5 (3) C26—C25—C30—C29 −2.9 (3)
C5—C4—C9—C8 −3.3 (3) C3—C25—C30—C29 175.15 (18)
C3—C4—C9—C8 178.83 (17) C28—C29—C30—C25 0.7 (3)
C7—C8—C9—O2 153.9 (2) C4—C5—N1—C1 4.9 (2)
C7—C8—C9—C4 −28.4 (3) C6—C5—N1—C1 −174.09 (15)
C2—C1—C12—C13 −26.5 (2) C4—C5—N1—C18 179.68 (17)
N1—C1—C12—C13 155.38 (16) C6—C5—N1—C18 0.7 (2)
C1—C12—C13—C14 53.1 (2) C2—C1—N1—C5 −5.0 (3)
C1—C12—C13—C17 172.45 (17) C12—C1—N1—C5 173.19 (15)
C1—C12—C13—C16 −67.9 (2) C2—C1—N1—C18 −179.88 (17)
C17—C13—C14—C15 −169.96 (17) C12—C1—N1—C18 −1.7 (2)
C16—C13—C14—C15 68.7 (2) C19—C18—N1—C5 105.3 (2)
C12—C13—C14—C15 −51.8 (2) C19—C18—N1—C1 −79.8 (2)
C1—C2—C15—O1 −171.21 (18) C26—C27—O3—C31 8.5 (3)
C3—C2—C15—O1 7.6 (3) C28—C27—O3—C31 −171.1 (2)
C1—C2—C15—C14 6.6 (3) C29—C28—O4—C32 −0.1 (3)
C3—C2—C15—C14 −174.57 (16) C27—C28—O4—C32 178.57 (19)
C13—C14—C15—O1 −158.43 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C29—H29···O2i 0.93 2.39 3.293 (3) 165
C6—H6B···O1ii 0.97 2.40 3.292 (2) 154

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5190).

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Akkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663–o664. [DOI] [PMC free article] [PubMed]
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  8. Li, Y., Wang, X., Shi, D., Du, B. & Tu, S. (2003). Acta Cryst. E59, o1446–o1448.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Nasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261–288. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755. [DOI] [PMC free article] [PubMed]
  13. Tang, Z., Liu, C., Wu, S. & Hao, W. (2008). Acta Cryst. E64, o1844. [DOI] [PMC free article] [PubMed]
  14. Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310. [DOI] [PubMed]
  15. Tu, S., Miao, C., Gao, Y., Fang, F., Zhuang, Q., Feng, Y. & Shi, D. (2004). Synlett, pp. 255–258.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014966/su5190sup1.cif

e-71-0o688-sup1.cif (35.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014966/su5190Isup2.hkl

e-71-0o688-Isup2.hkl (228.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014966/su5190Isup3.cml

. DOI: 10.1107/S2056989015014966/su5190fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

b . DOI: 10.1107/S2056989015014966/su5190fig2.tif

A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1).

CCDC reference: 1417923

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES