Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 22;71(Pt 9):1067–1069. doi: 10.1107/S205698901501556X

Crystal structure of trans-bis­{4-bromo-N-[(pyridin-2-yl)­methyl­idene]aniline-κ2 N,N′}di­chlorido­ruthenium(II)

Kittipong Chainok a, Filip Kielar a,*
PMCID: PMC4555422  PMID: 26396850

The RuII atom in the title complex is surrounded by a distorted Cl2N4 coordination set. In the crystal structure, adjacent complex mol­ecules are connected through C—H⋯Cl hydrogen-bonding inter­actions into a layered arrangement parallel to (100). Additional C—H⋯Br hydrogen-bonding inter­actions along with π–π stacking inter­actions complete a three-dimensional supra­molecular network.

Keywords: crystal structure, Schiff base ligand, π–π stacking, ruthenium(II)

Abstract

In the title complex, [RuCl2(C12H9BrN2)2] or [RuCl2(PM-BrA)2] (PM-BrA = 4-bromo-N-(2′-pyridyl­methyl­ene)aniline), the RuII cation is located on a centre of inversion and is surrounded by four N atoms of two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement, displaying a distorted octa­hedral coordination environment. Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The benzene and pyridine rings of the PM-BrA ligand are oriented at dihedral angles of 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring. In the crystal, the complex mol­ecules are connected via C—H⋯Cl hydrogen-bonding inter­actions into a layered arrangement parallel (100). C—H⋯Br hydrogen bonding and weak aromatic π–π stacking inter­actions complete a three-dimensional supra­molecular network.

Chemical context  

Bidentate Schiff bases are one of the most widely used ligands in coordination chemistry. Their complexes have found utility in a wide range of applications (Rezaeivala & Keypour, 2014; Gupta & Sutar, 2008). In particular, ruthenium(II) complexes of Schiff bases have been shown to display a variety of structural features and exhibit inter­esting biological and catalytic reactivities (Li et al., 2015; Wang et al., 2015; Drozdzak et al., 2005). Herein, we report the synthesis and crystal structure of a ruthenium(II) complex with the bidentate Schiff base ligand of 4-bromo-N-(2′-pyridyl­methyl­ene)aniline (PM-BrA), [RuCl2(C12H9BrN2)2], (I).graphic file with name e-71-01067-scheme1.jpg

Structural commentary  

The asymmetric unit of compound (I) contains one half of the complex mol­ecule with the RuII cation lying on an inversion centre (Fig. 1). The coordination environment around RuII is a distorted [Cl2N4] octa­hedron, whereby the metal is chelated by two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement. The ligand exhibits an N1⋯N2 bite distance of 2.585 (7) Å with an N1—Ru1—N2 bite angle of 76.9 (1)°. The reduced bite angle of the chelating ligand is one of the main factors accounting for the distortion from the ideal octa­hedral geometry of the coordination polyhedron, with the the largest cis angle being 103.1 (2)°. The Ru—N bond lengths are 2.073 (5) and 2.084 (5) Å, and the Ru—Cl bond length is 2.3908 (14) Å, in agreement with those observed in the structures of similar compounds (Roy et al., 2012). Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The dihedral angle between the least-square planes of the benzene and pyridine rings in the PM-BrA ligand are 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring.

Figure 1.

Figure 1

The mol­ecular structure of complex (I), showing displacement ellipsoids at the 50% probability level. Disorder is displayed for the C11 and C12 atoms of the benzene ring. [Symmetry operator: (i) −x + 1, −y + 1, −z.]

Supra­molecular features  

In the crystal, weak inter­molecular C—H⋯Cl hydrogen-bonding inter­actions between the C atoms of the benzene ring and the Cl atoms connect the complex mol­ecules into a supra­molecular layered arrangement parallel to (100) (Fig. 2). As shown in Fig. 3, a C—H⋯Br hydrogen bond between the phenyl C atoms and the Br atoms, along with weak aromatic π–π stacking inter­actions [centroid-to-centroid distance = 4.107 (4) Å, dihedral angle = 0.7 (3)°] complete a three-dimensional supra­molecular network. Numerical values of C—H⋯X (X = Cl, Br) inter­actions are compiled in Table 1.

Figure 2.

Figure 2

Crystal packing of complex (I) in a view along [100]. C—H⋯Cl hydrogen-bonding inter­actions are shown as dashed lines.

Figure 3.

Figure 3

Crystal packing and C—H⋯Br and C—H⋯Cl hydrogen-bonding inter­actions (dashed lines) in complex (I), viewed along [001].

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C8H8Cl1i 0.93 2.79 3.472(7) 132
C6H6Cl1ii 0.93 2.83 3.673(7) 151
C3H3Br1iii 0.93 3.13 3.797(8) 131
C4H4Cl1iv 0.93 2.94 3.529(7) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Database survey  

The structure of trans-[RuCl2(Hpyrimol)2] (Hpyrimol = 4-methyl-2-N-(2-pyridyl­methyl­ene)amino­phenol) with a closely related Schiff base N2 donor set for each ligand has been reported (Roy et al., 2012). The bond lengths and bond angles in this complex are in agreement with those in the structure of (I). A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) gave 12 hits for complexes involving transition metals and the ligand PM-BrA (KISZIX, KISZOD, KISZUJ, Davies et al., 2014; XEDCUG, Khalaji et al., 2012; UNIZOH, Harding et al., 2011; SUYDAS, Harding et al., 2010; FOWBOJ, Khalaj et al., 2009; FOWBID, Mahmoudi et al., 2009; MOYDUA, Dehghanpour et al., 2009; TULKIV, Gao et al., 2009; YOCZAS, Khalaj et al., 2008; YOCZEW, Mahmoudi et al., 2008).

Synthesis and crystallization  

A solution of the ligand 4-bromo-N-(2′-pyridyl­methyl­ene)aniline (104.4 mg, 0.4 mmol) in dry methanol (5 ml) was placed in a test tube. A solution of RuCl3 (41.5 mg, 0.2 mmol) in dry methanol (5 ml) was then carefully layered on the top of a methano­lic solution. After slow diffusion at room temperature for three days, pale-green plate- or block-like crystals of complex (I) were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were positioned with idealized geometry and refined with U iso(H) = 1.2U eq(C) using a riding model with C—H = 0.95 Å. C atoms C11 and C12 and attached H atoms in the benzene ring are disordered over two set of sites and were refined using a split model with equal occupancy.

Table 2. Experimental details.

Crystal data
Chemical formula [RuCl2(C12H9BrN2)]
M r 694.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c () 12.3270(7), 13.3114(7), 7.9673(4)
() 100.091(2)
V (3) 1287.13(12)
Z 2
Radiation type Mo K
(mm1) 3.94
Crystal size (mm) 0.26 0.20 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.549, 0.745
No. of measured, independent and observed [I > 2(I)] reflections 15951, 2391, 1844
R int 0.054
(sin /)max (1) 0.607
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.054, 0.152, 1.04
No. of reflections 2391
No. of parameters 170
No. of restraints 73
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.96, 1.29

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2007 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501556X/wm5204sup1.cif

e-71-01067-sup1.cif (487.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501556X/wm5204Isup2.hkl

e-71-01067-Isup2.hkl (191.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501556X/wm5204Isup3.cdx

CCDC reference: 1419653

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support provided by the National Research Council of Thailand through the Naresuan University Research Scholar (Contact No. R2557B081).

supplementary crystallographic information

Crystal data

[RuCl2(C12H9BrN2)] F(000) = 676
Mr = 694.21 Dx = 1.791 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.3270 (7) Å Cell parameters from 4475 reflections
b = 13.3114 (7) Å θ = 3.0–25.4°
c = 7.9673 (4) Å µ = 3.94 mm1
β = 100.091 (2)° T = 296 K
V = 1287.13 (12) Å3 Block, green
Z = 2 0.26 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 1844 reflections with I > 2σ(I)
φ and ω scans Rint = 0.054
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 25.6°, θmin = 3.0°
Tmin = 0.549, Tmax = 0.745 h = −14→14
15951 measured reflections k = −16→16
2391 independent reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0854P)2 + 2.577P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2391 reflections Δρmax = 0.96 e Å3
170 parameters Δρmin = −1.29 e Å3
73 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.5000 0.5000 0.0000 0.0438 (2)
Cl1 0.58971 (14) 0.46179 (12) 0.28373 (18) 0.0584 (4)
Br1 −0.03134 (9) 0.59834 (15) 0.3013 (2) 0.1661 (8)
N1 0.6046 (4) 0.6219 (4) −0.0113 (6) 0.0497 (11)
N2 0.4128 (4) 0.6192 (4) 0.0781 (6) 0.0503 (11)
C7 0.3075 (5) 0.6159 (5) 0.1302 (8) 0.0563 (14)
C8 0.3001 (6) 0.5804 (5) 0.2904 (8) 0.0631 (16)
H8 0.3635 0.5596 0.3632 0.076*
C6 0.4524 (6) 0.7073 (5) 0.0614 (8) 0.0600 (16)
H6 0.4143 0.7650 0.0817 0.072*
C5 0.5584 (5) 0.7125 (4) 0.0100 (8) 0.0555 (14)
C9 0.2001 (7) 0.5755 (6) 0.3439 (10) 0.079 (2)
H9 0.1950 0.5530 0.4528 0.094*
C3 0.7127 (7) 0.8027 (6) −0.0497 (11) 0.080 (2)
H3 0.7478 0.8626 −0.0679 0.096*
C4 0.6092 (7) 0.8027 (5) −0.0099 (10) 0.075 (2)
H4 0.5736 0.8630 0.0035 0.090*
C1 0.7073 (6) 0.6224 (5) −0.0410 (10) 0.0713 (19)
H1 0.7433 0.5616 −0.0482 0.086*
C10 0.1078 (7) 0.6047 (8) 0.2316 (13) 0.095 (3)
C11B 0.113 (3) 0.624 (4) 0.061 (3) 0.087 (7) 0.50 (9)
H11B 0.0484 0.6332 −0.0171 0.105* 0.50 (9)
C2 0.7629 (7) 0.7123 (6) −0.0620 (11) 0.082 (2)
H2 0.8344 0.7102 −0.0844 0.099*
C12B 0.2127 (19) 0.630 (4) 0.010 (4) 0.078 (7) 0.50 (9)
H12B 0.2170 0.6422 −0.1035 0.093* 0.50 (9)
C12A 0.2157 (19) 0.661 (3) 0.035 (6) 0.077 (7) 0.50 (9)
H12A 0.2222 0.6925 −0.0674 0.092* 0.50 (9)
C11A 0.116 (3) 0.660 (4) 0.087 (5) 0.095 (8) 0.50 (9)
H11A 0.0561 0.6956 0.0276 0.114* 0.50 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.0540 (4) 0.0368 (3) 0.0405 (4) 0.0017 (3) 0.0078 (3) 0.0008 (3)
Cl1 0.0767 (10) 0.0531 (8) 0.0423 (7) 0.0036 (8) 0.0016 (6) 0.0044 (6)
Br1 0.0811 (7) 0.2433 (19) 0.1885 (15) 0.0388 (9) 0.0645 (8) 0.0555 (13)
N1 0.061 (3) 0.043 (3) 0.046 (3) −0.002 (2) 0.011 (2) −0.002 (2)
N2 0.061 (3) 0.048 (3) 0.041 (2) 0.004 (2) 0.008 (2) 0.000 (2)
C7 0.063 (3) 0.053 (3) 0.054 (3) 0.015 (3) 0.012 (3) 0.001 (3)
C8 0.063 (4) 0.074 (4) 0.052 (4) 0.011 (3) 0.010 (3) 0.008 (3)
C6 0.073 (4) 0.041 (3) 0.065 (4) 0.007 (3) 0.011 (3) −0.001 (3)
C5 0.067 (4) 0.041 (3) 0.057 (3) 0.000 (3) 0.006 (3) 0.005 (3)
C9 0.078 (5) 0.090 (5) 0.072 (5) 0.005 (4) 0.026 (4) 0.007 (4)
C3 0.080 (5) 0.057 (4) 0.102 (6) −0.015 (4) 0.013 (4) 0.004 (4)
C4 0.081 (5) 0.046 (4) 0.097 (6) −0.003 (4) 0.014 (4) 0.010 (3)
C1 0.069 (4) 0.051 (4) 0.097 (5) −0.001 (3) 0.024 (4) −0.006 (3)
C10 0.063 (4) 0.123 (7) 0.106 (6) 0.029 (5) 0.033 (4) 0.023 (5)
C11B 0.064 (7) 0.112 (18) 0.084 (8) 0.034 (12) 0.009 (8) 0.014 (10)
C2 0.067 (4) 0.079 (5) 0.105 (6) −0.018 (4) 0.026 (4) −0.006 (4)
C12B 0.069 (8) 0.099 (19) 0.064 (9) 0.028 (10) 0.010 (5) 0.019 (11)
C12A 0.071 (8) 0.077 (16) 0.081 (12) 0.015 (9) 0.010 (7) 0.027 (11)
C11A 0.061 (7) 0.111 (19) 0.111 (12) 0.016 (12) 0.009 (10) 0.037 (12)

Geometric parameters (Å, º)

Ru1—Cl1 2.3908 (14) C5—C4 1.376 (9)
Ru1—Cl1i 2.3907 (14) C9—H9 0.9300
Ru1—N1 2.084 (5) C9—C10 1.374 (12)
Ru1—N1i 2.084 (5) C3—H3 0.9300
Ru1—N2i 2.073 (5) C3—C4 1.367 (11)
Ru1—N2 2.073 (5) C3—C2 1.365 (11)
Br1—C10 1.895 (8) C4—H4 0.9300
N1—C5 1.356 (8) C1—H1 0.9300
N1—C1 1.328 (8) C1—C2 1.403 (10)
N2—C7 1.432 (8) C10—C11B 1.392 (17)
N2—C6 1.286 (8) C10—C11A 1.391 (17)
C7—C8 1.379 (9) C11B—H11B 0.9300
C7—C12B 1.387 (15) C11B—C12B 1.365 (17)
C7—C12A 1.385 (15) C2—H2 0.9300
C8—H8 0.9300 C12B—H12B 0.9300
C8—C9 1.374 (10) C12A—H12A 0.9300
C6—H6 0.9300 C12A—C11A 1.364 (17)
C6—C5 1.438 (9) C11A—H11A 0.9300
Cl1i—Ru1—Cl1 180.0 C4—C5—C6 122.0 (6)
N1—Ru1—Cl1 91.11 (14) C8—C9—H9 121.0
N1i—Ru1—Cl1 88.89 (14) C10—C9—C8 118.0 (7)
N1i—Ru1—Cl1i 91.11 (14) C10—C9—H9 121.0
N1—Ru1—Cl1i 88.89 (14) C4—C3—H3 121.0
N1—Ru1—N1i 180.0 (2) C2—C3—H3 121.0
N2i—Ru1—Cl1i 93.28 (13) C2—C3—C4 118.0 (7)
N2i—Ru1—Cl1 86.71 (13) C5—C4—H4 120.4
N2—Ru1—Cl1i 86.72 (13) C3—C4—C5 119.3 (7)
N2—Ru1—Cl1 93.29 (13) C3—C4—H4 120.4
N2i—Ru1—N1i 76.9 (2) N1—C1—H1 119.1
N2—Ru1—N1 76.9 (2) N1—C1—C2 121.7 (7)
N2i—Ru1—N1 103.1 (2) C2—C1—H1 119.1
N2—Ru1—N1i 103.1 (2) C9—C10—Br1 119.0 (7)
N2—Ru1—N2i 180.0 C9—C10—C11B 120.9 (15)
C5—N1—Ru1 114.3 (4) C9—C10—C11A 121.3 (16)
C1—N1—Ru1 128.9 (4) C11B—C10—Br1 119.4 (15)
C1—N1—C5 116.9 (5) C11A—C10—Br1 117.9 (17)
C7—N2—Ru1 127.4 (4) C10—C11B—H11B 120.0
C6—N2—Ru1 116.1 (4) C12B—C11B—C10 120 (3)
C6—N2—C7 116.0 (5) C12B—C11B—H11B 120.0
C8—C7—N2 119.3 (5) C3—C2—C1 120.4 (7)
C8—C7—C12B 120.0 (17) C3—C2—H2 119.8
C8—C7—C12A 118.5 (18) C1—C2—H2 119.8
C12B—C7—N2 119.5 (15) C7—C12B—H12B 120.7
C12A—C7—N2 121.5 (17) C11B—C12B—C7 119 (3)
C7—C8—H8 119.6 C11B—C12B—H12B 120.7
C9—C8—C7 120.8 (6) C7—C12A—H12A 119.3
C9—C8—H8 119.6 C11A—C12A—C7 121 (3)
N2—C6—H6 121.5 C11A—C12A—H12A 119.3
N2—C6—C5 117.0 (6) C10—C11A—H11A 121.4
C5—C6—H6 121.5 C12A—C11A—C10 117 (3)
N1—C5—C6 114.5 (5) C12A—C11A—H11A 121.4
N1—C5—C4 123.5 (6)
Ru1—N1—C5—C6 8.8 (7) C8—C7—C12B—C11B 11 (4)
Ru1—N1—C5—C4 −173.2 (6) C8—C7—C12A—C11A −8 (4)
Ru1—N1—C1—C2 173.2 (6) C8—C9—C10—Br1 179.8 (7)
Ru1—N2—C7—C8 76.6 (7) C8—C9—C10—C11B 10 (3)
Ru1—N2—C7—C12B −91 (3) C8—C9—C10—C11A −16 (3)
Ru1—N2—C7—C12A −113 (3) C6—N2—C7—C8 −111.0 (7)
Ru1—N2—C6—C5 −7.1 (8) C6—N2—C7—C12B 81 (3)
Br1—C10—C11B—C12B 179.5 (19) C6—N2—C7—C12A 59 (3)
Br1—C10—C11A—C12A −178 (2) C6—C5—C4—C3 176.3 (7)
N1—C5—C4—C3 −1.4 (11) C5—N1—C1—C2 −4.5 (11)
N1—C1—C2—C3 1.0 (13) C9—C10—C11B—C12B −10 (4)
N2—C7—C8—C9 −179.5 (7) C9—C10—C11A—C12A 18 (5)
N2—C7—C12B—C11B 178.6 (18) C4—C3—C2—C1 2.6 (13)
N2—C7—C12A—C11A −178 (2) C1—N1—C5—C6 −173.1 (6)
N2—C6—C5—N1 −1.3 (9) C1—N1—C5—C4 4.8 (10)
N2—C6—C5—C4 −179.3 (6) C10—C11B—C12B—C7 0 (4)
C7—N2—C6—C5 179.7 (6) C2—C3—C4—C5 −2.3 (12)
C7—C8—C9—C10 1.5 (12) C12B—C7—C8—C9 −12 (3)
C7—C12A—C11A—C10 −6 (4) C12A—C7—C8—C9 10 (3)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···Cl1ii 0.93 2.79 3.472 (7) 132
C6—H6···Cl1iii 0.93 2.83 3.673 (7) 151
C3—H3···Br1iv 0.93 3.13 3.797 (8) 131
C4—H4···Cl1v 0.93 2.94 3.529 (7) 122

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1, −y+3/2, z−1/2; (v) x, −y+3/2, z−1/2.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Davies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026–4039. [DOI] [PubMed]
  4. Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.
  7. Gao, Y., Zhang, Y.-C. & Zhao, J.-Q. (2009). Chin. J. Inorg. Chem 25, 1686–1989.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.
  10. Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138–m1139. [DOI] [PMC free article] [PubMed]
  11. Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2011). Acta Cryst. E67, m404–m405. [DOI] [PMC free article] [PubMed]
  12. Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018. [DOI] [PMC free article] [PubMed]
  13. Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890. [DOI] [PMC free article] [PubMed]
  14. Khalaji, A. D., Bahramian, B., Jafari, K., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, m1001–m1002. [DOI] [PMC free article] [PubMed]
  15. Li, F., Collins, J. G. & Keene, F. R. (2015). Chem. Soc. Rev. 44, 2529–2542. [DOI] [PubMed]
  16. Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889. [DOI] [PMC free article] [PubMed]
  17. Mahmoudi, A., Hajikazemi, M., Khalaj, M. & Dehghanpour, S. (2008). Acta Cryst. E64, m1019. [DOI] [PMC free article] [PubMed]
  18. Rezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203–253.
  19. Roy, S., Maheswari, P. U., Golobič, A., Kozlevčar, B. & Reedijk, J. (2012). Inorg. Chim. Acta, 393, 239–245.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Wang, C., Chen, Y. & Fu, W.-F. (2015). Dalton Trans. 44, 14483–14493. [DOI] [PubMed]
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501556X/wm5204sup1.cif

e-71-01067-sup1.cif (487.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501556X/wm5204Isup2.hkl

e-71-01067-Isup2.hkl (191.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501556X/wm5204Isup3.cdx

CCDC reference: 1419653

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES