Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 6;71(Pt 9):o647. doi: 10.1107/S2056989015014462

Crystal structure of S-(4-methyl­benz­yl) piperidine­dithio­carbamate

Z A Rahima a, Siti Nadiah Abdul Halim b, Fiona N-F How a,*
PMCID: PMC4555435  PMID: 26396883

Abstract

The title compound, C14H19NS2, crystallizes in the thione form with the presence of a C=S bond. The piperidine ring adopts a chair conformation. The dihedral angle between the essentially planar di­thio­carbamate and p-tolyl fragments is 74.46 (10)°

Keywords: crystal structure, di­thio­carbamate, substituted di­thio­carbamate, piperidine di­thio­carbamate

Related literature  

For the synthesis and related structures, see: Nabipour (2011); Kumar et al. (2013); Kotresh et al. (2012). For the various applications of di­thio­carbamates, see: Hogarth (2005).graphic file with name e-71-0o647-scheme1.jpg

Experimental  

Crystal data  

  • C14H19NS2

  • M r = 265.42

  • Monoclinic, Inline graphic

  • a = 6.3081 (4) Å

  • b = 11.2191 (7) Å

  • c = 19.8399 (13) Å

  • β = 96.133 (5)°

  • V = 1396.06 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.4 × 0.2 × 0.1 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.666, T max = 0.746

  • 13322 measured reflections

  • 3278 independent reflections

  • 1866 reflections with I > 2σ(I)

  • R int = 0.105

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.114

  • S = 1.01

  • 3278 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: pubICIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014462/lh5777sup1.cif

e-71-0o647-sup1.cif (255.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014462/lh5777Isup2.hkl

e-71-0o647-Isup2.hkl (160.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014462/lh5777Isup3.cml

. DOI: 10.1107/S2056989015014462/lh5777fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

CCDC reference: 975555

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge The Ministry of Higher Education (MOHE), Malaysia for funding this research under the Fundemental Research Grant Scheme (FRGS12-064-0213) and the Universiti Malaya Postgraduate Research Grant PG056-2013B. ZAR thanks IIUM for an IIUM Niche Area Scholarship.

supplementary crystallographic information

S1. Comment

Di­thio­carbamates are well known to possess various properties with a wide range of applications (Hogarth, 2005). In our attempt to modify the substituents of piperidine di­thio­carbamate we have formed the title compound. It is likely that this compound is bioactive and will be an inter­est for further research.

The C6—S2 bond is 1.664 (3) Å, which is an inter­mediate of the standard value for C═S (1.56 Å) and shorter than a C—S single bond (1.82 Å). This is attributed to a slight delocalization of negative charge over the C—N—C—S chain.

The piperidine ring shows a chair conformation with Cremer-Pople puckering parameters Q= 0.583 (3) Å, θ= 2.9 (3)°, φ= 355 (6)°. The dihedral angle between the planar di­thio­carbamate moiety S1/S2/N1/C6 and the planar p-tolyl frgament C7/C8/C9/C10/C11/C12/C13/C14 is 74.46 (10)°. The C7–S1–C6–S2 fragment adopts a cis conformation with the torsion angle of -6.6 (2)° comparable to previous literature (Kumar et al., 2013; Kotresh et al., 2012). The arrangement of the molecules in the crystal are dominated by the presence of the crystallographic 2-fold rotation axis. There are no significant pi–pi inter­actions or other specific inter­molecular inter­actions in the crystal structure.

S2. Experimental

Sodium piperidine di­thio­carbamate was pre-synthesized in accordance to the method of Nabipour (2011). Sodium piperidine di­thio­carbamate (5.5 mmol) in absolute ethanol (30 ml) was stirred continuously with dropwise addition of equimolar amounts of 4-methyl­benzyl chloride until a precipitation occurred. The precipitate (sodium chloride) was filtered off and the filtrate was reduced to half the volume and left to stand at room temperature to give colourless crystals. Yield= 63.11%, m.p.= 348.15–349.15 K. IR (KBr pellets, cm–1): 1477 (s, ν N–CSS), 1224 (s, ν C=S) and 978 (s, ν C–S). UV–Vis in CH3OH [λmax/nm, with ε (L mol–1 cm–1)]: 277 (2.05), 255 (4.09), 245 (4.20). 1H–NMR [DMSO–d6]: δ (ppm) = 4.46 (s, 2H, S–CH2–Bz); 4.22 (s, 2H, N–CH2), 3.85 (s, 2H, N–CH2); 7.11–7.27 (m, 4H, C6H4); 2.27 (s, 3H, CH3). 13C–NMR [DMSO–d6]: δ (ppm) = 193.82 (NCSS); 41.17 (S–CH2–Bz); 52.77, 51.33 (N–CH2); 129.49–137.03 (C aromatic); 21.18 (CH3).

S2.1. Refinement

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Crystal data

C14H19NS2 F(000) = 568
Mr = 265.42 Dx = 1.263 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.3081 (4) Å Cell parameters from 883 reflections
b = 11.2191 (7) Å θ = 3.6–20.8°
c = 19.8399 (13) Å µ = 0.36 mm1
β = 96.133 (5)° T = 100 K
V = 1396.06 (15) Å3 Block, colourless
Z = 4 0.4 × 0.2 × 0.1 mm

Data collection

Bruker APEXII CCD diffractometer 3278 independent reflections
Radiation source: sealed tube 1866 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.105
Detector resolution: 8 pixels mm-1 θmax = 27.9°, θmin = 2.1°
φ and ω scans h = −8→8
Absorption correction: multi-scan SADABS (Bruker, 2012) k = −14→14
Tmin = 0.666, Tmax = 0.746 l = −25→25
13322 measured reflections

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.036P)2 + 0.1195P] where P = (Fo2 + 2Fc2)/3
3278 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.60407 (11) 0.46509 (6) 0.32887 (4) 0.0264 (2)
S2 0.40927 (14) 0.70252 (7) 0.35563 (4) 0.0347 (2)
N1 0.3416 (3) 0.5804 (2) 0.24001 (12) 0.0255 (6)
C7 0.7321 (5) 0.5087 (3) 0.41139 (15) 0.0339 (8)
H7A 0.8107 0.5824 0.4080 0.041*
H7B 0.6267 0.5204 0.4430 0.041*
C13 1.0788 (5) 0.3979 (3) 0.41109 (14) 0.0297 (7)
H13 1.1215 0.4545 0.3811 0.036*
C8 0.8810 (5) 0.4086 (2) 0.43476 (14) 0.0266 (7)
C6 0.4390 (4) 0.5890 (2) 0.30345 (14) 0.0240 (7)
C12 1.2139 (5) 0.3046 (3) 0.43127 (14) 0.0298 (7)
H12 1.3454 0.2991 0.4143 0.036*
C3 −0.0478 (5) 0.4953 (3) 0.16795 (17) 0.0382 (8)
H3A −0.1839 0.4561 0.1702 0.046*
H3B −0.0354 0.5148 0.1209 0.046*
C9 0.8232 (5) 0.3239 (3) 0.48066 (15) 0.0305 (7)
H9 0.6921 0.3301 0.4979 0.037*
C14 1.3055 (5) 0.1182 (3) 0.49932 (17) 0.0429 (9)
H14A 1.3890 0.0976 0.4633 0.064*
H14B 1.2243 0.0502 0.5108 0.064*
H14C 1.3983 0.1429 0.5383 0.064*
C5 0.1796 (4) 0.6661 (3) 0.21235 (15) 0.0299 (7)
H5A 0.2074 0.6898 0.1671 0.036*
H5B 0.1853 0.7368 0.2407 0.036*
C1 0.3454 (5) 0.4735 (3) 0.19726 (15) 0.0305 (7)
H1A 0.4574 0.4201 0.2160 0.037*
H1B 0.3747 0.4960 0.1520 0.037*
C2 0.1319 (5) 0.4110 (3) 0.19406 (16) 0.0345 (8)
H2A 0.1086 0.3829 0.2389 0.041*
H2B 0.1320 0.3425 0.1643 0.041*
C11 1.1563 (5) 0.2185 (3) 0.47668 (14) 0.0283 (7)
C10 0.9587 (5) 0.2306 (3) 0.50101 (14) 0.0307 (7)
H10 0.9166 0.1748 0.5316 0.037*
C4 −0.0398 (5) 0.6094 (3) 0.20983 (16) 0.0344 (8)
H4A −0.1466 0.6648 0.1899 0.041*
H4B −0.0716 0.5913 0.2555 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0309 (4) 0.0220 (4) 0.0259 (4) 0.0032 (3) 0.0012 (3) −0.0015 (3)
S2 0.0515 (5) 0.0223 (4) 0.0299 (5) 0.0053 (4) 0.0030 (4) −0.0025 (3)
N1 0.0258 (13) 0.0230 (13) 0.0272 (14) 0.0022 (11) 0.0009 (11) −0.0022 (11)
C7 0.0435 (19) 0.0309 (18) 0.0250 (17) 0.0050 (15) −0.0067 (14) −0.0050 (14)
C13 0.0354 (18) 0.0271 (17) 0.0255 (17) −0.0063 (14) −0.0015 (14) 0.0020 (13)
C8 0.0323 (17) 0.0218 (16) 0.0247 (16) −0.0006 (14) −0.0019 (13) −0.0047 (13)
C6 0.0267 (16) 0.0218 (15) 0.0243 (16) −0.0014 (13) 0.0066 (13) 0.0020 (12)
C12 0.0280 (16) 0.0341 (18) 0.0271 (17) −0.0025 (15) 0.0023 (13) −0.0009 (14)
C3 0.0307 (17) 0.0354 (19) 0.047 (2) −0.0068 (14) −0.0010 (15) 0.0049 (16)
C9 0.0315 (17) 0.0338 (18) 0.0260 (17) −0.0003 (15) 0.0016 (13) −0.0018 (14)
C14 0.048 (2) 0.0357 (19) 0.041 (2) 0.0072 (17) −0.0157 (17) −0.0013 (16)
C5 0.0329 (17) 0.0254 (16) 0.0306 (18) 0.0045 (14) −0.0009 (14) 0.0040 (14)
C1 0.0332 (17) 0.0306 (17) 0.0264 (17) 0.0035 (15) −0.0022 (13) −0.0069 (14)
C2 0.0395 (19) 0.0282 (17) 0.0341 (19) −0.0037 (15) −0.0041 (15) −0.0013 (14)
C11 0.0303 (17) 0.0277 (16) 0.0247 (17) −0.0011 (14) −0.0073 (13) −0.0037 (13)
C10 0.0408 (19) 0.0262 (17) 0.0240 (17) −0.0052 (15) −0.0017 (14) 0.0056 (13)
C4 0.0304 (17) 0.0333 (18) 0.039 (2) 0.0040 (15) 0.0025 (14) 0.0084 (15)

Geometric parameters (Å, º)

S1—C7 1.814 (3) C9—H9 0.9300
S1—C6 1.778 (3) C9—C10 1.384 (4)
S2—C6 1.664 (3) C14—H14A 0.9600
N1—C6 1.344 (3) C14—H14B 0.9600
N1—C5 1.466 (3) C14—H14C 0.9600
N1—C1 1.471 (3) C14—C11 1.504 (4)
C7—H7A 0.9700 C5—H5A 0.9700
C7—H7B 0.9700 C5—H5B 0.9700
C7—C8 1.505 (4) C5—C4 1.519 (4)
C13—H13 0.9300 C1—H1A 0.9700
C13—C8 1.384 (4) C1—H1B 0.9700
C13—C12 1.382 (4) C1—C2 1.513 (4)
C8—C9 1.392 (4) C2—H2A 0.9700
C12—H12 0.9300 C2—H2B 0.9700
C12—C11 1.395 (4) C11—C10 1.391 (4)
C3—H3A 0.9700 C10—H10 0.9300
C3—H3B 0.9700 C4—H4A 0.9700
C3—C2 1.523 (4) C4—H4B 0.9700
C3—C4 1.524 (4)
C6—S1—C7 103.63 (13) C11—C14—H14A 109.5
C6—N1—C5 122.3 (2) C11—C14—H14B 109.5
C6—N1—C1 124.4 (2) C11—C14—H14C 109.5
C5—N1—C1 111.9 (2) N1—C5—H5A 109.8
S1—C7—H7A 110.5 N1—C5—H5B 109.8
S1—C7—H7B 110.5 N1—C5—C4 109.5 (2)
H7A—C7—H7B 108.7 H5A—C5—H5B 108.2
C8—C7—S1 106.24 (19) C4—C5—H5A 109.8
C8—C7—H7A 110.5 C4—C5—H5B 109.8
C8—C7—H7B 110.5 N1—C1—H1A 109.8
C8—C13—H13 119.4 N1—C1—H1B 109.8
C12—C13—H13 119.4 N1—C1—C2 109.4 (2)
C12—C13—C8 121.2 (3) H1A—C1—H1B 108.2
C13—C8—C7 121.1 (3) C2—C1—H1A 109.8
C13—C8—C9 118.1 (3) C2—C1—H1B 109.8
C9—C8—C7 120.8 (3) C3—C2—H2A 109.5
S2—C6—S1 121.57 (17) C3—C2—H2B 109.5
N1—C6—S1 113.9 (2) C1—C2—C3 110.7 (2)
N1—C6—S2 124.6 (2) C1—C2—H2A 109.5
C13—C12—H12 119.4 C1—C2—H2B 109.5
C13—C12—C11 121.1 (3) H2A—C2—H2B 108.1
C11—C12—H12 119.4 C12—C11—C14 120.9 (3)
H3A—C3—H3B 108.1 C10—C11—C12 117.5 (3)
C2—C3—H3A 109.5 C10—C11—C14 121.6 (3)
C2—C3—H3B 109.5 C9—C10—C11 121.4 (3)
C2—C3—C4 110.8 (3) C9—C10—H10 119.3
C4—C3—H3A 109.5 C11—C10—H10 119.3
C4—C3—H3B 109.5 C3—C4—H4A 109.6
C8—C9—H9 119.6 C3—C4—H4B 109.6
C10—C9—C8 120.7 (3) C5—C4—C3 110.3 (3)
C10—C9—H9 119.6 C5—C4—H4A 109.6
H14A—C14—H14B 109.5 C5—C4—H4B 109.6
H14A—C14—H14C 109.5 H4A—C4—H4B 108.1
H14B—C14—H14C 109.5
S1—C7—C8—C13 79.9 (3) C6—N1—C1—C2 104.9 (3)
S1—C7—C8—C9 −99.8 (3) C12—C13—C8—C7 −178.5 (3)
N1—C5—C4—C3 −57.0 (3) C12—C13—C8—C9 1.3 (4)
N1—C1—C2—C3 56.7 (3) C12—C11—C10—C9 0.5 (4)
C7—S1—C6—S2 −6.6 (2) C14—C11—C10—C9 179.1 (3)
C7—S1—C6—N1 174.4 (2) C5—N1—C6—S1 172.6 (2)
C7—C8—C9—C10 178.7 (3) C5—N1—C6—S2 −6.4 (4)
C13—C8—C9—C10 −1.1 (4) C5—N1—C1—C2 −61.5 (3)
C13—C12—C11—C14 −179.0 (3) C1—N1—C6—S1 7.5 (3)
C13—C12—C11—C10 −0.3 (4) C1—N1—C6—S2 −171.5 (2)
C8—C13—C12—C11 −0.6 (4) C1—N1—C5—C4 61.8 (3)
C8—C9—C10—C11 0.3 (4) C2—C3—C4—C5 53.9 (3)
C6—S1—C7—C8 −178.0 (2) C4—C3—C2—C1 −53.9 (3)
C6—N1—C5—C4 −105.1 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5777).

References

  1. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  4. Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.
  5. Kotresh, O., Kumar, K. M., Mahabaleshwaraiah, N. M., Arunkashi, H. K. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3167. [DOI] [PMC free article] [PubMed]
  6. Kumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1683. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Nabipour, H. (2011). Int. J. Nano Dimens 1, 225–232.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015014462/lh5777sup1.cif

e-71-0o647-sup1.cif (255.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014462/lh5777Isup2.hkl

e-71-0o647-Isup2.hkl (160.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014462/lh5777Isup3.cml

. DOI: 10.1107/S2056989015014462/lh5777fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

CCDC reference: 975555

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES