Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 6;71(Pt 9):o637–o638. doi: 10.1107/S2056989015014322

Crystal structure of 2,2′-bis­[(2-chloro­benz­yl)­oxy]-1,1′-bi­naphthalene

Rajamani Raja a, Mani Jayanthi b, Perumal Rajakumar b, A SubbiahPandi a,*
PMCID: PMC4555433  PMID: 26396878

Abstract

In the title binaphthyl compound, C34H24Cl2O2, the dihedral angle between the two naphthyl ring systems (r.m.s. deviations = 0.016 and 0.035 Å) is 76.33 (8)°. The chloro­phenyl rings make dihedral angles of 58.15 (12) and 76.21 (13)° with the naphthyl ring to which they are linked. The dihedral angle between the planes of the two chloro­phenyl rings is 27.66 (16)°. In the crystal, C—H⋯O hydrogen bonds link mol­ecules into chains propagating along [1-10]. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional framework.

Keywords: crystal structure, binaphth­yl, anti­microbials, anti­biotic properties, minimum toxicity, hydrogen bonding

Related literature  

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya et al. (2010); Rokade & Sayyed (2009). For the crystal structure of a very similar compound, 4,4′-{[[1,1′-bi­naphthalene]-2,2′-diylbis(­oxy)]bis­(methyl­ene)}dibenzo­nitrile, see: Fu & Zhao (2007).graphic file with name e-71-0o637-scheme1.jpg

Experimental  

Crystal data  

  • C34H24Cl2O2

  • M r = 535.43

  • Monoclinic, Inline graphic

  • a = 11.1983 (3) Å

  • b = 14.6094 (4) Å

  • c = 16.3263 (4) Å

  • β = 92.622 (2)°

  • V = 2668.19 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.909, T max = 0.921

  • 10688 measured reflections

  • 4153 independent reflections

  • 3804 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.04

  • 4153 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983), 1709 (76%) Friedel pairs

  • Absolute structure parameter: −0.01 (8)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014322/su5184sup1.cif

e-71-0o637-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014322/su5184Isup2.hkl

e-71-0o637-Isup2.hkl (203.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014322/su5184Isup3.cml

. DOI: 10.1107/S2056989015014322/su5184fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

a . DOI: 10.1107/S2056989015014322/su5184fig2.tif

The crystal packing of the title compound, viewed along the a axis. The inter­molecular inter­actions are shown as dashed lines (see Table 1).

. DOI: 10.1107/S2056989015014322/su5184fig3.tif

A partial view of the crystal packing of the title compound, showing the C—H⋯π inter­actions as dashed lines (see Table 1).

CCDC reference: 1415827

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg5 is the centroid of the C19C24 ring.

DHA DH HA D A DHA
C22H22O1i 0.93 2.57 3.413(4) 151
C4H4Cg5ii 0.93 2.74 3.433(4) 132
C33H33Cg5iii 0.93 2.92 3.781(6) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RR and ASP thank the Department of Chemistry, IIT, Chennai, India, for the X-ray data collection.

supplementary crystallographic information

S1. Comment

Naphthalene derivatives has been identified as new range of potent anti­microbials effective against a wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and inter­esting anti­biotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al. 2010). Herein, we report on the synthesis and crystal structure of a new bi­naphthyl derivative.

The molecular structure of the title compound is shown in Fig. 1. The chloro­phenyl ring (C1—C6) make a dihedral angle of 58.15 (12) ° with the naphthalene ring system (C8—C17), while the other chloro­phenyl ring (C29—C34) makes a dihedral angle of 76.21 (13) ° with the naphthalene ring system (C18—C27). The two naphthalene rings are inclined to one another by 76.33 (8)° and the two chloro­phenyl rings by 27.66 (16) °. Atoms O1 and O2 deviate from their respective naphthalene ring by 0.144 and 0.138 Å, respectively. The two naphthalene rings are connected at bond C17—C18, with torsion angle C19—C18—C17—C16 = 75.7 (3) °, indicating a (+) syn-clinal conformation for this group.

In the crystal, C—H···O hydrogen bonds link molecules into chains propagating along [110]; Table 1 and Fig. 2. The chains are linked by C—H···π inter­actions forming a three-dimensional framework (Table 1 and Fig. 3).

S2. Synthesis and crystallization

The title compound was synthesized by reacting two equivalents of 2-chloro benzyl­bromide with one equivalent of S-BINOL in dry DMF in the presence of K2CO3 at 333 K, which successfully provided the pure title product as a colourless solid. The product was dissolved in chloro­form and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 18 h resulting in the formation of single crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. The intermolecular interactions are shown as dashed lines (see Table 1).

Fig. 3.

Fig. 3.

A partial view of the crystal packing of the title compound, showing the C—H···π interactions as dashed lines (see Table 1).

Crystal data

C34H24Cl2O2 F(000) = 1112
Mr = 535.43 Dx = 1.333 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 3804 reflections
a = 11.1983 (3) Å θ = 1.3–25.0°
b = 14.6094 (4) Å µ = 0.27 mm1
c = 16.3263 (4) Å T = 293 K
β = 92.622 (2)° Colourless, block
V = 2668.19 (12) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4153 independent reflections
Radiation source: fine-focus sealed tube 3804 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω and φ scans θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.909, Tmax = 0.921 k = −17→14
10688 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0687P)2 + 1.4377P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4153 reflections Δρmax = 0.35 e Å3
343 parameters Δρmin = −0.47 e Å3
1 restraint Absolute structure: Flack (1983), 1709 (76%) Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.01 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3136 (3) −0.1616 (2) 1.04240 (18) 0.0530 (8)
C2 0.2949 (3) −0.1496 (3) 1.1254 (2) 0.0697 (10)
H2 0.2774 −0.1995 1.1581 0.084*
C3 0.3023 (3) −0.0642 (3) 1.1581 (2) 0.0732 (12)
H3 0.2899 −0.0553 1.2135 0.088*
C4 0.3282 (3) 0.0083 (3) 1.1096 (2) 0.0662 (10)
H4 0.3338 0.0667 1.1321 0.079*
C5 0.3459 (2) −0.0043 (2) 1.02794 (19) 0.0500 (7)
H5 0.3620 0.0464 0.9958 0.060*
C6 0.3408 (2) −0.0892 (2) 0.99204 (15) 0.0375 (6)
C7 0.3671 (2) −0.1012 (2) 0.90297 (15) 0.0420 (6)
H7A 0.4083 −0.0471 0.8845 0.050*
H7B 0.4204 −0.1529 0.8978 0.050*
C8 0.1865 (2) −0.04007 (18) 0.84115 (14) 0.0317 (5)
C9 0.0865 (2) −0.0367 (2) 0.88989 (15) 0.0419 (6)
H9 0.0759 −0.0815 0.9294 0.050*
C10 0.0050 (2) 0.0319 (2) 0.87954 (17) 0.0460 (7)
H10 −0.0599 0.0345 0.9131 0.055*
C11 0.0178 (2) 0.0992 (2) 0.81855 (16) 0.0399 (6)
C12 −0.0668 (3) 0.1700 (3) 0.80425 (19) 0.0544 (8)
H12 −0.1330 0.1731 0.8364 0.065*
C13 −0.0536 (3) 0.2330 (3) 0.7451 (2) 0.0618 (9)
H13 −0.1108 0.2786 0.7367 0.074*
C14 0.0464 (3) 0.2302 (2) 0.6959 (2) 0.0574 (8)
H14 0.0555 0.2741 0.6554 0.069*
C15 0.1301 (2) 0.1626 (2) 0.70786 (16) 0.0459 (7)
H15 0.1953 0.1607 0.6746 0.055*
C16 0.1197 (2) 0.09592 (18) 0.76940 (15) 0.0338 (6)
C17 0.20583 (19) 0.02472 (17) 0.78207 (13) 0.0297 (5)
C18 0.3126 (2) 0.02111 (17) 0.73118 (14) 0.0306 (5)
C19 0.4102 (2) 0.08223 (17) 0.74544 (14) 0.0312 (5)
C20 0.4120 (2) 0.14841 (19) 0.80899 (16) 0.0394 (6)
H20 0.3495 0.1504 0.8446 0.047*
C21 0.5042 (3) 0.2092 (2) 0.81876 (19) 0.0498 (7)
H21 0.5031 0.2525 0.8604 0.060*
C22 0.6005 (3) 0.2072 (2) 0.76682 (19) 0.0514 (8)
H22 0.6619 0.2498 0.7734 0.062*
C23 0.6040 (2) 0.1433 (2) 0.70721 (19) 0.0467 (7)
H23 0.6694 0.1412 0.6741 0.056*
C24 0.5096 (2) 0.07932 (18) 0.69410 (15) 0.0352 (6)
C25 0.5086 (2) 0.0147 (2) 0.62965 (16) 0.0415 (6)
H25 0.5737 0.0111 0.5964 0.050*
C26 0.4138 (2) −0.0424 (2) 0.61550 (15) 0.0405 (6)
H26 0.4142 −0.0840 0.5725 0.049*
C27 0.3146 (2) −0.03851 (18) 0.66597 (14) 0.0329 (5)
C28 0.2062 (3) −0.15760 (19) 0.59124 (15) 0.0439 (6)
H28A 0.1470 −0.2029 0.6049 0.053*
H28B 0.2826 −0.1886 0.5894 0.053*
C29 0.1738 (2) −0.1202 (2) 0.50774 (15) 0.0439 (7)
C30 0.1581 (3) −0.0283 (3) 0.4912 (2) 0.0627 (9)
H30 0.1699 0.0149 0.5326 0.075*
C31 0.1242 (3) −0.0006 (4) 0.4110 (3) 0.0882 (14)
H31 0.1137 0.0613 0.3996 0.106*
C32 0.1067 (4) −0.0627 (5) 0.3502 (3) 0.1013 (19)
H32 0.0845 −0.0429 0.2975 0.122*
C33 0.1212 (4) −0.1552 (5) 0.3653 (2) 0.0944 (17)
H33 0.1088 −0.1978 0.3234 0.113*
C34 0.1541 (3) −0.1829 (3) 0.44307 (18) 0.0650 (10)
O1 0.26269 (16) −0.11565 (12) 0.85074 (10) 0.0398 (4)
O2 0.21372 (16) −0.09115 (14) 0.65440 (10) 0.0453 (5)
Cl1 0.30029 (15) −0.27265 (8) 1.00356 (7) 0.1030 (4)
Cl2 0.16806 (12) −0.29928 (8) 0.46325 (7) 0.0972 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0660 (18) 0.048 (2) 0.0444 (16) −0.0107 (15) −0.0038 (13) 0.0004 (14)
C2 0.076 (2) 0.091 (3) 0.0419 (17) −0.019 (2) 0.0022 (15) 0.0106 (19)
C3 0.061 (2) 0.113 (4) 0.0459 (18) −0.014 (2) 0.0050 (14) −0.023 (2)
C4 0.0537 (17) 0.075 (3) 0.069 (2) 0.0005 (18) −0.0026 (15) −0.036 (2)
C5 0.0454 (15) 0.0470 (19) 0.0571 (17) 0.0010 (13) −0.0038 (12) −0.0084 (15)
C6 0.0331 (12) 0.0399 (16) 0.0389 (13) 0.0002 (11) −0.0036 (9) −0.0021 (12)
C7 0.0380 (13) 0.0483 (17) 0.0395 (13) 0.0013 (12) −0.0008 (10) 0.0018 (13)
C8 0.0338 (12) 0.0331 (14) 0.0278 (11) −0.0012 (10) −0.0017 (9) −0.0067 (11)
C9 0.0405 (14) 0.0537 (18) 0.0318 (12) −0.0075 (13) 0.0040 (10) 0.0044 (13)
C10 0.0367 (13) 0.062 (2) 0.0399 (14) −0.0019 (13) 0.0095 (11) −0.0062 (14)
C11 0.0352 (12) 0.0509 (18) 0.0335 (13) 0.0045 (12) −0.0001 (10) −0.0082 (13)
C12 0.0400 (14) 0.070 (2) 0.0526 (17) 0.0163 (15) 0.0014 (12) −0.0112 (18)
C13 0.0600 (19) 0.065 (2) 0.0600 (19) 0.0313 (17) −0.0033 (14) −0.0035 (18)
C14 0.0631 (19) 0.053 (2) 0.0561 (17) 0.0161 (16) −0.0010 (14) 0.0084 (17)
C15 0.0478 (15) 0.0485 (17) 0.0416 (14) 0.0065 (13) 0.0038 (11) 0.0011 (14)
C16 0.0337 (12) 0.0377 (15) 0.0298 (12) 0.0013 (11) −0.0016 (9) −0.0073 (11)
C17 0.0312 (11) 0.0330 (14) 0.0246 (11) −0.0028 (10) −0.0012 (9) −0.0065 (10)
C18 0.0340 (11) 0.0318 (14) 0.0259 (11) 0.0039 (10) 0.0008 (9) 0.0012 (10)
C19 0.0314 (11) 0.0304 (13) 0.0314 (12) 0.0008 (10) −0.0014 (9) 0.0079 (11)
C20 0.0393 (13) 0.0381 (16) 0.0406 (13) 0.0018 (12) 0.0000 (10) −0.0040 (12)
C21 0.0559 (17) 0.0396 (18) 0.0530 (16) −0.0059 (13) −0.0072 (13) −0.0036 (14)
C22 0.0457 (15) 0.0444 (19) 0.0631 (18) −0.0149 (13) −0.0096 (13) 0.0092 (16)
C23 0.0364 (14) 0.0491 (18) 0.0545 (17) −0.0068 (12) 0.0020 (11) 0.0156 (15)
C24 0.0360 (12) 0.0356 (14) 0.0340 (12) 0.0019 (11) 0.0008 (10) 0.0083 (11)
C25 0.0388 (13) 0.0454 (16) 0.0413 (14) 0.0044 (12) 0.0115 (10) 0.0063 (13)
C26 0.0523 (15) 0.0406 (16) 0.0291 (12) 0.0056 (13) 0.0073 (11) −0.0045 (12)
C27 0.0373 (12) 0.0325 (14) 0.0288 (11) −0.0028 (11) 0.0003 (9) −0.0009 (11)
C28 0.0578 (16) 0.0390 (17) 0.0348 (13) −0.0113 (13) 0.0007 (11) −0.0080 (12)
C29 0.0383 (13) 0.059 (2) 0.0348 (13) −0.0060 (12) 0.0038 (10) −0.0006 (13)
C30 0.0557 (18) 0.068 (3) 0.064 (2) 0.0025 (16) 0.0019 (14) 0.0148 (19)
C31 0.069 (2) 0.108 (4) 0.088 (3) 0.017 (2) 0.007 (2) 0.043 (3)
C32 0.068 (2) 0.186 (6) 0.050 (2) 0.020 (3) 0.0014 (17) 0.028 (3)
C33 0.075 (2) 0.172 (6) 0.0352 (18) −0.004 (3) −0.0038 (16) −0.014 (3)
C34 0.0510 (17) 0.105 (3) 0.0391 (15) −0.0080 (18) 0.0078 (13) −0.0074 (19)
O1 0.0474 (10) 0.0351 (11) 0.0365 (9) 0.0011 (8) −0.0036 (7) −0.0017 (8)
O2 0.0516 (10) 0.0506 (12) 0.0342 (9) −0.0143 (9) 0.0077 (7) −0.0180 (9)
Cl1 0.1870 (13) 0.0508 (6) 0.0725 (6) −0.0226 (7) 0.0191 (7) 0.0005 (5)
Cl2 0.1348 (10) 0.0795 (8) 0.0790 (6) −0.0275 (6) 0.0244 (6) −0.0426 (6)

Geometric parameters (Å, º)

C1—C6 1.382 (4) C18—C27 1.377 (3)
C1—C2 1.392 (4) C18—C19 1.422 (3)
C1—Cl1 1.746 (3) C19—C20 1.418 (4)
C2—C3 1.357 (6) C19—C24 1.424 (3)
C2—H2 0.9300 C20—C21 1.365 (4)
C3—C4 1.362 (6) C20—H20 0.9300
C3—H3 0.9300 C21—C22 1.403 (4)
C4—C5 1.370 (5) C21—H21 0.9300
C4—H4 0.9300 C22—C23 1.350 (4)
C5—C6 1.372 (4) C22—H22 0.9300
C5—H5 0.9300 C23—C24 1.421 (4)
C6—C7 1.507 (3) C23—H23 0.9300
C7—O1 1.431 (3) C24—C25 1.413 (4)
C7—H7A 0.9700 C25—C26 1.361 (4)
C7—H7B 0.9700 C25—H25 0.9300
C8—C17 1.376 (3) C26—C27 1.414 (3)
C8—O1 1.400 (3) C26—H26 0.9300
C8—C9 1.404 (3) C27—O2 1.373 (3)
C9—C10 1.361 (4) C28—O2 1.416 (3)
C9—H9 0.9300 C28—C29 1.498 (4)
C10—C11 1.411 (4) C28—H28A 0.9700
C10—H10 0.9300 C28—H28B 0.9700
C11—C12 1.414 (4) C29—C30 1.379 (5)
C11—C16 1.426 (3) C29—C34 1.408 (5)
C12—C13 1.348 (5) C30—C31 1.405 (6)
C12—H12 0.9300 C30—H30 0.9300
C13—C14 1.408 (4) C31—C32 1.353 (8)
C13—H13 0.9300 C31—H31 0.9300
C14—C15 1.369 (4) C32—C33 1.382 (8)
C14—H14 0.9300 C32—H32 0.9300
C15—C16 1.408 (4) C33—C34 1.367 (6)
C15—H15 0.9300 C33—H33 0.9300
C16—C17 1.427 (3) C34—Cl2 1.737 (4)
C17—C18 1.488 (3)
C6—C1—C2 122.0 (3) C27—C18—C17 119.7 (2)
C6—C1—Cl1 120.8 (2) C19—C18—C17 121.2 (2)
C2—C1—Cl1 117.2 (3) C20—C19—C18 122.2 (2)
C3—C2—C1 119.4 (4) C20—C19—C24 117.7 (2)
C3—C2—H2 120.3 C18—C19—C24 120.0 (2)
C1—C2—H2 120.3 C21—C20—C19 121.0 (2)
C2—C3—C4 119.7 (3) C21—C20—H20 119.5
C2—C3—H3 120.1 C19—C20—H20 119.5
C4—C3—H3 120.1 C20—C21—C22 120.9 (3)
C3—C4—C5 120.4 (4) C20—C21—H21 119.5
C3—C4—H4 119.8 C22—C21—H21 119.5
C5—C4—H4 119.8 C23—C22—C21 119.9 (3)
C4—C5—C6 122.1 (3) C23—C22—H22 120.0
C4—C5—H5 118.9 C21—C22—H22 120.0
C6—C5—H5 118.9 C22—C23—C24 121.2 (3)
C5—C6—C1 116.3 (2) C22—C23—H23 119.4
C5—C6—C7 120.7 (3) C24—C23—H23 119.4
C1—C6—C7 122.9 (3) C25—C24—C23 122.2 (2)
O1—C7—C6 113.71 (19) C25—C24—C19 118.6 (2)
O1—C7—H7A 108.8 C23—C24—C19 119.2 (2)
C6—C7—H7A 108.8 C26—C25—C24 121.0 (2)
O1—C7—H7B 108.8 C26—C25—H25 119.5
C6—C7—H7B 108.8 C24—C25—H25 119.5
H7A—C7—H7B 107.7 C25—C26—C27 120.3 (2)
C17—C8—O1 120.42 (19) C25—C26—H26 119.9
C17—C8—C9 121.9 (2) C27—C26—H26 119.9
O1—C8—C9 117.5 (2) O2—C27—C18 114.76 (19)
C10—C9—C8 120.2 (2) O2—C27—C26 124.1 (2)
C10—C9—H9 119.9 C18—C27—C26 121.1 (2)
C8—C9—H9 119.9 O2—C28—C29 114.6 (2)
C9—C10—C11 120.8 (2) O2—C28—H28A 108.6
C9—C10—H10 119.6 C29—C28—H28A 108.6
C11—C10—H10 119.6 O2—C28—H28B 108.6
C10—C11—C12 122.5 (2) C29—C28—H28B 108.6
C10—C11—C16 118.9 (2) H28A—C28—H28B 107.6
C12—C11—C16 118.6 (3) C30—C29—C34 118.2 (3)
C13—C12—C11 121.6 (3) C30—C29—C28 123.9 (3)
C13—C12—H12 119.2 C34—C29—C28 117.9 (3)
C11—C12—H12 119.2 C29—C30—C31 119.3 (4)
C12—C13—C14 120.3 (3) C29—C30—H30 120.3
C12—C13—H13 119.8 C31—C30—H30 120.3
C14—C13—H13 119.8 C32—C31—C30 120.9 (5)
C15—C14—C13 119.8 (3) C32—C31—H31 119.5
C15—C14—H14 120.1 C30—C31—H31 119.5
C13—C14—H14 120.1 C31—C32—C33 120.9 (4)
C14—C15—C16 121.5 (3) C31—C32—H32 119.6
C14—C15—H15 119.3 C33—C32—H32 119.6
C16—C15—H15 119.3 C34—C33—C32 118.7 (5)
C15—C16—C11 118.2 (2) C34—C33—H33 120.7
C15—C16—C17 122.0 (2) C32—C33—H33 120.7
C11—C16—C17 119.7 (2) C33—C34—C29 122.0 (5)
C8—C17—C16 118.4 (2) C33—C34—Cl2 118.9 (4)
C8—C17—C18 121.6 (2) C29—C34—Cl2 119.0 (2)
C16—C17—C18 120.0 (2) C8—O1—C7 115.3 (2)
C27—C18—C19 119.0 (2) C27—O2—C28 120.38 (19)
C6—C1—C2—C3 0.6 (5) C17—C18—C19—C20 1.0 (4)
Cl1—C1—C2—C3 −179.0 (3) C27—C18—C19—C24 −1.8 (3)
C1—C2—C3—C4 −0.1 (5) C17—C18—C19—C24 −177.9 (2)
C2—C3—C4—C5 0.4 (5) C18—C19—C20—C21 −176.8 (3)
C3—C4—C5—C6 −1.2 (5) C24—C19—C20—C21 2.1 (4)
C4—C5—C6—C1 1.6 (4) C19—C20—C21—C22 −0.8 (4)
C4—C5—C6—C7 −176.8 (3) C20—C21—C22—C23 −1.3 (4)
C2—C1—C6—C5 −1.3 (4) C21—C22—C23—C24 2.0 (4)
Cl1—C1—C6—C5 178.3 (2) C22—C23—C24—C25 176.9 (3)
C2—C1—C6—C7 177.0 (3) C22—C23—C24—C19 −0.6 (4)
Cl1—C1—C6—C7 −3.4 (4) C20—C19—C24—C25 −179.1 (2)
C5—C6—C7—O1 −104.8 (3) C18—C19—C24—C25 −0.2 (4)
C1—C6—C7—O1 77.0 (3) C20—C19—C24—C23 −1.4 (3)
C17—C8—C9—C10 0.0 (4) C18—C19—C24—C23 177.5 (2)
O1—C8—C9—C10 −175.7 (2) C23—C24—C25—C26 −176.2 (3)
C8—C9—C10—C11 1.7 (4) C19—C24—C25—C26 1.4 (4)
C9—C10—C11—C12 178.1 (3) C24—C25—C26—C27 −0.7 (4)
C9—C10—C11—C16 −1.9 (4) C19—C18—C27—O2 −176.5 (2)
C10—C11—C12—C13 −179.2 (3) C17—C18—C27—O2 −0.4 (3)
C16—C11—C12—C13 0.8 (4) C19—C18—C27—C26 2.7 (4)
C11—C12—C13—C14 −0.4 (5) C17—C18—C27—C26 178.8 (2)
C12—C13—C14—C15 0.5 (5) C25—C26—C27—O2 177.7 (2)
C13—C14—C15—C16 −0.9 (5) C25—C26—C27—C18 −1.4 (4)
C14—C15—C16—C11 1.2 (4) O2—C28—C29—C30 3.2 (4)
C14—C15—C16—C17 179.5 (3) O2—C28—C29—C34 −174.4 (2)
C10—C11—C16—C15 178.9 (3) C34—C29—C30—C31 −0.5 (4)
C12—C11—C16—C15 −1.1 (4) C28—C29—C30—C31 −178.1 (3)
C10—C11—C16—C17 0.6 (4) C29—C30—C31—C32 0.1 (5)
C12—C11—C16—C17 −179.4 (2) C30—C31—C32—C33 0.2 (6)
O1—C8—C17—C16 174.3 (2) C31—C32—C33—C34 −0.2 (6)
C9—C8—C17—C16 −1.4 (3) C32—C33—C34—C29 −0.2 (6)
O1—C8—C17—C18 −4.9 (3) C32—C33—C34—Cl2 178.0 (3)
C9—C8—C17—C18 179.4 (2) C30—C29—C34—C33 0.5 (4)
C15—C16—C17—C8 −177.2 (2) C28—C29—C34—C33 178.3 (3)
C11—C16—C17—C8 1.0 (3) C30—C29—C34—Cl2 −177.7 (2)
C15—C16—C17—C18 2.0 (3) C28—C29—C34—Cl2 0.1 (3)
C11—C16—C17—C18 −179.8 (2) C17—C8—O1—C7 86.3 (3)
C8—C17—C18—C27 78.8 (3) C9—C8—O1—C7 −97.9 (3)
C16—C17—C18—C27 −100.4 (3) C6—C7—O1—C8 68.7 (3)
C8—C17—C18—C19 −105.2 (3) C18—C27—O2—C28 −177.7 (2)
C16—C17—C18—C19 75.6 (3) C26—C27—O2—C28 3.2 (4)
C27—C18—C19—C20 177.0 (2) C29—C28—O2—C27 −80.7 (3)

Hydrogen-bond geometry (Å, º)

Cg5 is the centroid of the C19–C24 ring.

D—H···A D—H H···A D···A D—H···A
C22—H22···O1i 0.93 2.57 3.413 (4) 151
C4—H4···Cg5ii 0.93 2.74 3.433 (4) 132
C33—H33···Cg5iii 0.93 2.92 3.781 (6) 155

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+1, y, −z+2; (iii) −x+1/2, y−1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5184).

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.
  5. Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014322/su5184sup1.cif

e-71-0o637-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014322/su5184Isup2.hkl

e-71-0o637-Isup2.hkl (203.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014322/su5184Isup3.cml

. DOI: 10.1107/S2056989015014322/su5184fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

a . DOI: 10.1107/S2056989015014322/su5184fig2.tif

The crystal packing of the title compound, viewed along the a axis. The inter­molecular inter­actions are shown as dashed lines (see Table 1).

. DOI: 10.1107/S2056989015014322/su5184fig3.tif

A partial view of the crystal packing of the title compound, showing the C—H⋯π inter­actions as dashed lines (see Table 1).

CCDC reference: 1415827

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES