Abstract
The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methylene-6,6,9-trimethylbicyclo[5.4.01,7]undec-8-ene) and β-himachalene (2,6,6,9-tetramethylbicyclo[5.4.01,7]undeca-1,8-diene), which were isolated from an oil of the Atlas cedar (Cedrus Atlantica). The naphthalene ring system makes dihedral angles of 68.6 (2) and 44.3 (2)°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, molecules held together by a C—H⋯O interaction, forming a chain along [-101].
Keywords: crystal structure, essential oil of the Atlas cedar, nitro-naphthalene, C—H⋯O interaction
Related literature
For the main constituents of the essential oil of the Atlas cedar, see: El Haib et al. (2011 ▸); Loubidi et al. (2014 ▸). For the reactivity of these sesquiterpenes and their derivatives, see: Oukhrib et al. (2013 ▸); Zaki et al. (2014 ▸); Benharref et al. (2015 ▸). For antifungal activity of these sesquiterpenes and derivatives, see: Daoubi et al. (2004 ▸).
Experimental
Crystal data
C15H17NO2
M r = 243.30
Monoclinic,
a = 9.7637 (7) Å
b = 12.6508 (9) Å
c = 11.6162 (8) Å
β = 113.897 (2)°
V = 1311.82 (16) Å3
Z = 4
Mo Kα radiation
μ = 0.08 mm−1
T = 296 K
0.45 × 0.35 × 0.30 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▸) T min = 0.652, T max = 0.746
21437 measured reflections
2686 independent reflections
2164 reflections with I > 2σ(I)
R int = 0.027
Refinement
R[F 2 > 2σ(F 2)] = 0.047
wR(F 2) = 0.147
S = 1.07
2686 reflections
167 parameters
H-atom parameters constrained
Δρmax = 0.22 e Å−3
Δρmin = −0.17 e Å−3
Data collection: APEX2 (Bruker, 2009 ▸); cell refinement: SAINT (Bruker, 2009 ▸); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015 ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸); software used to prepare material for publication: WinGX (Farrugia, 2012 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015014395/is5409Isup3.cml
. DOI: 10.1107/S2056989015014395/is5409fig1.tif
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
ac . DOI: 10.1107/S2056989015014395/is5409fig2.tif
Partial packing view showing the C—H⋯O interactions (dashed lines) and the formation of a chain along the ac diagonal.
CCDC reference: 1415866
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| C9H9O2i | 0.93 | 2.60 | 3.4823(18) | 159 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.
supplementary crystallographic information
S1. Comment
The bicyclic sesquiterpenes, α- and β-himachalene, are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Oukhrib et al., 2013; Zaki et al., 2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).
The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon (10%) gives, with good yield, the mixture of arylhimachalene and 1-isopropyl- 4,7-dimethylnaphthalene with respective proportions of 85/15. Treatment of the 1-isopropyl-4,7-dimethylnaphthalene by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 70%. The structure of this new product was confirmed by its crystal structure (Fig. 1). Molecules are linked by a C9—H9···O2 contact (Table 1), forming a chain along [101] (Fig. 2).
S2. Experimental
In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduced 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, added dropwise through the dropping funnel 6 g (30 mmol) of 1-isopropyl-4,7-dimethylnaphthalene dissolved in 30 ml of dichloromethane. The reaction mixture was stirred for 4 h, then added 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 40 ml with water and dried over sodium sulfate and then concentrated under vacuum. The residue was subjected to chromatography on a column of silica gel with hexane-ethyl acetate (98/2) as eluent, to obtain 5 g (20 mmol) of the title compound which was recrystallized in hexane.
S3. Refinement
All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.98 Å (methine) and 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(aromatic and methine C) or 1.5Ueq(methyl C).
Figures
Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.

Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain along the ac diagonal.
Crystal data
| C15H17NO2 | F(000) = 520 |
| Mr = 243.30 | Dx = 1.232 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 9.7637 (7) Å | Cell parameters from 2686 reflections |
| b = 12.6508 (9) Å | θ = 2.3–26.4° |
| c = 11.6162 (8) Å | µ = 0.08 mm−1 |
| β = 113.897 (2)° | T = 296 K |
| V = 1311.82 (16) Å3 | Box, colourless |
| Z = 4 | 0.45 × 0.35 × 0.30 mm |
Data collection
| Bruker APEXII CCD diffractometer | 2686 independent reflections |
| Radiation source: fine-focus sealed tube | 2164 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.027 |
| ω and φ scans | θmax = 26.4°, θmin = 2.3° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→12 |
| Tmin = 0.652, Tmax = 0.746 | k = −15→15 |
| 21437 measured reflections | l = −14→12 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
| wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0738P)2 + 0.3258P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max = 0.001 |
| 2686 reflections | Δρmax = 0.22 e Å−3 |
| 167 parameters | Δρmin = −0.17 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.48931 (16) | 0.74540 (11) | 0.55728 (13) | 0.0410 (3) | |
| C2 | 0.53127 (17) | 0.79068 (11) | 0.46989 (14) | 0.0458 (4) | |
| H2 | 0.4856 | 0.8530 | 0.4305 | 0.055* | |
| C3 | 0.64274 (16) | 0.74433 (12) | 0.43844 (13) | 0.0434 (3) | |
| C4 | 0.71449 (15) | 0.65180 (12) | 0.48818 (13) | 0.0426 (3) | |
| C5 | 0.66896 (14) | 0.60094 (11) | 0.57753 (12) | 0.0391 (3) | |
| C6 | 0.73317 (18) | 0.50374 (13) | 0.63462 (15) | 0.0506 (4) | |
| H6 | 0.8081 | 0.4735 | 0.6153 | 0.061* | |
| C7 | 0.68819 (19) | 0.45344 (13) | 0.71690 (15) | 0.0540 (4) | |
| H7 | 0.7323 | 0.3894 | 0.7520 | 0.065* | |
| C8 | 0.57617 (17) | 0.49648 (12) | 0.74988 (13) | 0.0464 (4) | |
| C9 | 0.51403 (16) | 0.59105 (12) | 0.69828 (13) | 0.0428 (3) | |
| H9 | 0.4410 | 0.6204 | 0.7208 | 0.051* | |
| C10 | 0.55666 (14) | 0.64644 (11) | 0.61141 (12) | 0.0370 (3) | |
| C11 | 0.37186 (18) | 0.79765 (12) | 0.59387 (16) | 0.0509 (4) | |
| H11 | 0.3962 | 0.7793 | 0.6820 | 0.061* | |
| C12 | 0.2168 (2) | 0.75490 (16) | 0.5164 (2) | 0.0741 (6) | |
| H12A | 0.1910 | 0.7690 | 0.4289 | 0.111* | |
| H12B | 0.1455 | 0.7886 | 0.5420 | 0.111* | |
| H12C | 0.2155 | 0.6800 | 0.5293 | 0.111* | |
| C13 | 0.3728 (2) | 0.91812 (14) | 0.5855 (2) | 0.0693 (5) | |
| H13A | 0.4727 | 0.9438 | 0.6317 | 0.104* | |
| H13B | 0.3074 | 0.9472 | 0.6207 | 0.104* | |
| H13C | 0.3388 | 0.9391 | 0.4989 | 0.104* | |
| C14 | 0.82959 (18) | 0.60027 (15) | 0.45058 (17) | 0.0592 (4) | |
| H14A | 0.8302 | 0.6348 | 0.3772 | 0.089* | |
| H14B | 0.8050 | 0.5270 | 0.4322 | 0.089* | |
| H14C | 0.9268 | 0.6062 | 0.5184 | 0.089* | |
| C15 | 0.5277 (2) | 0.43966 (15) | 0.84114 (16) | 0.0637 (5) | |
| H15A | 0.5986 | 0.4530 | 0.9257 | 0.096* | |
| H15B | 0.5228 | 0.3651 | 0.8247 | 0.096* | |
| H15C | 0.4307 | 0.4647 | 0.8312 | 0.096* | |
| N1 | 0.67771 (18) | 0.80420 (11) | 0.34458 (13) | 0.0576 (4) | |
| O1 | 0.5730 (2) | 0.84079 (13) | 0.25427 (14) | 0.0865 (5) | |
| O2 | 0.80848 (18) | 0.81719 (14) | 0.36267 (14) | 0.0869 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0427 (7) | 0.0414 (7) | 0.0442 (7) | 0.0013 (6) | 0.0230 (6) | −0.0011 (6) |
| C2 | 0.0545 (8) | 0.0401 (7) | 0.0483 (8) | 0.0027 (6) | 0.0265 (7) | 0.0034 (6) |
| C3 | 0.0503 (8) | 0.0463 (8) | 0.0409 (7) | −0.0084 (6) | 0.0261 (6) | −0.0040 (6) |
| C4 | 0.0370 (7) | 0.0527 (8) | 0.0422 (7) | −0.0046 (6) | 0.0204 (6) | −0.0091 (6) |
| C5 | 0.0344 (7) | 0.0462 (8) | 0.0368 (7) | 0.0005 (5) | 0.0145 (5) | −0.0035 (6) |
| C6 | 0.0465 (8) | 0.0531 (9) | 0.0529 (8) | 0.0121 (6) | 0.0209 (7) | 0.0009 (7) |
| C7 | 0.0576 (9) | 0.0491 (8) | 0.0495 (8) | 0.0092 (7) | 0.0157 (7) | 0.0083 (7) |
| C8 | 0.0489 (8) | 0.0496 (8) | 0.0381 (7) | −0.0055 (6) | 0.0149 (6) | 0.0019 (6) |
| C9 | 0.0432 (7) | 0.0497 (8) | 0.0403 (7) | −0.0003 (6) | 0.0219 (6) | −0.0007 (6) |
| C10 | 0.0362 (6) | 0.0408 (7) | 0.0361 (7) | −0.0010 (5) | 0.0167 (5) | −0.0027 (5) |
| C11 | 0.0559 (9) | 0.0490 (9) | 0.0586 (9) | 0.0116 (7) | 0.0344 (7) | 0.0050 (7) |
| C12 | 0.0555 (10) | 0.0673 (12) | 0.1121 (16) | 0.0006 (9) | 0.0469 (11) | −0.0110 (11) |
| C13 | 0.0697 (11) | 0.0513 (10) | 0.0976 (14) | 0.0112 (8) | 0.0450 (11) | −0.0053 (9) |
| C14 | 0.0516 (9) | 0.0752 (11) | 0.0628 (10) | 0.0041 (8) | 0.0357 (8) | −0.0067 (8) |
| C15 | 0.0735 (11) | 0.0662 (11) | 0.0514 (9) | −0.0090 (9) | 0.0253 (8) | 0.0127 (8) |
| N1 | 0.0814 (10) | 0.0541 (8) | 0.0539 (8) | −0.0129 (7) | 0.0444 (8) | −0.0072 (6) |
| O1 | 0.1158 (12) | 0.0876 (10) | 0.0662 (9) | 0.0121 (9) | 0.0474 (9) | 0.0262 (8) |
| O2 | 0.0923 (10) | 0.1066 (12) | 0.0894 (10) | −0.0334 (9) | 0.0653 (9) | −0.0057 (8) |
Geometric parameters (Å, º)
| C1—C2 | 1.3651 (19) | C9—H9 | 0.9300 |
| C1—C10 | 1.4353 (19) | C11—C12 | 1.514 (3) |
| C1—C11 | 1.5256 (19) | C11—C13 | 1.527 (2) |
| C2—C3 | 1.408 (2) | C11—H11 | 0.9800 |
| C2—H2 | 0.9300 | C12—H12A | 0.9600 |
| C3—C4 | 1.366 (2) | C12—H12B | 0.9600 |
| C3—N1 | 1.4767 (18) | C12—H12C | 0.9600 |
| C4—C5 | 1.4362 (19) | C13—H13A | 0.9600 |
| C4—C14 | 1.5087 (19) | C13—H13B | 0.9600 |
| C5—C6 | 1.417 (2) | C13—H13C | 0.9600 |
| C5—C10 | 1.4276 (18) | C14—H14A | 0.9600 |
| C6—C7 | 1.361 (2) | C14—H14B | 0.9600 |
| C6—H6 | 0.9300 | C14—H14C | 0.9600 |
| C7—C8 | 1.407 (2) | C15—H15A | 0.9600 |
| C7—H7 | 0.9300 | C15—H15B | 0.9600 |
| C8—C9 | 1.365 (2) | C15—H15C | 0.9600 |
| C8—C15 | 1.507 (2) | N1—O2 | 1.218 (2) |
| C9—C10 | 1.4223 (18) | N1—O1 | 1.221 (2) |
| C2—C1—C10 | 118.00 (12) | C1—C11—C13 | 112.97 (14) |
| C2—C1—C11 | 120.75 (13) | C12—C11—H11 | 107.3 |
| C10—C1—C11 | 121.24 (12) | C1—C11—H11 | 107.3 |
| C1—C2—C3 | 120.96 (13) | C13—C11—H11 | 107.3 |
| C1—C2—H2 | 119.5 | C11—C12—H12A | 109.5 |
| C3—C2—H2 | 119.5 | C11—C12—H12B | 109.5 |
| C4—C3—C2 | 124.38 (13) | H12A—C12—H12B | 109.5 |
| C4—C3—N1 | 121.29 (13) | C11—C12—H12C | 109.5 |
| C2—C3—N1 | 114.33 (13) | H12A—C12—H12C | 109.5 |
| C3—C4—C5 | 115.69 (12) | H12B—C12—H12C | 109.5 |
| C3—C4—C14 | 124.21 (13) | C11—C13—H13A | 109.5 |
| C5—C4—C14 | 120.04 (14) | C11—C13—H13B | 109.5 |
| C6—C5—C10 | 117.68 (12) | H13A—C13—H13B | 109.5 |
| C6—C5—C4 | 121.27 (12) | C11—C13—H13C | 109.5 |
| C10—C5—C4 | 121.05 (13) | H13A—C13—H13C | 109.5 |
| C7—C6—C5 | 121.81 (14) | H13B—C13—H13C | 109.5 |
| C7—C6—H6 | 119.1 | C4—C14—H14A | 109.5 |
| C5—C6—H6 | 119.1 | C4—C14—H14B | 109.5 |
| C6—C7—C8 | 121.20 (14) | H14A—C14—H14B | 109.5 |
| C6—C7—H7 | 119.4 | C4—C14—H14C | 109.5 |
| C8—C7—H7 | 119.4 | H14A—C14—H14C | 109.5 |
| C9—C8—C7 | 118.42 (13) | H14B—C14—H14C | 109.5 |
| C9—C8—C15 | 121.09 (15) | C8—C15—H15A | 109.5 |
| C7—C8—C15 | 120.49 (15) | C8—C15—H15B | 109.5 |
| C8—C9—C10 | 122.51 (13) | H15A—C15—H15B | 109.5 |
| C8—C9—H9 | 118.7 | C8—C15—H15C | 109.5 |
| C10—C9—H9 | 118.7 | H15A—C15—H15C | 109.5 |
| C9—C10—C5 | 118.37 (12) | H15B—C15—H15C | 109.5 |
| C9—C10—C1 | 121.79 (12) | O2—N1—O1 | 123.46 (15) |
| C5—C10—C1 | 119.85 (12) | O2—N1—C3 | 118.79 (15) |
| C12—C11—C1 | 111.31 (13) | O1—N1—C3 | 117.71 (15) |
| C12—C11—C13 | 110.42 (15) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C9—H9···O2i | 0.93 | 2.60 | 3.4823 (18) | 159 |
Symmetry code: (i) x−1/2, −y+3/2, z+1/2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5409).
References
- Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284–o285. [DOI] [PMC free article] [PubMed]
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932. [DOI] [PubMed]
- El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.
- Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014395/is5409Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015014395/is5409Isup3.cml
. DOI: 10.1107/S2056989015014395/is5409fig1.tif
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
ac . DOI: 10.1107/S2056989015014395/is5409fig2.tif
Partial packing view showing the C—H⋯O interactions (dashed lines) and the formation of a chain along the ac diagonal.
CCDC reference: 1415866
Additional supporting information: crystallographic information; 3D view; checkCIF report
