Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 15;71(Pt 9):o659–o660. doi: 10.1107/S2056989015014395

Crystal structure of 1-isopropyl-4,7-dimethyl-3-nitro­naphthalene

Ahmed Benharref a, Jamal Elkarroumi a, Lahcen El Ammari b, Mohamed Saadi b, Moha Berraho a,*
PMCID: PMC4555421  PMID: 26396890

Abstract

The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methyl­ene-6,6,9-tri­methylbi­cyclo­[5.4.01,7]undec-8-ene) and β-himachalene (2,6,6,9-tetra­methylbi­cyclo­[5.4.01,7]undeca-1,8-diene), which were isolated from an oil of the Atlas cedar (Cedrus Atlantica). The naphthalene ring system makes dihedral angles of 68.6 (2) and 44.3 (2)°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, mol­ecules held together by a C—H⋯O inter­action, forming a chain along [-101].

Keywords: crystal structure, essential oil of the Atlas cedar, nitro-naphthalene, C—H⋯O inter­action

Related literature  

For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011); Loubidi et al. (2014). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013); Zaki et al. (2014); Benharref et al. (2015). For anti­fungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004).graphic file with name e-71-0o659-scheme1.jpg

Experimental  

Crystal data  

  • C15H17NO2

  • M r = 243.30

  • Monoclinic, Inline graphic

  • a = 9.7637 (7) Å

  • b = 12.6508 (9) Å

  • c = 11.6162 (8) Å

  • β = 113.897 (2)°

  • V = 1311.82 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.35 × 0.30 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.652, T max = 0.746

  • 21437 measured reflections

  • 2686 independent reflections

  • 2164 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.147

  • S = 1.07

  • 2686 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409sup1.cif

e-71-0o659-sup1.cif (923.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409Isup2.hkl

e-71-0o659-Isup2.hkl (215KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014395/is5409Isup3.cml

. DOI: 10.1107/S2056989015014395/is5409fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

ac . DOI: 10.1107/S2056989015014395/is5409fig2.tif

Partial packing view showing the C—H⋯O inter­actions (dashed lines) and the formation of a chain along the ac diagonal.

CCDC reference: 1415866

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C9H9O2i 0.93 2.60 3.4823(18) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

supplementary crystallographic information

S1. Comment

The bicyclic sesquiterpenes, α- and β-himachalene, are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Oukhrib et al., 2013; Zaki et al., 2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).

The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon (10%) gives, with good yield, the mixture of arylhimachalene and 1-isopropyl- 4,7-dimethylnaphthalene with respective proportions of 85/15. Treatment of the 1-isopropyl-4,7-dimethylnaphthalene by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 70%. The structure of this new product was confirmed by its crystal structure (Fig. 1). Molecules are linked by a C9—H9···O2 contact (Table 1), forming a chain along [101] (Fig. 2).

S2. Experimental

In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduced 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, added dropwise through the dropping funnel 6 g (30 mmol) of 1-isopropyl-4,7-dimethylnaphthalene dissolved in 30 ml of dichloromethane. The reaction mixture was stirred for 4 h, then added 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 40 ml with water and dried over sodium sulfate and then concentrated under vacuum. The residue was subjected to chromatography on a column of silica gel with hexane-ethyl acetate (98/2) as eluent, to obtain 5 g (20 mmol) of the title compound which was recrystallized in hexane.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.98 Å (methine) and 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(aromatic and methine C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain along the ac diagonal.

Crystal data

C15H17NO2 F(000) = 520
Mr = 243.30 Dx = 1.232 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.7637 (7) Å Cell parameters from 2686 reflections
b = 12.6508 (9) Å θ = 2.3–26.4°
c = 11.6162 (8) Å µ = 0.08 mm1
β = 113.897 (2)° T = 296 K
V = 1311.82 (16) Å3 Box, colourless
Z = 4 0.45 × 0.35 × 0.30 mm

Data collection

Bruker APEXII CCD diffractometer 2686 independent reflections
Radiation source: fine-focus sealed tube 2164 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scans θmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→12
Tmin = 0.652, Tmax = 0.746 k = −15→15
21437 measured reflections l = −14→12

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.3258P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
2686 reflections Δρmax = 0.22 e Å3
167 parameters Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.48931 (16) 0.74540 (11) 0.55728 (13) 0.0410 (3)
C2 0.53127 (17) 0.79068 (11) 0.46989 (14) 0.0458 (4)
H2 0.4856 0.8530 0.4305 0.055*
C3 0.64274 (16) 0.74433 (12) 0.43844 (13) 0.0434 (3)
C4 0.71449 (15) 0.65180 (12) 0.48818 (13) 0.0426 (3)
C5 0.66896 (14) 0.60094 (11) 0.57753 (12) 0.0391 (3)
C6 0.73317 (18) 0.50374 (13) 0.63462 (15) 0.0506 (4)
H6 0.8081 0.4735 0.6153 0.061*
C7 0.68819 (19) 0.45344 (13) 0.71690 (15) 0.0540 (4)
H7 0.7323 0.3894 0.7520 0.065*
C8 0.57617 (17) 0.49648 (12) 0.74988 (13) 0.0464 (4)
C9 0.51403 (16) 0.59105 (12) 0.69828 (13) 0.0428 (3)
H9 0.4410 0.6204 0.7208 0.051*
C10 0.55666 (14) 0.64644 (11) 0.61141 (12) 0.0370 (3)
C11 0.37186 (18) 0.79765 (12) 0.59387 (16) 0.0509 (4)
H11 0.3962 0.7793 0.6820 0.061*
C12 0.2168 (2) 0.75490 (16) 0.5164 (2) 0.0741 (6)
H12A 0.1910 0.7690 0.4289 0.111*
H12B 0.1455 0.7886 0.5420 0.111*
H12C 0.2155 0.6800 0.5293 0.111*
C13 0.3728 (2) 0.91812 (14) 0.5855 (2) 0.0693 (5)
H13A 0.4727 0.9438 0.6317 0.104*
H13B 0.3074 0.9472 0.6207 0.104*
H13C 0.3388 0.9391 0.4989 0.104*
C14 0.82959 (18) 0.60027 (15) 0.45058 (17) 0.0592 (4)
H14A 0.8302 0.6348 0.3772 0.089*
H14B 0.8050 0.5270 0.4322 0.089*
H14C 0.9268 0.6062 0.5184 0.089*
C15 0.5277 (2) 0.43966 (15) 0.84114 (16) 0.0637 (5)
H15A 0.5986 0.4530 0.9257 0.096*
H15B 0.5228 0.3651 0.8247 0.096*
H15C 0.4307 0.4647 0.8312 0.096*
N1 0.67771 (18) 0.80420 (11) 0.34458 (13) 0.0576 (4)
O1 0.5730 (2) 0.84079 (13) 0.25427 (14) 0.0865 (5)
O2 0.80848 (18) 0.81719 (14) 0.36267 (14) 0.0869 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0427 (7) 0.0414 (7) 0.0442 (7) 0.0013 (6) 0.0230 (6) −0.0011 (6)
C2 0.0545 (8) 0.0401 (7) 0.0483 (8) 0.0027 (6) 0.0265 (7) 0.0034 (6)
C3 0.0503 (8) 0.0463 (8) 0.0409 (7) −0.0084 (6) 0.0261 (6) −0.0040 (6)
C4 0.0370 (7) 0.0527 (8) 0.0422 (7) −0.0046 (6) 0.0204 (6) −0.0091 (6)
C5 0.0344 (7) 0.0462 (8) 0.0368 (7) 0.0005 (5) 0.0145 (5) −0.0035 (6)
C6 0.0465 (8) 0.0531 (9) 0.0529 (8) 0.0121 (6) 0.0209 (7) 0.0009 (7)
C7 0.0576 (9) 0.0491 (8) 0.0495 (8) 0.0092 (7) 0.0157 (7) 0.0083 (7)
C8 0.0489 (8) 0.0496 (8) 0.0381 (7) −0.0055 (6) 0.0149 (6) 0.0019 (6)
C9 0.0432 (7) 0.0497 (8) 0.0403 (7) −0.0003 (6) 0.0219 (6) −0.0007 (6)
C10 0.0362 (6) 0.0408 (7) 0.0361 (7) −0.0010 (5) 0.0167 (5) −0.0027 (5)
C11 0.0559 (9) 0.0490 (9) 0.0586 (9) 0.0116 (7) 0.0344 (7) 0.0050 (7)
C12 0.0555 (10) 0.0673 (12) 0.1121 (16) 0.0006 (9) 0.0469 (11) −0.0110 (11)
C13 0.0697 (11) 0.0513 (10) 0.0976 (14) 0.0112 (8) 0.0450 (11) −0.0053 (9)
C14 0.0516 (9) 0.0752 (11) 0.0628 (10) 0.0041 (8) 0.0357 (8) −0.0067 (8)
C15 0.0735 (11) 0.0662 (11) 0.0514 (9) −0.0090 (9) 0.0253 (8) 0.0127 (8)
N1 0.0814 (10) 0.0541 (8) 0.0539 (8) −0.0129 (7) 0.0444 (8) −0.0072 (6)
O1 0.1158 (12) 0.0876 (10) 0.0662 (9) 0.0121 (9) 0.0474 (9) 0.0262 (8)
O2 0.0923 (10) 0.1066 (12) 0.0894 (10) −0.0334 (9) 0.0653 (9) −0.0057 (8)

Geometric parameters (Å, º)

C1—C2 1.3651 (19) C9—H9 0.9300
C1—C10 1.4353 (19) C11—C12 1.514 (3)
C1—C11 1.5256 (19) C11—C13 1.527 (2)
C2—C3 1.408 (2) C11—H11 0.9800
C2—H2 0.9300 C12—H12A 0.9600
C3—C4 1.366 (2) C12—H12B 0.9600
C3—N1 1.4767 (18) C12—H12C 0.9600
C4—C5 1.4362 (19) C13—H13A 0.9600
C4—C14 1.5087 (19) C13—H13B 0.9600
C5—C6 1.417 (2) C13—H13C 0.9600
C5—C10 1.4276 (18) C14—H14A 0.9600
C6—C7 1.361 (2) C14—H14B 0.9600
C6—H6 0.9300 C14—H14C 0.9600
C7—C8 1.407 (2) C15—H15A 0.9600
C7—H7 0.9300 C15—H15B 0.9600
C8—C9 1.365 (2) C15—H15C 0.9600
C8—C15 1.507 (2) N1—O2 1.218 (2)
C9—C10 1.4223 (18) N1—O1 1.221 (2)
C2—C1—C10 118.00 (12) C1—C11—C13 112.97 (14)
C2—C1—C11 120.75 (13) C12—C11—H11 107.3
C10—C1—C11 121.24 (12) C1—C11—H11 107.3
C1—C2—C3 120.96 (13) C13—C11—H11 107.3
C1—C2—H2 119.5 C11—C12—H12A 109.5
C3—C2—H2 119.5 C11—C12—H12B 109.5
C4—C3—C2 124.38 (13) H12A—C12—H12B 109.5
C4—C3—N1 121.29 (13) C11—C12—H12C 109.5
C2—C3—N1 114.33 (13) H12A—C12—H12C 109.5
C3—C4—C5 115.69 (12) H12B—C12—H12C 109.5
C3—C4—C14 124.21 (13) C11—C13—H13A 109.5
C5—C4—C14 120.04 (14) C11—C13—H13B 109.5
C6—C5—C10 117.68 (12) H13A—C13—H13B 109.5
C6—C5—C4 121.27 (12) C11—C13—H13C 109.5
C10—C5—C4 121.05 (13) H13A—C13—H13C 109.5
C7—C6—C5 121.81 (14) H13B—C13—H13C 109.5
C7—C6—H6 119.1 C4—C14—H14A 109.5
C5—C6—H6 119.1 C4—C14—H14B 109.5
C6—C7—C8 121.20 (14) H14A—C14—H14B 109.5
C6—C7—H7 119.4 C4—C14—H14C 109.5
C8—C7—H7 119.4 H14A—C14—H14C 109.5
C9—C8—C7 118.42 (13) H14B—C14—H14C 109.5
C9—C8—C15 121.09 (15) C8—C15—H15A 109.5
C7—C8—C15 120.49 (15) C8—C15—H15B 109.5
C8—C9—C10 122.51 (13) H15A—C15—H15B 109.5
C8—C9—H9 118.7 C8—C15—H15C 109.5
C10—C9—H9 118.7 H15A—C15—H15C 109.5
C9—C10—C5 118.37 (12) H15B—C15—H15C 109.5
C9—C10—C1 121.79 (12) O2—N1—O1 123.46 (15)
C5—C10—C1 119.85 (12) O2—N1—C3 118.79 (15)
C12—C11—C1 111.31 (13) O1—N1—C3 117.71 (15)
C12—C11—C13 110.42 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O2i 0.93 2.60 3.4823 (18) 159

Symmetry code: (i) x−1/2, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5409).

References

  1. Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284–o285. [DOI] [PMC free article] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932. [DOI] [PubMed]
  4. El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.
  7. Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409sup1.cif

e-71-0o659-sup1.cif (923.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409Isup2.hkl

e-71-0o659-Isup2.hkl (215KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014395/is5409Isup3.cml

. DOI: 10.1107/S2056989015014395/is5409fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

ac . DOI: 10.1107/S2056989015014395/is5409fig2.tif

Partial packing view showing the C—H⋯O inter­actions (dashed lines) and the formation of a chain along the ac diagonal.

CCDC reference: 1415866

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES