Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 6;71(Pt 9):1003–1009. doi: 10.1107/S205698901501422X

The crystal structures of three 3-methyl-1H-1,2,4-triazole-5-thio­nes, including a second polymorph of 4-[(E)-(5-bromo-2-hy­droxy­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione and a redetermination of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione

Padmanabha S Manjula a, Balladka K Sarojini b, Hemmige S Yathirajan c,*, Mehmet Akkurt d, Cem Cüneyt Ersanlı e, Christopher Glidewell f
PMCID: PMC4555427  PMID: 26396835

The non-H atoms in the mol­ecules of three closely-related 4-amino-3-methyl-1H-1,2,4-triazole-5-thio­nes are either exactly or very nearly co-planar, and the compounds exhibit hydrogen-bonded supra­molecular assembly in two, one or zero dimensions.

Keywords: crystal structures; 1H-1,2,4-triazole-5-thio­nes; polymorphism; hydrogen bonding

Abstract

The structures of three 3-methyl-1H-1,2,4-triazole-5-thione derivatives are reported. The structure of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C3H6N4S, (I), has been redetermined with an improved model for the H atoms: the non-H atoms of (I) all lie on mirror planes in space group Pbcm, and the H atoms of the methyl group are disordered over two sets of reflection-related atomic sites having occupancy 0.5: two independent N—H⋯S hydrogen bonds link the mol­ecules of compound (I) into complex sheets. The non-H atoms in the mol­ecules of 4-[(E)-(3,4-di­meth­oxy­benzyl­idene)amino]-3-methyl-1H-1,2,4-tri­azol-5(4H)-thione, C12H14N4O2S, (II), despite lying in general positions are close to planar, with a dihedral angle between the two rings of 6.31 (10)°: the mol­ecules of compound (II) are linked by a three-centre N—H⋯(O)2 hydrogen bond into a C(10)C(11)[R 1 2(5)] chain of rings. A second polymorph of 4-[(E)-(5-bromo-2-hy­droxy-5-bromo­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C10H9BrN4OS, (III), has been identified; the non-H atoms are nearly co-planar with a dihedral angle between the two rings of 1.9 (4)°. There is an intra­molecular O—H⋯N hydrogen bond and the mol­ecules are linked by N—H⋯S hydrogen bonds, forming centrosymmetric R 2 2(8) dimers. Comparisons are made with some related structures.

Chemical context  

Heterocyclic compounds containing both nitro­gen and sulfur exhibit a wide variety of biological activities, including analgesic (Thieme et al., 1973a ,b ), anti­hypertensive (Wei & Bell, 1981a ,b ), and anti-inflammatory activity (Dornow et al., 1964), in addition to fungicidal (Malik et al., 2011) and sedative action (Barrera et al., 1985). Here we report the mol­ecular and crystal structures of three examples of 1,2,4-triazole-5-thio­nes, namely 4-amino-3-methyl-1H-1,2,4-triazole-5-thione, (I) (Fig. 1), 4-[(E)-(3,4-di­meth­oxy­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5-thione, (II) (Fig. 2), and 4-[(E)-(2-hy­droxy-5-bromo­benzyl­idene)amino]-3-methyl-1H-1,2,4-tri­azol-5-thione, (III) (Fig. 3).

Figure 1.

Figure 1

The mol­ecular structure of compound (I) showing the atom-labelling scheme. The non-H atoms all lie on a mirror plane and the H atom sites in the methyl group all have occupancy 0.5. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The mol­ecular structure of compound (III) in the monoclinic polymorph, showing the atom-labelling scheme and the intra­molecular O—H⋯N hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.

The structure of compound (I) was briefly reported a number of years ago (Escobar-Valderrama et al., 1989): however, there are some unexpected features in the reported structure, such as the implausibly wide range of the H—C—H angles in the methyl group, spanning the range 89–135°, and this report does not describe any supra­molecular inter­actions. A second report on this compound (Bigoli et al., 1990) did not include H-atom coordinates, while in a third report (Sarala et al., 2006) the structure was refined in space group Pca21. However, a detailed examination of the atomic coordinates in this latter report using PLATON (Spek, 2009) found a 100% fit to space group Pbcm, indicating that an incorrect space group had probably been selected by these authors. Hence none of the previous reports on compound (I) can be regarded as satisfactory. Accordingly we have now taken the opportunity to re-determine the structure of compound (I) and to analyse in detail the effects of the hydrogen bonding. Compounds (II) and (III) were both prepared by condensation of compound (I) with the appropriate aryl aldehyde: crystallization of compound (III) from acetic acid yields a monoclinic polymorph in space group P21/c, whereas crystallization from ethanol has been reported to provide a triclinic polymorph in space group P Inline graphic (Wang et al., 2008). However, the unit-cell dimensions and the space group for (I) together confirm that the form of (I) studied here is the same as that in the original report, despite the use of different crystallization solvents, methanol here as opposed to ethanol in the original report.graphic file with name e-71-01003-scheme1.jpg

Structural commentary  

Compound (I) crystallizes in the fairly uncommon ortho­rhom­bic space group Pbcm, which is represented by just 772 examples (about 0.06% of all entries) in the June 2015 release of the Cambridge Structural Database (Groom & Allen, 2014). All of the non-H atoms lie on a crystallographic mirror plane. The reference mol­ecule was selected as one lying on the plane at z = 1/4, and the orientation of the methyl group is such that the H atoms of this group are disordered over two sets of sites, all having occupancy 0.5 (Fig. 1). Although the mol­ecules of compounds (II) and (III) lie in general positions, the non-H atoms are close to co-planar in each case: an intra­molecular O—H⋯N hydrogen bond in (III) (Table 2) may contribute to this. Thus in compound (II) the dihedral angle between the two ring planes is 6.31 (10)° and, of the atoms in the mol­ecular skeleton, the maximum deviation from the mean plane of the skeletal atoms is 0.097 (2) Å for atom N41, with an r.m.s. deviation of 0.072 Å. In compound (III), the dihedral angle between the two ring planes is just 1.9 (4)°, and the maximum deviation of any atom from the mean plane of the mol­ecular skeleton is 0.038 (5) Å for atom C26, with an r.m.s deviation of 0.020 Å.

The meth­oxy C atoms in compound (II) are almost co-planar with the adjacent aryl ring, as indicated by the relevant torsional angles (Table 1), and the deviations of the two atoms from the plane of the aryl ring (C21–C26) are 0.017 (5) Å for atom C231 and 0.125 (5) Å for atom C241. Consistent with this, the pairs of exocyclic C—C—O angles at atoms C23 and C24 differ by ca 10°, as typically found when meth­oxy groups are co-planar with an aryl ring (Seip & Seip, 1973; Ferguson et al., 1996). Corresponding bond distances within the triazole rings (Table 1) are very similar for all three compounds, as well as for the two polymorphs of compound (III): the values provide evidence for strong bond localization within the ring, with little or no hint of any aromatic-type delocalization, despite the presence of six π-electrons in rings of this type.

Table 1. Selected geometric parameters (Å, °) for compounds (I)–(III).

Parameter (I) (II) (III) (III)
      P21/c P Inline graphic
N1—N2 1.390 (2) 1.378 (3) 1.366 (7) 1.370 (5)
N2—C3 1.299 (3) 1.293 (3) 1.296 (7) 1.312 (5)
C3—N4 1.370 (3) 1.376 (3) 1.378 (7) 1.381 (5)
N4—C5 1.371 (2) 1.385 (3) 1.392 (7) 1.375 (5)
C5—N1 1.311 (2) 1.377 (3) 1.338 (7) 1.336 (5)
N4—N41 1.406 (2) 1.399 (3) 1.398 (7) 1.409 (5)
C5—S51 1.6833 (19) 1.675 (2) 1.644 (7) 1.681 (4)
N41—C27   1.261 (3) 1.279 (7) 1.285 (5)
         
N4—N41—C27   118.63 (19) 119.4 (5) 113.7 (3)
N41—C27—C21   121.6 (2) 119.0 (5) 120.0 (4)
C22—C23—O23   125.4 (2)    
C24—C23—O23   114.48 (19)    
C23—C24—O24   115.10 (19)    
C25—C24—O24   125.3 (2)    
         
N4—N41—C27—C21   −179.2 (2) −179.2 (5) 176.5 (3)
N41—C27—C21—C22   4.9 (4) 0.5 (9) −5.4 (6)
C22—C23—O23—C231   1.0 (4)    
C25—C24—O24—C241   −3.2 (4)    

Numerical data for the triclinic polymorph of compound (III) have been taken from the original report (Wang et al., 2008), but the atom labels have been adjusted to match the systematic labels used for the structures reported here.

Supra­molecular inter­actions  

In the crystal structure of compound (I) two independent hydrogen bonds (Table 2) of N—H⋯S type (Allen et al., 1997) link the mol­ecules into complex sheets, whose formation is readily analysed in terms of two simple one-dimensional sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). In the simpler of these two-sub-structures, mol­ecules related by the 21screw axis along (1/2, y, 1/4) are linked by a hydrogen bond involving the ring N—H unit as the donor, forming a C(4) chain running parallel to the [010] direction (Fig. 4). The H atoms of the amino group also act as hydrogen-bond donors, and the effect is to link mol­ecules related by the 21 screw axis along (1/2, 1/2, z) to form a chain of edge-fused Inline graphic(10) rings running parallel to the [001] direction (Fig. 5). The combination of these two chain motifs, along [010] and [001] respectively, gives rise to a sheet lying parallel to (100) (Fig. 6): just one sheet of this type passes through each unit cell, but there are no direction-specific inter­actions between adjacent sheets. Hence the supra­moleuclar assembly of (I) is two dimensional.

Table 2. Parameters (Å, °) for hydrogen bonds and short inter- and intra-mol­ecular contacts in compounds (I)–(III).

Compound D—H⋯A   D—H H⋯A DA D—H⋯A
(I) N1—H1⋯S51i   0.87 (3) 2.43 (3) 3.2326 (17) 153 (2)
  N41—H41⋯S51ii   0.882 (19) 2.753 (19) 3.5968 (8) 160.6 (16)
(II) N1—H1⋯O23iii   0.81 (3) 2.29 (3) 3.075 (3) 166 (2)
  N1—H1⋯O24iii   0.81 (3) 2.41 (3) 2.978 (3) 128 (2)
(III) N1—H1⋯S51iv   0.86 2.42 3.264 (6) 165
  O22—H22⋯N41   0.82 1.97 2.676 (6) 144

Symmetry codes: (i) 1 − x, Inline graphic + y, Inline graphic − z; (ii) 1 − x, 1 − y, −Inline graphic + z; (iii) Inline graphic − x, 1 − y, −Inline graphic + z; (iv) 2 − x, 1 − y, 1 − z.

Figure 4.

Figure 4

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded C(4) chain running parallel to the [010] direction,. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, Inline graphic + y, Inline graphic), (1 − x, −Inline graphic + y, Inline graphic), (x, 1 + y, Inline graphic) and (x, −1 + y, Inline graphic) respectively.

Figure 5.

Figure 5

Part of the crystal structure of compound (I) showing the formation of hydrogen-bonded chain of edge-fused Inline graphic(10) rings running parallel to the [001] direction,. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at z = 0.75, z = −0.25, z = 1.25 and z = −0.75 respectively.

Figure 6.

Figure 6

A stereoview of part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded sheet lying parallel to (100). For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

The N—H bond in compound (II) participates in the formation of a three-centre (bifurcated) N—H⋯(O,O) hydrogen-bond system, in which the two acceptors are the O atoms of the meth­oxy groups (Table 2): this three-centre system is markedly asymmetric, but it is planar within experimental uncertainty. The effect of this inter­action is to link mol­ecules related by the 21 screw axis along (1/4, 1/2, z) to form a C(10)C(11)[Inline graphic(5) chain of rings running parallel to the [001] direction (Fig. 7). Four chains of this type pass through each unit cell, but there are no direction-specific inter­actions between the chains: in particular, C—H⋯π(arene) hydrogen bonds and aromatic π–π stacking inter­actions are both absent from the crystal structure. Hence the supra­molecular assembly of (II) is one dimensional.

Figure 7.

Figure 7

Part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded C(10)C(11)[Inline graphic(5) chain of rings running parallel to the [001] direction. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (Inline graphic − x, 1 − y, −Inline graphic + z), (Inline graphic − x, 1 − y, Inline graphic + z) and (x, y, 1 + z) respectively.

In addition to the intra­molecular hydrogen bond in the mol­ecule of compound (III), noted above, there is a single almost linear N—H⋯S hydrogen bond in this structure, which links inversion-related pairs of mol­ecules into a centrosymmetric dimer characterized by an Inline graphic(8) motif (Fig. 8). There are no direction-specific inter­actions between adjacent dimers: as for compound (II), C—H⋯π(arene) hydrogen bonds and aromatic π–π stacking inter­actions are both absent from the crystal structure of compound (III). Hence the supra­molecular assembly in the monoclinic polymorph of (III) is finite or zero dimensional. The supra­molecular assembly in the triclinic polymorph was not analysed in the original report (Wang et al., 2008). In fact, inversion-related pairs of mol­ecules are linked by N—H⋯S hydrogen bonds to form centrosymmetric Inline graphic(8) dimers, exactly as in the monoclinic polymorph, but in the triclinic form these dimers are linked by an aromatic π–π stacking inter­action to form a π-stacked chain of hydrogen-bonded dimers running parallel to the [1Inline graphic1] direction.

Figure 8.

Figure 8

Part of the crystal structure of the monoclinic polymorph of compound (III) showing the formation of a hydrogen-bonded Inline graphic(8) dimer. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk are at the symmetry position (1 − x, 1 − y, 1 − z).

Thus for the three structures reported here, the supra­molecular assembly in compounds (I), (II) and the monoclinic polymorph of (III) is, respectively, two one and zero dimensional, while for the triclinic polymorph of (III) it is one dimensional.

Database survey  

Here we briefly compare the supra­molecular assembly in compounds (IV)–(VIII) (see Scheme 2), which all have mol­ecular constitutions which are similar to those of compounds (II) and (III) reported here. graphic file with name e-71-01003-scheme2.jpg

Compounds (IV) (Devarajegowda et al., 2012) and (V) (Sarojini, Manjula, Kaur et al., 2014) both crystallize in the triclinic space group P Inline graphic, but they are not isostructural, as they crystallize with Z′ values of 2 and 1, respectively. However, their supra­molecular assembly is rather similar: in the structure of compound (IV), two independent N—H⋯S hydrogen bonds link the two mol­ecules of the selected asymmetric unit into a cyclic dimeric aggregate, while in compound (V) inversion-related pairs of mol­ecules are linked by N—H⋯S hydrogen bonds to form a cyclic centrosymmetric Inline graphic(8) dimer, analogous to those found in both polymorphs of compound (III). A similar centrosymmetric dimer is observed for compound (VI) (Sarojini et al., 2013), but in compound (VII) (Sarojini, Manjula, Narayana et al., 2014), motifs of this type form part of a ribbon containing alternating edge-fused Inline graphic(8) and Inline graphic(28) rings running parallel to the [2Inline graphic0] direction and in which both ring types are centrosymmetric. Finally, compound (VIII), which differs from (IV) in containing an ethyl substituent rather than a methyl substituent, but which crystallizes with Z′ = 1 in P21/c. rather than with Z′ = 2 in P Inline graphic as for (IV), also contains a centrosymmetric Inline graphic(8) dimeric aggregate (Jeyaseelan et al., 2012).

Synthesis and crystallization  

Colourless blocks of compound (I) were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in methanol. For the synthesis of compounds (II) and (III), to mixtures of 4-amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione (0.01 mol) with either 3,4-di­meth­oxy­benzaldehyde (0.01 mol), for (II), or 5-bromo-2-hy­droxy­benzaldehyde (0.01 mol), for (III), in hot ethanol (15 ml) was added a catalytic qu­antity of concentrated sulfuric acid, and each mixture was then heated under reflux for 36 h. The mixtures were cooled to ambient temperature and the resulting solid products (II) and (III) were collected by filtration. For (II) and (III), colourless blocks were grown by slow evaporation, at ambient temperature and in the presence of air of solutions in either di­chloro­methane–methanol (1:1, v/v) for (II), or acetic acid for (III): m. p. (II) 471–473 K, (III) 465–467 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms, including the disordered methyl H atoms in (I), were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (alkenyl and aromatic) or 0.96 Å (meth­yl) and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms in compounds (I) and (II), the atomic coordinates were refined with U iso(H) = 1.2U eq(N), giving the N—H distances shown in Table 2. For compound (III), refinement of the atomic coordinates for the H atoms bonded to N and O atoms led to unacceptably large s.u.s of the resulting N—H and O—H distances: accordingly, these H atoms in (III) were permitted to ride on their carrier atoms with distances N—H = 0.86 Å and O—H = 0.82 Å, and with U iso(H) = 1.2U eq(N) or 1.5U eq(O). For each of compounds (II) and (III) the analysis of variance showed a large value of K for the very weak groups of reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.009 for (II) and 0.000 < Fc/Fc(max) < 0.015 for (III).

Table 3. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C3H6N4S C12H14N4O2S C10H9BrN4OS
M r 130.18 278.33 313.17
Crystal system, space group Orthorhombic, P b c m Orthorhombic, P b c a Monoclinic, P21/c
Temperature (K) 296 296 296
a, b, c (Å) 8.8682 (6), 9.8230 (6), 6.5427 (4) 7.3112 (4), 16.0793 (9), 22.8994 (13) 4.4122 (4), 14.7450 (13), 18.7911 (16)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 95.828 (3), 90
V3) 569.95 (6) 2692.0 (3) 1216.19 (19)
Z 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.46 0.24 3.54
Crystal size (mm) 0.24 × 0.18 × 0.15 0.21 × 0.15 × 0.11 0.22 × 0.19 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003) Multi-scan (SADABS; Sheldrick, 2003) Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.876, 0.934 0.834, 0.974 0.376, 0.588
No. of measured, independent and observed [I > 2σ(I)] reflections 5602, 753, 687 26828, 3090, 2319 22155, 2270, 1913
R int 0.019 0.065 0.068
(sin θ/λ)max−1) 0.667 0.650 0.607
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.086, 1.14 0.057, 0.123, 1.08 0.074, 0.131, 1.27
No. of reflections 753 3090 2270
No. of parameters 55 179 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.29 0.27, −0.24 0.60, −0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S205698901501422X/hb7466sup1.cif

e-71-01003-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501422X/hb7466Isup2.hkl

e-71-01003-Isup2.hkl (62.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901501422X/hb7466IIsup3.hkl

e-71-01003-IIsup3.hkl (247.3KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S205698901501422X/hb7466IIIsup4.hkl

e-71-01003-IIIsup4.hkl (182.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501422X/hb7466Isup5.cml

Supporting information file. DOI: 10.1107/S205698901501422X/hb7466IIsup6.cml

Supporting information file. DOI: 10.1107/S205698901501422X/hb7466IIIsup7.cml

CCDC references: 1415408, 1415407, 1415406

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

PSM and BKS gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities. The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

supplementary crystallographic information

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Crystal data

C3H6N4S Dx = 1.517 Mg m3
Mr = 130.18 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcm Cell parameters from 753 reflections
a = 8.8682 (6) Å θ = 4.2–28.3°
b = 9.8230 (6) Å µ = 0.46 mm1
c = 6.5427 (4) Å T = 296 K
V = 569.95 (6) Å3 Block, colourless
Z = 4 0.24 × 0.18 × 0.15 mm
F(000) = 272

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Data collection

Bruker APEXII CCD diffractometer 753 independent reflections
Radiation source: sealed tube 687 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 28.3°, θmin = 4.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −11→11
Tmin = 0.876, Tmax = 0.934 k = −12→13
5602 measured reflections l = −8→8

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.361P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
753 reflections Δρmax = 0.33 e Å3
55 parameters Δρmin = −0.29 e Å3

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.34731 (19) 0.79125 (16) 0.2500 0.0287 (4)
H1 0.399 (3) 0.867 (3) 0.2500 0.034*
N2 0.1908 (2) 0.79840 (18) 0.2500 0.0344 (4)
C3 0.1491 (2) 0.6716 (2) 0.2500 0.0292 (4)
N4 0.27162 (18) 0.58666 (16) 0.2500 0.0240 (3)
C5 0.4000 (2) 0.66435 (18) 0.2500 0.0230 (4)
C31 −0.0098 (3) 0.6251 (3) 0.2500 0.0484 (7)
H31A −0.0407 0.6056 0.1125 0.073* 0.5
H31B −0.0729 0.6952 0.3058 0.073* 0.5
H31C −0.0187 0.5443 0.3317 0.073* 0.5
N41 0.2626 (2) 0.44381 (17) 0.2500 0.0324 (4)
H41 0.314 (2) 0.4133 (18) 0.144 (3) 0.039*
S51 0.58144 (5) 0.61399 (5) 0.2500 0.02978 (19)

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0302 (8) 0.0168 (7) 0.0392 (9) −0.0006 (6) 0.000 0.000
N2 0.0326 (9) 0.0241 (8) 0.0464 (10) 0.0057 (7) 0.000 0.000
C3 0.0255 (9) 0.0285 (9) 0.0336 (10) 0.0028 (7) 0.000 0.000
N4 0.0237 (7) 0.0188 (7) 0.0295 (8) −0.0031 (6) 0.000 0.000
C5 0.0287 (9) 0.0180 (8) 0.0222 (8) −0.0023 (7) 0.000 0.000
C31 0.0225 (10) 0.0463 (13) 0.0763 (19) 0.0014 (9) 0.000 0.000
N41 0.0307 (9) 0.0162 (7) 0.0502 (11) −0.0030 (6) 0.000 0.000
S51 0.0243 (3) 0.0224 (3) 0.0426 (3) −0.00037 (16) 0.000 0.000

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Geometric parameters (Å, º)

N1—C5 1.331 (2) N4—N41 1.406 (2)
N1—N2 1.390 (2) C5—S51 1.6833 (19)
N1—H1 0.88 (3) C31—H31A 0.9600
N2—C3 1.299 (3) C31—H31B 0.9600
C3—N4 1.370 (3) C31—H31C 0.9600
C3—C31 1.481 (3) N41—H41 0.883 (19)
N4—C5 1.371 (2)
C5—N1—N2 113.45 (16) N1—C5—N4 103.28 (16)
C5—N1—H1 128.0 (16) N1—C5—S51 127.64 (15)
N2—N1—H1 118.6 (16) N4—C5—S51 129.08 (14)
C3—N2—N1 103.63 (16) C3—C31—H31A 109.5
N2—C3—N4 110.99 (17) C3—C31—H31B 109.5
N2—C3—C31 124.50 (19) H31A—C31—H31B 109.5
N4—C3—C31 124.51 (19) C3—C31—H31C 109.5
C3—N4—C5 108.65 (17) H31A—C31—H31C 109.5
C3—N4—N41 124.25 (16) H31B—C31—H31C 109.5
C5—N4—N41 127.11 (16) N4—N41—H41 108.0 (12)
C5—N1—N2—C3 0.0 N2—N1—C5—N4 0.0
N1—N2—C3—N4 0.0 N2—N1—C5—S51 180.0
N1—N2—C3—C31 180.0 C3—N4—C5—N1 0.0
N2—C3—N4—C5 0.0 N41—N4—C5—N1 180.0
C31—C3—N4—C5 180.0 C3—N4—C5—S51 180.0
N2—C3—N4—N41 180.0 N41—N4—C5—S51 0.0
C31—C3—N4—N41 0.0

(I) 4-Amino-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S51i 0.87 (3) 2.43 (3) 3.2326 (17) 153 (2)
N41—H41···S51ii 0.882 (19) 2.753 (19) 3.5968 (8) 160.6 (16)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, z−1/2.

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Crystal data

C12H14N4O2S Dx = 1.373 Mg m3
Mr = 278.33 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3343 reflections
a = 7.3112 (4) Å θ = 3.1–28.3°
b = 16.0793 (9) Å µ = 0.24 mm1
c = 22.8994 (13) Å T = 296 K
V = 2692.0 (3) Å3 Block, colourless
Z = 8 0.21 × 0.15 × 0.11 mm
F(000) = 1168

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Data collection

Bruker APEXII CCD diffractometer 3090 independent reflections
Radiation source: sealed tube 2319 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.065
φ and ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.834, Tmax = 0.974 k = −20→20
26828 measured reflections l = −29→29

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0344P)2 + 3.441P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.27 e Å3
3090 reflections Δρmin = −0.24 e Å3
179 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0037 (8)

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1213 (3) 0.45675 (13) 0.33824 (9) 0.0329 (5)
H1 0.115 (4) 0.4645 (17) 0.3034 (13) 0.040*
N2 0.0910 (3) 0.37720 (13) 0.35845 (9) 0.0357 (5)
C3 0.1225 (4) 0.38329 (15) 0.41387 (10) 0.0314 (5)
N4 0.1725 (3) 0.46285 (12) 0.42911 (8) 0.0271 (5)
C5 0.1697 (3) 0.51167 (15) 0.37928 (9) 0.0272 (5)
C31 0.1081 (5) 0.31385 (16) 0.45639 (12) 0.0460 (7)
H31A 0.2264 0.3027 0.4728 0.069*
H31B 0.0640 0.2650 0.4368 0.069*
H31C 0.0246 0.3289 0.4870 0.069*
N41 0.2135 (3) 0.47940 (12) 0.48766 (8) 0.0293 (5)
S51 0.20737 (12) 0.61356 (4) 0.36982 (3) 0.0438 (2)
C27 0.2852 (4) 0.54836 (16) 0.50047 (10) 0.0341 (6)
H27 0.3076 0.5867 0.4710 0.041*
C21 0.3339 (3) 0.56941 (15) 0.56055 (9) 0.0281 (5)
C22 0.3168 (3) 0.51237 (14) 0.60638 (9) 0.0253 (5)
H22 0.2708 0.4594 0.5993 0.030*
C23 0.3684 (3) 0.53506 (13) 0.66210 (9) 0.0238 (5)
C24 0.4395 (3) 0.61528 (14) 0.67278 (9) 0.0250 (5)
C25 0.4521 (4) 0.67139 (15) 0.62759 (11) 0.0335 (6)
H25 0.4957 0.7248 0.6345 0.040*
C26 0.3999 (4) 0.64807 (16) 0.57184 (10) 0.0359 (6)
H26 0.4095 0.6862 0.5414 0.043*
O23 0.3576 (3) 0.48540 (10) 0.71045 (7) 0.0357 (5)
C231 0.2898 (5) 0.40291 (15) 0.70230 (11) 0.0450 (7)
H23A 0.2829 0.3752 0.7394 0.067*
H23B 0.3707 0.3728 0.6770 0.067*
H23C 0.1702 0.4053 0.6851 0.067*
O24 0.4902 (3) 0.63011 (10) 0.72903 (7) 0.0325 (4)
C241 0.5711 (4) 0.70915 (15) 0.74105 (11) 0.0355 (6)
H24A 0.4853 0.7525 0.7320 0.053*
H24B 0.6789 0.7159 0.7176 0.053*
H24C 0.6036 0.7122 0.7816 0.053*

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0470 (14) 0.0347 (11) 0.0171 (10) 0.0033 (10) −0.0027 (9) 0.0002 (9)
N2 0.0486 (14) 0.0319 (11) 0.0267 (11) 0.0008 (10) −0.0023 (10) −0.0006 (9)
C3 0.0360 (14) 0.0312 (12) 0.0271 (12) 0.0031 (11) −0.0002 (11) 0.0017 (10)
N4 0.0337 (11) 0.0301 (10) 0.0174 (9) 0.0026 (9) −0.0017 (8) 0.0012 (8)
C5 0.0292 (13) 0.0337 (12) 0.0186 (11) 0.0052 (10) −0.0005 (9) −0.0004 (9)
C31 0.062 (2) 0.0354 (14) 0.0401 (16) −0.0047 (14) −0.0008 (14) 0.0100 (12)
N41 0.0358 (12) 0.0375 (11) 0.0145 (9) 0.0030 (10) −0.0031 (8) 0.0024 (8)
S51 0.0720 (5) 0.0312 (3) 0.0283 (3) −0.0015 (3) −0.0123 (3) 0.0053 (3)
C27 0.0417 (15) 0.0408 (14) 0.0198 (12) −0.0043 (12) −0.0022 (11) 0.0063 (10)
C21 0.0299 (13) 0.0352 (13) 0.0192 (11) −0.0001 (11) −0.0040 (9) 0.0021 (9)
C22 0.0293 (13) 0.0245 (11) 0.0221 (11) 0.0010 (10) −0.0012 (9) −0.0001 (9)
C23 0.0287 (12) 0.0231 (11) 0.0197 (11) 0.0019 (10) 0.0001 (9) 0.0030 (9)
C24 0.0267 (12) 0.0287 (11) 0.0194 (10) −0.0009 (10) −0.0009 (9) −0.0004 (9)
C25 0.0411 (15) 0.0275 (12) 0.0319 (13) −0.0085 (11) −0.0048 (11) 0.0024 (10)
C26 0.0468 (16) 0.0370 (13) 0.0240 (12) −0.0073 (12) −0.0051 (11) 0.0132 (10)
O23 0.0599 (12) 0.0263 (8) 0.0210 (8) −0.0093 (8) −0.0061 (8) 0.0048 (6)
C231 0.073 (2) 0.0284 (13) 0.0334 (14) −0.0118 (14) −0.0106 (14) 0.0072 (11)
O24 0.0492 (11) 0.0271 (8) 0.0213 (8) −0.0091 (8) −0.0049 (8) −0.0007 (6)
C241 0.0430 (15) 0.0343 (13) 0.0293 (14) −0.0095 (12) −0.0030 (11) −0.0048 (10)

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Geometric parameters (Å, º)

N1—C5 1.337 (3) C22—C23 1.380 (3)
N1—N2 1.378 (3) C22—H22 0.9300
N1—H1 0.81 (3) C23—O23 1.367 (3)
N2—C3 1.293 (3) C23—C24 1.412 (3)
C3—N4 1.376 (3) C24—O24 1.362 (3)
C3—C31 1.485 (3) C24—C25 1.376 (3)
N4—C5 1.385 (3) C25—C26 1.384 (3)
N4—N41 1.399 (3) C25—H25 0.9300
C5—S51 1.675 (2) C26—H26 0.9300
C31—H31A 0.9600 O23—C231 1.428 (3)
C31—H31B 0.9600 C231—H23A 0.9600
C31—H31C 0.9600 C231—H23B 0.9600
N41—C27 1.261 (3) C231—H23C 0.9600
C27—C21 1.461 (3) O24—C241 1.429 (3)
C27—H27 0.9300 C241—H24A 0.9600
C21—C26 1.378 (3) C241—H24B 0.9600
C21—C22 1.399 (3) C241—H24C 0.9600
C5—N1—N2 114.80 (19) C21—C22—H22 120.1
C5—N1—H1 127 (2) O23—C23—C22 125.4 (2)
N2—N1—H1 118 (2) O23—C23—C24 114.48 (19)
C3—N2—N1 103.3 (2) C22—C23—C24 120.2 (2)
N2—C3—N4 111.5 (2) O24—C24—C25 125.3 (2)
N2—C3—C31 125.0 (2) O24—C24—C23 115.10 (19)
N4—C3—C31 123.5 (2) C25—C24—C23 119.6 (2)
C3—N4—C5 108.30 (19) C24—C25—C26 119.8 (2)
C3—N4—N41 118.48 (18) C24—C25—H25 120.1
C5—N4—N41 133.21 (19) C26—C25—H25 120.1
N1—C5—N4 102.0 (2) C21—C26—C25 121.2 (2)
N1—C5—S51 126.76 (18) C21—C26—H26 119.4
N4—C5—S51 131.16 (18) C25—C26—H26 119.4
C3—C31—H31A 109.5 C23—O23—C231 117.16 (18)
C3—C31—H31B 109.5 O23—C231—H23A 109.5
H31A—C31—H31B 109.5 O23—C231—H23B 109.5
C3—C31—H31C 109.5 H23A—C231—H23B 109.5
H31A—C31—H31C 109.5 O23—C231—H23C 109.5
H31B—C31—H31C 109.5 H23A—C231—H23C 109.5
C27—N41—N4 118.63 (19) H23B—C231—H23C 109.5
N41—C27—C21 121.6 (2) C24—O24—C241 116.80 (18)
N41—C27—H27 119.2 O24—C241—H24A 109.5
C21—C27—H27 119.2 O24—C241—H24B 109.5
C26—C21—C22 119.5 (2) H24A—C241—H24B 109.5
C26—C21—C27 118.3 (2) O24—C241—H24C 109.5
C22—C21—C27 122.2 (2) H24A—C241—H24C 109.5
C23—C22—C21 119.7 (2) H24B—C241—H24C 109.5
C23—C22—H22 120.1
C5—N1—N2—C3 −0.2 (3) C26—C21—C22—C23 −0.9 (4)
N1—N2—C3—N4 −0.5 (3) C27—C21—C22—C23 178.7 (2)
N1—N2—C3—C31 179.8 (3) C21—C22—C23—O23 179.7 (2)
N2—C3—N4—C5 1.0 (3) C21—C22—C23—C24 −0.5 (4)
C31—C3—N4—C5 −179.2 (2) O23—C23—C24—O24 1.5 (3)
N2—C3—N4—N41 −179.2 (2) C22—C23—C24—O24 −178.4 (2)
C31—C3—N4—N41 0.5 (4) O23—C23—C24—C25 −178.3 (2)
N2—N1—C5—N4 0.8 (3) C22—C23—C24—C25 1.8 (4)
N2—N1—C5—S51 −177.20 (19) O24—C24—C25—C26 178.4 (2)
C3—N4—C5—N1 −1.0 (3) C23—C24—C25—C26 −1.8 (4)
N41—N4—C5—N1 179.2 (2) C22—C21—C26—C25 0.9 (4)
C3—N4—C5—S51 176.8 (2) C27—C21—C26—C25 −178.6 (3)
N41—N4—C5—S51 −2.9 (4) C24—C25—C26—C21 0.4 (4)
C3—N4—N41—C27 169.6 (2) C22—C23—O23—C231 1.0 (4)
C5—N4—N41—C27 −10.7 (4) C24—C23—O23—C231 −178.9 (2)
N4—N41—C27—C21 −179.2 (2) C25—C24—O24—C241 −3.2 (4)
N41—C27—C21—C26 −175.5 (3) C23—C24—O24—C241 177.0 (2)
N41—C27—C21—C22 4.9 (4)

(II) 4-[(E)-(3,4-Dimethoxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O23i 0.81 (3) 2.29 (3) 3.075 (3) 166 (2)
N1—H1···O24i 0.81 (3) 2.41 (3) 2.978 (3) 128 (2)

Symmetry code: (i) −x+1/2, −y+1, z−1/2.

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Crystal data

C10H9BrN4OS F(000) = 624
Mr = 313.17 Dx = 1.710 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 4.4122 (4) Å Cell parameters from 3002 reflections
b = 14.7450 (13) Å θ = 3.5–28.3°
c = 18.7911 (16) Å µ = 3.54 mm1
β = 95.828 (3)° T = 296 K
V = 1216.19 (19) Å3 Block, colourless
Z = 4 0.22 × 0.19 × 0.15 mm

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Data collection

Bruker APEXII CCD diffractometer 2270 independent reflections
Radiation source: sealed tube 1913 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.068
φ and ω scans θmax = 25.6°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −5→5
Tmin = 0.376, Tmax = 0.588 k = −17→17
22155 measured reflections l = −22→22

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + 5.4069P] where P = (Fo2 + 2Fc2)/3
S = 1.27 (Δ/σ)max < 0.001
2270 reflections Δρmax = 0.60 e Å3
156 parameters Δρmin = −0.57 e Å3

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.9899 (12) 0.6271 (4) 0.4818 (3) 0.0498 (14)
H1 1.0877 0.5851 0.5063 0.060*
N2 1.0447 (12) 0.7171 (4) 0.4944 (3) 0.0463 (13)
C3 0.8538 (14) 0.7579 (4) 0.4482 (3) 0.0402 (14)
N4 0.6829 (10) 0.6958 (3) 0.4066 (2) 0.0353 (11)
C5 0.7729 (14) 0.6089 (4) 0.4287 (3) 0.0431 (15)
C31 0.8213 (17) 0.8564 (5) 0.4384 (4) 0.060 (2)
H31A 0.6133 0.8736 0.4418 0.090*
H31B 0.8783 0.8730 0.3922 0.090*
H31C 0.9510 0.8871 0.4748 0.090*
N41 0.4646 (10) 0.7266 (3) 0.3529 (2) 0.0357 (11)
S51 0.6573 (5) 0.50707 (12) 0.39894 (11) 0.0689 (7)
C27 0.3065 (13) 0.6689 (4) 0.3142 (3) 0.0388 (14)
H27 0.3355 0.6071 0.3222 0.047*
C21 0.0804 (11) 0.7002 (4) 0.2574 (3) 0.0308 (12)
C22 0.0244 (14) 0.7913 (4) 0.2414 (3) 0.0408 (14)
C23 −0.1947 (14) 0.8144 (5) 0.1853 (3) 0.0492 (17)
H23 −0.2344 0.8751 0.1746 0.059*
C24 −0.3526 (14) 0.7474 (5) 0.1456 (3) 0.0481 (16)
H24 −0.4984 0.7628 0.1083 0.058*
C25 −0.2931 (13) 0.6585 (4) 0.1616 (3) 0.0378 (14)
C26 −0.0843 (13) 0.6330 (4) 0.2173 (3) 0.0385 (14)
H26 −0.0526 0.5720 0.2282 0.046*
O22 0.1721 (11) 0.8599 (3) 0.2776 (3) 0.0594 (13)
H22 0.2946 0.8391 0.3091 0.089*
Br25 −0.50755 (18) 0.56596 (6) 0.10681 (4) 0.0652 (3)

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.055 (3) 0.045 (3) 0.044 (3) 0.004 (3) −0.024 (3) 0.008 (2)
N2 0.049 (3) 0.050 (3) 0.037 (3) 0.003 (3) −0.012 (2) −0.005 (2)
C3 0.045 (4) 0.043 (4) 0.031 (3) 0.003 (3) 0.000 (3) −0.001 (3)
N4 0.032 (3) 0.043 (3) 0.028 (2) 0.005 (2) −0.006 (2) 0.003 (2)
C5 0.042 (3) 0.048 (4) 0.036 (3) 0.003 (3) −0.011 (3) 0.008 (3)
C31 0.070 (5) 0.053 (4) 0.053 (4) 0.005 (4) −0.008 (4) 0.000 (3)
N41 0.033 (3) 0.046 (3) 0.027 (2) 0.010 (2) −0.003 (2) 0.005 (2)
S51 0.0795 (14) 0.0419 (10) 0.0740 (13) −0.0012 (9) −0.0482 (11) 0.0057 (9)
C27 0.035 (3) 0.047 (4) 0.033 (3) 0.009 (3) −0.003 (3) 0.006 (3)
C21 0.025 (3) 0.042 (3) 0.026 (3) 0.004 (2) 0.005 (2) 0.006 (2)
C22 0.039 (3) 0.050 (4) 0.033 (3) 0.005 (3) 0.000 (3) 0.006 (3)
C23 0.051 (4) 0.046 (4) 0.048 (4) 0.012 (3) −0.005 (3) 0.018 (3)
C24 0.043 (4) 0.065 (4) 0.034 (3) 0.011 (3) −0.009 (3) 0.008 (3)
C25 0.037 (3) 0.046 (4) 0.030 (3) 0.000 (3) −0.002 (2) 0.002 (3)
C26 0.039 (3) 0.047 (4) 0.029 (3) 0.010 (3) 0.003 (2) 0.004 (3)
O22 0.061 (3) 0.048 (3) 0.064 (3) 0.003 (2) −0.018 (2) 0.005 (2)
Br25 0.0616 (5) 0.0720 (5) 0.0574 (4) −0.0023 (4) −0.0166 (3) −0.0105 (4)

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Geometric parameters (Å, º)

N1—C5 1.338 (7) C27—H27 0.9300
N1—N2 1.366 (7) C21—C22 1.393 (8)
N1—H1 0.8600 C21—C26 1.402 (8)
N2—C3 1.296 (7) C22—O22 1.349 (7)
C3—N4 1.378 (7) C22—C23 1.399 (8)
C3—C31 1.470 (9) C23—C24 1.383 (9)
N4—C5 1.392 (7) C23—H23 0.9300
N4—N41 1.398 (6) C24—C25 1.364 (9)
C5—S51 1.664 (7) C24—H24 0.9300
C31—H31A 0.9600 C25—C26 1.374 (7)
C31—H31B 0.9600 C25—Br25 1.903 (6)
C31—H31C 0.9600 C26—H26 0.9300
N41—C27 1.279 (7) O22—H22 0.8200
C27—C21 1.461 (7)
C5—N1—N2 115.1 (5) N41—C27—H27 120.1
C5—N1—H1 122.5 C21—C27—H27 120.1
N2—N1—H1 122.4 C22—C21—C26 119.7 (5)
C3—N2—N1 104.1 (5) C22—C21—C27 123.8 (5)
N2—C3—N4 110.7 (5) C26—C21—C27 116.6 (5)
N2—C3—C31 126.3 (6) O22—C22—C21 123.3 (5)
N4—C3—C31 123.1 (5) O22—C22—C23 117.3 (6)
C3—N4—C5 108.6 (4) C21—C22—C23 119.4 (6)
C3—N4—N41 119.4 (5) C24—C23—C22 120.3 (6)
C5—N4—N41 132.0 (5) C24—C23—H23 119.9
N1—C5—N4 101.5 (5) C22—C23—H23 119.9
N1—C5—S51 127.0 (5) C25—C24—C23 119.5 (5)
N4—C5—S51 131.4 (4) C25—C24—H24 120.2
C3—C31—H31A 109.5 C23—C24—H24 120.2
C3—C31—H31B 109.5 C24—C25—C26 122.0 (6)
H31A—C31—H31B 109.5 C24—C25—Br25 119.7 (4)
C3—C31—H31C 109.5 C26—C25—Br25 118.3 (5)
H31A—C31—H31C 109.5 C25—C26—C21 119.1 (6)
H31B—C31—H31C 109.5 C25—C26—H26 120.4
C27—N41—N4 119.4 (5) C21—C26—H26 120.4
N41—C27—C21 119.9 (5) C22—O22—H22 109.5
C5—N1—N2—C3 0.6 (8) N41—C27—C21—C22 0.5 (9)
N1—N2—C3—N4 −0.5 (7) N41—C27—C21—C26 −179.9 (5)
N1—N2—C3—C31 −179.1 (7) C26—C21—C22—O22 179.7 (6)
N2—C3—N4—C5 0.3 (7) C27—C21—C22—O22 −0.7 (9)
C31—C3—N4—C5 178.9 (6) C26—C21—C22—C23 −0.4 (9)
N2—C3—N4—N41 −179.6 (5) C27—C21—C22—C23 179.2 (6)
C31—C3—N4—N41 −0.9 (9) O22—C22—C23—C24 179.5 (6)
N2—N1—C5—N4 −0.5 (7) C21—C22—C23—C24 −0.5 (10)
N2—N1—C5—S51 178.6 (5) C22—C23—C24—C25 0.0 (10)
C3—N4—C5—N1 0.1 (7) C23—C24—C25—C26 1.4 (10)
N41—N4—C5—N1 179.9 (6) C23—C24—C25—Br25 −179.5 (5)
C3—N4—C5—S51 −178.9 (6) C24—C25—C26—C21 −2.3 (9)
N41—N4—C5—S51 0.9 (11) Br25—C25—C26—C21 178.7 (4)
C3—N4—N41—C27 179.8 (5) C22—C21—C26—C25 1.7 (8)
C5—N4—N41—C27 0.1 (9) C27—C21—C26—C25 −177.9 (5)
N4—N41—C27—C21 −179.2 (5)

(III) 4-[(E)-(5-Bromo-2-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S51i 0.86 2.42 3.264 (6) 165
O22—H22···N41 0.82 1.97 2.676 (6) 144

Symmetry code: (i) −x+2, −y+1, −z+1.

References

  1. Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695.
  2. Barrera, H., Viñas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030.
  3. Bigoli, F., Lanfranchi, M. & Pellinghelli, M. A. (1990). J. Chem. Res. (S), p. 214 (M) pp. 1712–1725.
  4. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D’souza, A. S. & D’souza, A. (2012). Acta Cryst. E68, o1607. [DOI] [PMC free article] [PubMed]
  6. Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.
  7. Escobar-Valderrama, J. L., García-Tapia, J. H., Ramírez-Ortíz, J., Rosales, M. J., Toscano, R. A. & Valdés-Martínez, J. (1989). Can. J. Chem. 67, 198–201.
  8. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  9. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  10. Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
  11. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  12. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  13. Jeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D’souza, A. S. & D’souza, A. (2012). Acta Cryst. E68, o1407. [DOI] [PMC free article] [PubMed]
  14. Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.
  15. Sarala, G., Sridhar, M. A., Prasad, J. S., Swamy, S. N., Basappa, Prabhuswamy, B. & Rangappa, K. S. (2006). Mol. Cryst. Liq. Cryst. 457, 215–223.
  16. Sarojini, B. K., Manjula, P. S., Hegde, G., Kour, D., Gupta, V. K. & Kant, R. (2013). Acta Cryst. E69, o718–o719. [DOI] [PMC free article] [PubMed]
  17. Sarojini, B. K., Manjula, P. S., Kaur, M., Anderson, B. J. & Jasinski, J. P. (2014). Acta Cryst. E70, o57–o58. [DOI] [PMC free article] [PubMed]
  18. Sarojini, B. K., Manjula, P. S., Narayana, B. & Jasinski, J. P. (2014). Acta Cryst. E70, o733–o734. [DOI] [PMC free article] [PubMed]
  19. Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.
  20. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Thieme, P., König, H. & Amann, A. (1973a). German Patent 2228259.
  25. Thieme, P., König, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.
  26. Wang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374. [DOI] [PMC free article] [PubMed]
  27. Wei, P. H. L. & Bell, C. S. (1981a). US Patent 4302585.
  28. Wei, P. H. L. & Bell, C. S. (1981b).Chem. Abstr 96, 104227.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S205698901501422X/hb7466sup1.cif

e-71-01003-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501422X/hb7466Isup2.hkl

e-71-01003-Isup2.hkl (62.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901501422X/hb7466IIsup3.hkl

e-71-01003-IIsup3.hkl (247.3KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S205698901501422X/hb7466IIIsup4.hkl

e-71-01003-IIIsup4.hkl (182.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501422X/hb7466Isup5.cml

Supporting information file. DOI: 10.1107/S205698901501422X/hb7466IIsup6.cml

Supporting information file. DOI: 10.1107/S205698901501422X/hb7466IIIsup7.cml

CCDC references: 1415408, 1415407, 1415406

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES