Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 22;71(Pt 9):1058–1060. doi: 10.1107/S2056989015015315

Crystal structure of bis­[2-(1H-benzimidazol-2-yl)aniline]silver(I) nitrate

Yongtae Kim a, Sung Kwon Kang a,*
PMCID: PMC4555418  PMID: 26396847

The geometry around silver(I) metal atom in the title complex is distorted square planar with two normal Ag—N bonds and two long Ag—N bonds.

Keywords: crystal structure, silver(I) complex, distorted square-planar geometry, benzimidazole, N—H⋯O hydrogen bonds

Abstract

In the cation of the title salt, [Ag(C13H11N3)2]NO3, the AgI atom lies on a crystallographic inversion center and is coordinated by four N atoms from two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands in a distorted square-planar geometry. The Ag—N(aniline) bond [2.729 (2) Å] is significantly longer than the Ag—N(imidazole) bond [2.165 (1) Å]. In the ligand, the aniline ring is twisted by 37.87 (6)° from the mean plane of the benzimidazole ring system. The nitrate anion lies on a crystallographic twofold rotation axis which passes through the N atom and one of the O atoms. In the crystal, N—H⋯O hydrogen bonds link the components, forming a layer parallel to the bc plane.

Chemical context  

Azole and benzazole derivatives have been of inter­est in an important group in biological systems (Esparza-Ruiz et al., 2011; Hock et al., 2013). Benzimidazoles have shown anti­viral and anti­tumor activity (Wang et al., 2007; Ramla et al., 2007). Some transition metal complexes with benzimidazole derivatives are important biological mol­ecules (Sánchez-Guadarrama et al., 2009; Gökçe et al., 2005). The complexes of silver(I) with a series of benzimidazole-based N-heterocyclic carbenes have shown in vitro anti­bacterial potential against E. coli and B. subtilis bacteria (Haque et al., 2015). Recently, we reported on the synthesis and structural features of a zinc complex with a benzimidazole derivative (Kim & Kang, 2015). In a continuation of our research in this area, the title complex has been synthesized and characterized by single crystal diffraction.graphic file with name e-71-01058-scheme1.jpg

Structural commentary  

The cationic AgI complex adopts a distorted square-planar geometry with four N atoms of two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands (Fig. 1). The AgI atom lies on a crystallographic inversion center. The smaller N2—Ag1—N17 angle is 74.8 (1)° and the other is 105.2 (1)°. The benzimidazole ring system (N2–C10) is almost planar with an r.m.s. deviation of 0.015 (2) Å from the corresponding least-squares plane defined by the nine constituent atoms. The dihedral angle between the benzimidazole ring system and the aniline ring is 37.87 (6)°. This twisting is a driving force in the formation of the weak Ag1—N17 bonding in the Ag complex. The Ag1—N17 bond length of 2.729 (2) Å is much longer than the Ag1—N2 bond length of 2.165 (1) Å. Typical Ag—N bond lengths are within the range 2.1–2.4 Å (Gulbransen & Fitchett, 2012; Pettinari et al., 2013; Sun et al., 2006). However, the bond length of 2.729 (2) Å is shorter than the sum of the van der Waals radii of N and Ag atoms (1.55 and 1.70 Å, respectively; Bondi, 1964). In the heterocyclic imidazole ring, the N2—C10 bond [1.331 (2) Å] is shorter than the other N—C bonds [N2—C3 1.388 (2), C8—N9 1.380 (2), N9—C10 1.352 Å], which means the N2—C10 bond has double-bond character. In the nitrate counter-anion, atoms N18 and O20 lie on a crystallographic twofold rotation axis.

Figure 1.

Figure 1

Mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. The N—H⋯O hydrogen bond is indicated by a dashed line. [Symmetry codes: (i) −x, −y, −z + 1; (ii) −x, y, −z + Inline graphic.]

Supra­molecular features  

In the crystal, the N—H group of the 2-(1H-benzimidazol-2-yl)aniline ligand inter­acts strongly with the counter-anion, giving rise to a nearly linear hydrogen bond (Table 1), which forms a zigzag chain along the c axis (Fig. 2). Another weak N—H⋯O hydrogen bond between the NH2 group and the anion (Table 1) links the chains into a layer parallel to the bc plane.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N9H9O20 0.81(3) 2.05(3) 2.8588(18) 178(3)
N17H17BO19i 0.89(3) 2.35(3) 3.214(2) 164(2)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure of the title compound, showing mol­ecules linked by inter­molecular N—H⋯O hydrogen bonds (dashed lines).

Database survey  

A search of the Cambridge Structural Database (Version 5.36 with one update; Groom & Allen, 2014) returned 2993 entries for crystal structures of benzimidazoles. Most of them are crystal structures of metal complexes. However, there are only four entries with the ligand 2-(1H-benzimidazol-2-yl)aniline or 2-(2-amino­phen­yl)-1H-benzimidazole bonded to a transition metal: a Zn complex (Eltayeb et al., 2011), an Ni (Esparza-Ruiz et al., 2011), an Re (Machura et al., 2011) and an Ru (Malecki, 2012).

Synthesis and crystallization  

To a stirred solution of Ag(NO3) (0.085 g, 0.5 mmol) in aceto­nitrile (5 ml) was added a solution of 2-(1H-benzimidazol-2-yl)aniline (0.211 g, 1.0 mmol) in aceto­nitrile (10 ml) at 333 K. After 24 h of stirring, the solution turned ivory in color. Single crystals of the title complex were obtained by slow evaporation of the solvent at room temperature within three weeks.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances; N—H = 0.81 (3)–0.89 (3) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Ag(C13H11N3)2]NO3
M r 588.37
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 296
a, b, c () 11.9903(2), 10.1377(2), 20.1115(5)
V (3) 2444.63(9)
Z 4
Radiation type Mo K
(mm1) 0.87
Crystal size (mm) 0.18 0.16 0.15
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002)
T min, T max 0.846, 0.872
No. of measured, independent and observed [I > 2(I)] reflections 62591, 3043, 2446
R int 0.034
(sin /)max (1) 0.667
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.030, 0.080, 1.06
No. of reflections 3043
No. of parameters 182
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.44, 0.48

Computer programs: SMART and SAINT (Bruker, 2002), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015315/is5411sup1.cif

e-71-01058-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015315/is5411Isup2.hkl

e-71-01058-Isup2.hkl (243.6KB, hkl)

CCDC reference: 1419095

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the research fund of Chungnam National University.

supplementary crystallographic information

Crystal data

[Ag(C13H11N3)2](NO3) Dx = 1.599 Mg m3
Mr = 588.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 9923 reflections
a = 11.9903 (2) Å θ = 2.6–28.3°
b = 10.1377 (2) Å µ = 0.87 mm1
c = 20.1115 (5) Å T = 296 K
V = 2444.63 (9) Å3 Block, colourless
Z = 4 0.18 × 0.16 × 0.15 mm
F(000) = 1192

Data collection

Bruker SMART CCD area-detector diffractometer 2446 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −15→15
Tmin = 0.846, Tmax = 0.872 k = −13→13
62591 measured reflections l = −26→26
3043 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.1132P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3043 reflections Δρmax = 0.44 e Å3
182 parameters Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.0000 0.0000 0.5000 0.04858 (10)
N2 −0.04065 (13) 0.18355 (14) 0.45056 (7) 0.0336 (3)
C3 −0.09293 (15) 0.29248 (18) 0.47845 (9) 0.0340 (4)
C4 −0.13679 (17) 0.3119 (2) 0.54221 (10) 0.0436 (4)
H4 −0.1356 0.2450 0.5739 0.052*
C5 −0.18161 (19) 0.4335 (2) 0.55614 (11) 0.0527 (5)
H5 −0.2119 0.4487 0.5980 0.063*
C6 −0.1829 (2) 0.5349 (3) 0.50918 (12) 0.0588 (6)
H6 −0.2133 0.6161 0.5208 0.071*
C7 −0.14013 (19) 0.5180 (2) 0.44611 (12) 0.0512 (5)
H7 −0.1417 0.5852 0.4146 0.061*
C8 −0.09453 (15) 0.39484 (18) 0.43215 (9) 0.0365 (4)
N9 −0.04206 (14) 0.34549 (15) 0.37641 (8) 0.0355 (3)
H9 −0.030 (2) 0.381 (3) 0.3412 (13) 0.056 (7)*
C10 −0.01033 (14) 0.22026 (16) 0.38965 (8) 0.0300 (3)
C11 0.05731 (14) 0.14278 (16) 0.34296 (8) 0.0295 (3)
C12 0.13818 (14) 0.20841 (18) 0.30566 (9) 0.0364 (4)
H12 0.1448 0.2995 0.3095 0.044*
C13 0.20848 (15) 0.1415 (2) 0.26327 (9) 0.0405 (4)
H13 0.2605 0.1871 0.2378 0.049*
C14 0.20058 (17) 0.00563 (19) 0.25906 (9) 0.0407 (4)
H14 0.2497 −0.0409 0.2320 0.049*
C15 0.12026 (16) −0.06123 (18) 0.29469 (9) 0.0386 (4)
H15 0.1155 −0.1525 0.2911 0.046*
C16 0.04616 (16) 0.00555 (16) 0.33594 (9) 0.0320 (4)
N17 −0.03508 (17) −0.06622 (18) 0.37016 (8) 0.0410 (4)
H17A −0.092 (2) −0.021 (2) 0.3769 (11) 0.042 (6)*
H17B −0.048 (2) −0.145 (3) 0.3528 (13) 0.068 (8)*
N18 0.0000 0.5893 (2) 0.2500 0.0314 (4)
O19 0.02905 (14) 0.64820 (15) 0.19918 (8) 0.0534 (4)
O20 0.0000 0.4645 (2) 0.2500 0.0446 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.07365 (18) 0.03391 (13) 0.03818 (13) 0.00637 (10) 0.00441 (10) 0.01569 (8)
N2 0.0448 (8) 0.0272 (7) 0.0287 (7) −0.0002 (6) 0.0025 (6) 0.0041 (6)
C3 0.0372 (9) 0.0314 (9) 0.0332 (8) −0.0026 (7) 0.0043 (7) 0.0015 (7)
C4 0.0487 (10) 0.0466 (11) 0.0355 (9) −0.0064 (9) 0.0113 (8) 0.0006 (8)
C5 0.0548 (12) 0.0550 (13) 0.0483 (12) −0.0016 (10) 0.0205 (10) −0.0094 (10)
C6 0.0637 (15) 0.0460 (12) 0.0666 (15) 0.0147 (11) 0.0202 (11) −0.0103 (11)
C7 0.0612 (13) 0.0357 (11) 0.0565 (13) 0.0134 (9) 0.0141 (11) 0.0052 (9)
C8 0.0413 (10) 0.0312 (9) 0.0369 (9) 0.0029 (7) 0.0066 (7) 0.0026 (7)
N9 0.0483 (8) 0.0268 (8) 0.0315 (8) 0.0070 (6) 0.0069 (7) 0.0071 (6)
C10 0.0359 (8) 0.0250 (8) 0.0291 (8) −0.0005 (6) 0.0001 (6) 0.0034 (6)
C11 0.0344 (8) 0.0267 (8) 0.0273 (8) 0.0027 (7) −0.0026 (6) 0.0022 (6)
C12 0.0386 (9) 0.0290 (8) 0.0415 (10) −0.0005 (7) 0.0013 (7) 0.0020 (7)
C13 0.0335 (9) 0.0455 (11) 0.0427 (10) −0.0002 (8) 0.0043 (7) −0.0007 (8)
C14 0.0381 (9) 0.0439 (11) 0.0402 (11) 0.0089 (8) −0.0035 (7) −0.0098 (8)
C15 0.0467 (10) 0.0280 (9) 0.0411 (10) 0.0051 (8) −0.0075 (8) −0.0072 (7)
C16 0.0386 (8) 0.0298 (9) 0.0278 (8) −0.0011 (7) −0.0074 (7) 0.0013 (6)
N17 0.0558 (10) 0.0306 (9) 0.0366 (9) −0.0083 (8) 0.0003 (8) 0.0004 (7)
N18 0.0370 (10) 0.0232 (10) 0.0341 (10) 0.000 −0.0049 (9) 0.000
O19 0.0731 (10) 0.0381 (8) 0.0491 (8) −0.0022 (7) 0.0064 (7) 0.0155 (7)
O20 0.0759 (14) 0.0209 (8) 0.0368 (10) 0.000 0.0055 (9) 0.000

Geometric parameters (Å, º)

Ag1—N2i 2.1653 (14) C10—C11 1.468 (2)
Ag1—N2 2.1653 (14) C11—C12 1.395 (2)
Ag1—N17 2.7288 (17) C11—C16 1.405 (2)
N2—C10 1.331 (2) C12—C13 1.377 (3)
N2—C3 1.388 (2) C12—H12 0.9300
C3—C8 1.394 (2) C13—C14 1.383 (3)
C3—C4 1.400 (2) C13—H13 0.9300
C4—C5 1.374 (3) C14—C15 1.379 (3)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.396 (3) C15—C16 1.391 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.379 (3) C16—N17 1.397 (3)
C6—H6 0.9300 N17—H17A 0.83 (2)
C7—C8 1.392 (3) N17—H17B 0.89 (3)
C7—H7 0.9300 N18—O19ii 1.2340 (17)
C8—N9 1.380 (2) N18—O19 1.2340 (17)
N9—C10 1.352 (2) N18—O20 1.265 (3)
N9—H9 0.81 (3)
N2i—Ag1—N2 180.0 N9—C10—C11 122.12 (15)
N2i—Ag1—N17 105.23 (6) C12—C11—C16 118.98 (16)
N2—Ag1—N17 74.77 (5) C12—C11—C10 118.21 (15)
C10—N2—C3 105.83 (14) C16—C11—C10 122.78 (16)
C10—N2—Ag1 126.97 (12) C13—C12—C11 121.57 (17)
C3—N2—Ag1 126.86 (11) C13—C12—H12 119.2
N2—C3—C8 109.18 (15) C11—C12—H12 119.2
N2—C3—C4 130.65 (17) C12—C13—C14 119.08 (18)
C8—C3—C4 120.14 (17) C12—C13—H13 120.5
C5—C4—C3 117.37 (19) C14—C13—H13 120.5
C5—C4—H4 121.3 C15—C14—C13 120.38 (18)
C3—C4—H4 121.3 C15—C14—H14 119.8
C4—C5—C6 121.8 (2) C13—C14—H14 119.8
C4—C5—H5 119.1 C14—C15—C16 121.11 (17)
C6—C5—H5 119.1 C14—C15—H15 119.4
C7—C6—C5 121.8 (2) C16—C15—H15 119.4
C7—C6—H6 119.1 C15—C16—N17 119.05 (17)
C5—C6—H6 119.1 C15—C16—C11 118.75 (17)
C6—C7—C8 116.3 (2) N17—C16—C11 122.18 (17)
C6—C7—H7 121.8 C16—N17—Ag1 103.64 (11)
C8—C7—H7 121.8 C16—N17—H17A 111.8 (15)
N9—C8—C7 131.96 (17) Ag1—N17—H17A 80.7 (16)
N9—C8—C3 105.46 (15) C16—N17—H17B 113.6 (17)
C7—C8—C3 122.57 (18) Ag1—N17—H17B 128.7 (17)
C10—N9—C8 107.99 (15) H17A—N17—H17B 114 (2)
C10—N9—H9 122.6 (19) O19ii—N18—O19 122.1 (2)
C8—N9—H9 129.4 (19) O19ii—N18—O20 118.96 (11)
N2—C10—N9 111.53 (15) O19—N18—O20 118.96 (11)
N2—C10—C11 126.15 (15)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N9—H9···O20 0.81 (3) 2.05 (3) 2.8588 (18) 178 (3)
N17—H17B···O19iii 0.89 (3) 2.35 (3) 3.214 (2) 164 (2)

Symmetry code: (iii) −x, y−1, −z+1/2.

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062–m1063. [DOI] [PMC free article] [PubMed]
  4. Esparza-Ruiz, A., Peña-Hueso, A., Mijangos, E., Osorio-Monreal, G., Nöth, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2011). Polyhedron, 30, 2090–2098.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gökçe, M., Utku, S., Gür, S., Özkul, A. & Gümüş, F. (2005). Eur. J. Med. Chem. 40, 135–141. [DOI] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Gulbransen, J. L. & Fitchett, C. M. (2012). CrystEngComm, 14, 5394–5397.
  9. Haque, R. A., Choo, S. Y., Budagumpi, S., Iqbal, M. A. & Al-Ashraf Abdullah, A. (2015). Eur. J. Med. Chem. 90, 82–92. [DOI] [PubMed]
  10. Hock, S. J., Schaper, L., Herrmann, W. A. & Kühn, F. E. (2013). Chem. Soc. Rev. 42, 5073–5089. [DOI] [PubMed]
  11. Kim, Y. & Kang, S. K. (2015). Acta Cryst. E71, m85–m86. [DOI] [PMC free article] [PubMed]
  12. Machura, B., Wolff, M., Gryca, I., Palion, A. & Michalik, K. (2011). Polyhedron, 30, 2275–2285.
  13. Małecki, J. G. (2012). Struct. Chem. 23, 461–472.
  14. Pettinari, C., Marchetti, F., Orbisaglia, S., Pettinari, R., Ngoune, J., Gómez, M., Santos, C. & Álvarez, E. (2013). CrystEngComm, 15, 3892–3907.
  15. Ramla, M. M., Omar, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489–6496. [DOI] [PubMed]
  16. Sánchez-Guadarrama, O., López-Sandoval, H., Sánchez-Bartéz, F., Gracia-Mora, I., Höpfl, H. & Barba-Behrens, N. (2009). J. Inorg. Biochem. 103, 1204–1213. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Sun, Q., Bai, Y., He, G., Duan, C., Lin, Z. & Meng, Q. (2006). Chem. Commun. pp. 2777–2779. [DOI] [PubMed]
  20. Wang, X. A., Cianci, C. W., Yu, K.-L., Combrink, K. D., Thuring, J. W., Zhang, Y., Civiello, R. L., Kadow, K. F., Roach, J., Li, Z., Langley, D. R., Krystal, M. & Meanwell, N. A. (2007). Bioorg. Med. Chem. Lett. 17, 4592–4598. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015315/is5411sup1.cif

e-71-01058-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015315/is5411Isup2.hkl

e-71-01058-Isup2.hkl (243.6KB, hkl)

CCDC reference: 1419095

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES