Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 12;71(Pt 9):o655–o656. doi: 10.1107/S2056989015014796

Crystal structure of 2-amino­pyridinium 6-chloro­nicotinate

N Jeeva Jasmine a, A Rajam a, P Thomas Muthiah a,*, N Stanley a, I Abdul Razak b, M Mustaqim Rosli b
PMCID: PMC4555436  PMID: 26396888

Abstract

In the title salt, C5H7N+·C6H3ClNO, the 2-amino­pyri­din­ium cation inter­acts with the carboxyl­ate group of the 6-chloro­nicotinate anion through a pair of independent N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. In the crystal, these dimeric units are connected further via N—H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C—H⋯N and C—H⋯O hydrogen bonds, together with weak π–π inter­actions, with centroid–centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).

Keywords: crystal structure, 2-amino­pyridinium, 6-chloro­nicotinate, 6-chloro­pyridine-3-carboxyl­ate, noncovalent inter­actions, π–π stacking inter­actions

Related literature  

For a background to noncovalent inter­actions, see: García-Raso et al. (2009). For the applications of pyridine compounds, see: Schwid et al. (1997); Rajkumar et al. (2015). For related structures, see: Xie (2007); Jennifer & Mu­thiah (2014); Chao et al. (1975); Bis & Zaworotko (2005); Jebas & Balasubramanian (2006). For information on π–π stacking inter­actions, see: Hunter (1994). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995);graphic file with name e-71-0o655-scheme1.jpg

Experimental  

Crystal data  

  • C5H7N2 +·C6H3ClNO2

  • M r = 251.67

  • Monoclinic, Inline graphic

  • a = 8.6844 (4) Å

  • b = 10.8112 (5) Å

  • c = 11.9235 (6) Å

  • β = 95.2046 (9)°

  • V = 1114.87 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.51 × 0.40 × 0.17 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.993, T max = 0.994

  • 15546 measured reflections

  • 4073 independent reflections

  • 3771 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.092

  • S = 1.07

  • 4073 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014796/lh5778sup1.cif

e-71-0o655-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014796/lh5778Isup2.hkl

e-71-0o655-Isup2.hkl (195.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014796/lh5778Isup3.cml

. DOI: 10.1107/S2056989015014796/lh5778fig1.tif

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015014796/lh5778fig2.tif

Part of the crystal structure with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved hydrogen bonding have been removed for clarity.

CCDC reference: 1417413

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H1N2O2i 0.923(17) 1.781(17) 2.7000(9) 173.5(15)
N3H2N3O1i 0.844(16) 1.942(17) 2.7830(10) 174.1(15)
N3H1N3O2ii 0.890(15) 1.962(15) 2.8490(9) 174.0(13)
C7H7AN1iii 0.95 2.44 3.2808(11) 147
C10H10AO1iv 0.95 2.25 3.1574(10) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

NJJ thanks the UGC–SAP, India, for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. IAR and MMR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities to conduct this work.

supplementary crystallographic information

S1. Comment

Noncovalent interactions such as hydrogen bonding, anion-π, cation-π, and π-π interactions, and other weak forces play a central role in many areas. They are very important in deciding the conformation of molecules, chemical reactions, molecular recognition, regulating biochemical processes and governing the organization of multicomponent supramolecular assemblies (García-Raso et al., 2009). 2-Aminopyridines are used in the manufacture of pharmaceutical drugs, especially for the treatment of neurological ailments (Schwid et al., 1997). Pyridine heterocycles and their derivatives have large applications in the field of photo-chemical, electrochemical and catalytic process. Some pyridine derivatives possess non-linear optical (NLO) properties (Rajkumar et al., 2015). The crystal structure of 2-aminopyridinium isonicotinate 2-aminopyridine has already been reported (Xie, 2007). The salts of aminopyridine-thiophenecarboxylic acid (Jennifer & Muthiah, 2014) have been recently reported from our laboratory. We report herein the crystal structure of the title molecular salt, obtained by the reaction of 2-aminopyridine with 6-chloronicotinic acid.

The asymmetric unit of the title salt, (I), contains one 2-aminopyridinium cation and a 6-chloronicotinate anion (Fig. 1). Protonation of the cation occurs at N2, providing a C7—N2—C11 angle of 122.45 (7)° compared with 117.7 (1)° in the unprotonated 2-aminopyridine (Chao et al., 1975). A similar type of protonation is observed in various 2-aminopyridine acid complexes (Bis & Zaworotko, 2005). The bond lengths and angles in complex (I) are within normal ranges and comparable to those in other 2-aminopyridinium complexes (Jebas & Balasubramanian, 2006). The carboxylate group of the 6-chloronicotinate anion interacts with the protonated atom N2 and the amino group of the pyridine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N3—H1···O2ii, C7—H7A···N1iii and C10—H10A···O1iv hydrogen bonds (see Table 1 for symmetry codes), forming a two-dimensional network parallel to (100) (Fig 2). The crystal structure is further stabilized by two distinct π–π stacking interactions involving the 6-chloronicotinate and pyridinium ions. A Cg1-Cg2 distance of 3.6560 (5) Å and Cg2—Cg2 distance of 3.6295 (5) Å is observed (where Cg1 is the centroid of the N1/C1-C5 ring and Cg2 is the centroid of the N2/C7-C11 ring). The perpendicular distances of 3.2545 (3) and 3.5411 (3)Å together with the slip angles of 22.3 & 12.7°, respectively are typical for aromatic stacking values (Hunter, 1994).

S2. Experimental

A hot ethanolic solution of 2-aminopyridine (23 mg, Aldrich) and 6-chloronicotinic acid (39 mg, Alfa Aesar) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate like crystals were obtained.

S3. Refinement

Hydrogen atoms boned to C atoms were place in calculated postions with with C—H = 0.95Å and included with Uiso(H) = 1.2Ueq(C). H atoms boned to N atoms were refined independently with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved hydrogen bonding have been removed for clarity.

Crystal data

C5H7N2+·C6H3ClNO2 Z = 4
Mr = 251.67 F(000) = 520
Monoclinic, P21/c Dx = 1.499 Mg m3
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.6844 (4) Å θ = 2.4–32.7°
b = 10.8112 (5) Å µ = 0.34 mm1
c = 11.9235 (6) Å T = 100 K
β = 95.2046 (9)° Plate, colourless
V = 1114.87 (9) Å3 0.51 × 0.40 × 0.17 mm

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4073 independent reflections
Radiation source: fine-focus sealed tube 3771 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 32.7°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.993, Tmax = 0.994 k = −16→16
15546 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 W = 1/[Σ2(FO2) + (0.0539P)2 + 0.2679P] where P = (FO2 + 2FC2)/3
4073 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.08234 (8) 0.17345 (6) 0.03387 (6) 0.0142 (2)
N3 −0.02920 (9) 0.19691 (7) 0.20096 (6) 0.0184 (2)
C7 0.17904 (9) 0.11677 (8) −0.03367 (7) 0.0177 (2)
C8 0.26497 (11) 0.01655 (9) 0.00290 (8) 0.0228 (2)
C9 0.25206 (11) −0.02551 (8) 0.11385 (8) 0.0238 (2)
C10 0.15609 (10) 0.03247 (8) 0.18212 (7) 0.0197 (2)
C11 0.06759 (9) 0.13562 (7) 0.14076 (6) 0.0146 (2)
Cl1 0.54962 (2) 0.18137 (2) 0.23646 (2) 0.0203 (1)
O1 0.18876 (7) 0.61122 (6) −0.08641 (5) 0.0192 (2)
O2 0.07082 (7) 0.63585 (6) 0.07132 (5) 0.0171 (2)
N1 0.33406 (8) 0.35025 (7) 0.22723 (6) 0.0166 (2)
C1 0.43180 (9) 0.29272 (7) 0.16629 (7) 0.0150 (2)
C2 0.44779 (9) 0.31497 (8) 0.05297 (7) 0.0168 (2)
C3 0.35703 (9) 0.40792 (8) 0.00135 (6) 0.0158 (2)
C4 0.25507 (8) 0.47360 (7) 0.06340 (6) 0.0129 (2)
C5 0.24641 (9) 0.43930 (7) 0.17505 (6) 0.0152 (2)
C6 0.16403 (8) 0.58120 (7) 0.01150 (6) 0.0135 (2)
H1N2 0.0255 (18) 0.2389 (16) 0.0024 (14) 0.038 (4)*
H2N3 −0.0831 (18) 0.2538 (16) 0.1688 (13) 0.032 (4)*
H1N3 −0.0454 (17) 0.1728 (14) 0.2703 (13) 0.031 (4)*
H7A 0.18690 0.14750 −0.10760 0.0210*
H8A 0.33130 −0.02370 −0.04470 0.0270*
H9A 0.31080 −0.09500 0.14140 0.0290*
H10A 0.14880 0.00380 0.25680 0.0240*
H2A 0.51770 0.26860 0.01280 0.0200*
H3A 0.36410 0.42690 −0.07580 0.0190*
H5A 0.17440 0.48120 0.21690 0.0180*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0166 (3) 0.0150 (3) 0.0112 (3) −0.0003 (2) 0.0027 (2) 0.0014 (2)
N3 0.0217 (3) 0.0218 (3) 0.0125 (3) 0.0003 (3) 0.0053 (2) 0.0033 (2)
C7 0.0201 (3) 0.0187 (3) 0.0148 (3) −0.0004 (3) 0.0040 (3) −0.0023 (3)
C8 0.0229 (4) 0.0206 (4) 0.0249 (4) 0.0039 (3) 0.0024 (3) −0.0044 (3)
C9 0.0256 (4) 0.0174 (4) 0.0274 (4) 0.0034 (3) −0.0034 (3) 0.0010 (3)
C10 0.0234 (3) 0.0170 (3) 0.0180 (3) −0.0014 (3) −0.0024 (3) 0.0050 (3)
C11 0.0166 (3) 0.0150 (3) 0.0121 (3) −0.0037 (2) 0.0007 (2) 0.0017 (2)
Cl1 0.0195 (1) 0.0189 (1) 0.0224 (1) 0.0050 (1) 0.0020 (1) 0.0033 (1)
O1 0.0249 (3) 0.0212 (3) 0.0123 (2) 0.0042 (2) 0.0063 (2) 0.0025 (2)
O2 0.0212 (3) 0.0187 (3) 0.0119 (2) 0.0056 (2) 0.0047 (2) 0.0000 (2)
N1 0.0196 (3) 0.0161 (3) 0.0145 (3) 0.0028 (2) 0.0036 (2) 0.0008 (2)
C1 0.0144 (3) 0.0138 (3) 0.0167 (3) 0.0005 (2) 0.0016 (2) 0.0004 (2)
C2 0.0164 (3) 0.0175 (3) 0.0173 (3) 0.0017 (2) 0.0060 (3) −0.0007 (2)
C3 0.0172 (3) 0.0171 (3) 0.0136 (3) 0.0004 (3) 0.0050 (2) −0.0005 (2)
C4 0.0140 (3) 0.0130 (3) 0.0119 (3) −0.0008 (2) 0.0025 (2) −0.0007 (2)
C5 0.0182 (3) 0.0150 (3) 0.0129 (3) 0.0021 (3) 0.0043 (2) 0.0000 (2)
C6 0.0151 (3) 0.0142 (3) 0.0112 (3) −0.0008 (2) 0.0019 (2) −0.0008 (2)

Geometric parameters (Å, º)

Cl1—C1 1.7438 (8) C10—C11 1.4173 (12)
O1—C6 1.2489 (9) C7—H7A 0.9500
O2—C6 1.2719 (9) C8—H8A 0.9500
N2—C11 1.3556 (10) C9—H9A 0.9500
N2—C7 1.3609 (11) C10—H10A 0.9500
N3—C11 1.3305 (11) C1—C2 1.3917 (12)
N2—H1N2 0.923 (17) C2—C3 1.3863 (12)
N3—H2N3 0.844 (16) C3—C4 1.3980 (11)
N3—H1N3 0.890 (15) C4—C5 1.3905 (10)
N1—C5 1.3444 (11) C4—C6 1.5075 (10)
N1—C1 1.3218 (11) C2—H2A 0.9500
C7—C8 1.3645 (13) C3—H3A 0.9500
C8—C9 1.4129 (13) C5—H5A 0.9500
C9—C10 1.3687 (13)
Cl1···C4i 3.5893 (8) C6···N2v 3.4200 (10)
Cl1···C5i 3.2804 (8) C6···O2v 3.2056 (10)
Cl1···C9 3.6238 (10) C7···C3 3.5149 (12)
Cl1···H8Aii 3.1000 C7···C2 3.2663 (12)
Cl1···H3Aiii 3.1000 C7···N1vii 3.2808 (11)
Cl1···H9Aiv 3.0200 C9···Cl1 3.6238 (10)
O1···N3v 2.7830 (10) C10···O1iii 3.1574 (10)
O1···C2vi 3.2450 (10) C11···C1 3.5787 (11)
O1···C10vii 3.1574 (10) C11···N1 3.3719 (11)
O2···C6v 3.2056 (10) C3···H3Avi 3.0700
O2···C4v 3.3415 (10) C5···H7Aiii 2.8500
O2···N3viii 2.8490 (9) C6···H1N3viii 3.049 (15)
O2···N2v 2.7000 (9) C6···H1N2v 2.544 (17)
O1···H3A 2.5000 C6···H2N3v 2.833 (16)
O1···H1N2v 2.726 (16) H1N2···H2N3 2.28 (2)
O1···H10Avii 2.2500 H1N2···O1v 2.726 (16)
O1···H2N3v 1.942 (17) H1N2···O2v 1.781 (17)
O2···H5A 2.5200 H1N2···C6v 2.544 (17)
O2···H1N2v 1.781 (17) H2N3···O1v 1.942 (17)
O2···H1N3viii 1.962 (15) H2N3···C6v 2.833 (16)
N1···C11 3.3719 (11) H2N3···H1N2 2.28 (2)
N1···C7iii 3.2808 (11) H1N3···C6ix 3.049 (15)
N2···O2v 2.7000 (9) H1N3···H10A 2.5000
N2···C6v 3.4200 (10) H1N3···O2ix 1.962 (15)
N3···O1v 2.7830 (10) H1N3···H5Aix 2.3700
N3···O2ix 2.8490 (9) H3A···O1 2.5000
N1···H7Aiii 2.4400 H3A···C3vi 3.0700
N3···H5Aix 2.8700 H3A···Cl1vii 3.1000
C1···C11 3.5787 (11) H5A···O2 2.5200
C2···C3vi 3.5309 (12) H5A···N3viii 2.8700
C2···C7 3.2663 (12) H5A···H1N3viii 2.3700
C2···O1vi 3.2450 (10) H5A···H7Aiii 2.5100
C3···C3vi 3.1853 (12) H7A···H5Avii 2.5100
C3···C7 3.5149 (12) H7A···N1vii 2.4400
C3···C2vi 3.5309 (12) H7A···C5vii 2.8500
C4···Cl1iv 3.5893 (8) H8A···Cl1ii 3.1000
C4···O2v 3.3415 (10) H9A···Cl1i 3.0200
C5···Cl1iv 3.2804 (8) H10A···O1iii 2.2500
C6···C6v 3.3366 (10) H10A···H1N3 2.5000
C7—N2—C11 122.45 (7) C9—C10—H10A 120.00
C7—N2—H1N2 116.2 (10) C11—C10—H10A 120.00
C11—N2—H1N2 121.4 (10) Cl1—C1—N1 116.05 (6)
C11—N3—H2N3 118.0 (11) Cl1—C1—C2 118.64 (6)
C11—N3—H1N3 121.1 (10) N1—C1—C2 125.31 (7)
H2N3—N3—H1N3 120.5 (14) C1—C2—C3 116.97 (7)
C1—N1—C5 116.58 (7) C2—C3—C4 119.68 (7)
N2—C7—C8 121.16 (8) C3—C4—C5 117.59 (7)
C7—C8—C9 117.85 (8) C3—C4—C6 120.56 (6)
C8—C9—C10 120.92 (8) C5—C4—C6 121.80 (6)
C9—C10—C11 119.58 (8) N1—C5—C4 123.81 (7)
N3—C11—C10 123.60 (7) O1—C6—O2 125.14 (7)
N2—C11—N3 118.37 (7) O1—C6—C4 117.13 (6)
N2—C11—C10 118.04 (7) O2—C6—C4 117.71 (6)
N2—C7—H7A 119.00 C1—C2—H2A 122.00
C8—C7—H7A 119.00 C3—C2—H2A 121.00
C9—C8—H8A 121.00 C2—C3—H3A 120.00
C7—C8—H8A 121.00 C4—C3—H3A 120.00
C8—C9—H9A 120.00 N1—C5—H5A 118.00
C10—C9—H9A 120.00 C4—C5—H5A 118.00
C11—N2—C7—C8 1.11 (12) Cl1—C1—C2—C3 −177.22 (6)
C7—N2—C11—N3 179.67 (8) N1—C1—C2—C3 2.22 (13)
C7—N2—C11—C10 −0.50 (11) C1—C2—C3—C4 −0.29 (12)
C1—N1—C5—C4 −0.78 (12) C2—C3—C4—C5 −1.86 (11)
C5—N1—C1—Cl1 177.76 (6) C2—C3—C4—C6 175.44 (7)
C5—N1—C1—C2 −1.69 (12) C3—C4—C5—N1 2.51 (12)
N2—C7—C8—C9 −0.90 (13) C6—C4—C5—N1 −174.75 (7)
C7—C8—C9—C10 0.14 (14) C3—C4—C6—O1 −2.82 (11)
C8—C9—C10—C11 0.44 (13) C3—C4—C6—O2 178.64 (7)
C9—C10—C11—N2 −0.26 (12) C5—C4—C6—O1 174.36 (7)
C9—C10—C11—N3 179.55 (8) C5—C4—C6—O2 −4.18 (11)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x, −y+1, −z; (vi) −x+1, −y+1, −z; (vii) x, −y+1/2, z−1/2; (viii) −x, y+1/2, −z+1/2; (ix) −x, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O2v 0.923 (17) 1.781 (17) 2.7000 (9) 173.5 (15)
N3—H2N3···O1v 0.844 (16) 1.942 (17) 2.7830 (10) 174.1 (15)
N3—H1N3···O2ix 0.890 (15) 1.962 (15) 2.8490 (9) 174.0 (13)
C7—H7A···N1vii 0.95 2.44 3.2808 (11) 147
C10—H10A···O1iii 0.95 2.25 3.1574 (10) 160

Symmetry codes: (iii) x, −y+1/2, z+1/2; (v) −x, −y+1, −z; (vii) x, −y+1/2, z−1/2; (ix) −x, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5778).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.
  3. Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
  5. García-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). Cryst. Growth Des. 9, 2363–2376.
  6. Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.
  7. Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.
  8. Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Rajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231–233. [DOI] [PMC free article] [PubMed]
  11. Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–820. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Xie, Z.-Y. (2007). Acta Cryst. E63, o2192–o2193.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015014796/lh5778sup1.cif

e-71-0o655-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015014796/lh5778Isup2.hkl

e-71-0o655-Isup2.hkl (195.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015014796/lh5778Isup3.cml

. DOI: 10.1107/S2056989015014796/lh5778fig1.tif

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015014796/lh5778fig2.tif

Part of the crystal structure with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved hydrogen bonding have been removed for clarity.

CCDC reference: 1417413

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES