Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 15;71(Pt 9):o661–o662. doi: 10.1107/S205698901501484X

Crystal structure of l-tryptophan–fumaric acid–water (1/1/1)

M Lydia Caroline a,*, S Kumaresan a, P G Aravindan b, M Peer Mohamed c, G Mani a
PMCID: PMC4555439  PMID: 26396891

Abstract

In the title compound, C11H12N2O2·C4H4O4·H2O, the l-tryp­to­phan mol­ecule crystallized as a zwitterion, together with a neutral fumaric acid mol­ecule and a water solvent mol­ecule. In the crystal, the three components are linked by a series of N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming slabs lying parallel to (001). The slabs are connected by O—H⋯O hydrogen bonds, involving inversion-related fumaric acid groups, leading to the formation of a three-dimensional structure.

Keywords: crystal structure, l-tryptophan, fumaric acid, hydrogen bonding, three-dimensional structure

Related literature  

For literature on the UV spectroscopy of proteins, see: Demchenko (1986). For the different polymorphic forms of fumaric acid, see: Reis & Schneider (1928); Yardley (1925); Bednowitz & Post (1966). For the nonlinear optical properties of organic mol­ecules, see: Chemla & Zyss (1987); Zyss & Ledoux (1994); Zyss & Nicoud (1996). For the common conformations of l-tryptophan, see: Bye et al. (1973); Bakke & Mostad (1980). The bond lengths and angles in l-trypophan, see, for example: Gorbitz (2006); Gorbitz et al. (2012), and for fumaric acid, see: Goswami et al. (1999). For the crystal structure of l-tryptophan formic acid solvate, see: Hubschle et al. (2002). For details of the Cambridge Structural Database, see: Groom & Allen (2014).graphic file with name e-71-0o661-scheme1.jpg

Experimental  

Crystal data  

  • C11H12N2O2·C4H4O4·H2O

  • M r = 338.31

  • Monoclinic, Inline graphic

  • a = 11.3928 (8) Å

  • b = 6.6476 (4) Å

  • c = 21.4219 (13) Å

  • β = 95.801 (3)°

  • V = 1614.07 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.898, T max = 0.978

  • 10737 measured reflections

  • 3157 independent reflections

  • 2731 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.084

  • S = 1.04

  • 3157 reflections

  • 242 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901501484X/su5176sup1.cif

e-71-0o661-sup1.cif (372.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501484X/su5176Isup2.hkl

e-71-0o661-Isup2.hkl (252.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501484X/su5176Isup3.cml

. DOI: 10.1107/S205698901501484X/su5176fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

a . DOI: 10.1107/S205698901501484X/su5176fig2.tif

The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

b . DOI: 10.1107/S205698901501484X/su5176fig3.tif

The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1417535

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O3i 0.85(3) 2.11(3) 2.912(3) 158(3)
N2H2AO7 0.92(4) 1.94(4) 2.845(3) 170(3)
N2H2BO1ii 0.94(3) 2.30(3) 3.085(3) 140(2)
N2H2BO3 0.94(3) 2.28(3) 2.901(3) 123(2)
N2H2CO2iii 0.96(3) 1.87(3) 2.832(3) 174(3)
O4H4OO1ii 0.82 1.74 2.559(2) 178
O5H5OO6iv 0.82 1.81 2.630(3) 174
O7H7AO1v 0.88(2) 2.60(3) 3.261(3) 133(3)
O7H7AO2v 0.88(2) 1.97(2) 2.824(3) 165(3)
O7H7BO2vi 0.85(2) 2.53(3) 3.347(3) 162(3)
C3H3BO3vii 0.97 2.66 3.255(3) 120
C5H5O7i 0.93 2.58 3.491(3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The scientific support extended by the Sophisticated Analytical Instruments Facility, Indian Institute of Technology IITM, Chennai, in solving the crystal structure is greatly appreciated. The authors personally thank Professor E. M. Subramanian, retired Professor of Chemistry, Pachayappas College, Kanchipuram, Tamilnadu, for valuable suggestions.

supplementary crystallographic information

S1. Comment

Natural aromatic amino acids, particularly tryptophan, have near UV absorption and emission properties which are utilized extensively in solution phase investigations of structure-function relationships (Demchenko, 1986). Fumaric acid is known to exist in two different polymorphic forms viz. cis and trans ( Reis & Schneider, 1928; Yardley, 1925; Bednowitz & Post, 1966).

In conjunction with our ongoing work on non-linear optical organic crystals among the 20 naturally occurring amino acids, we have directed our inter­est to tryptophan (Trp), one of the essential amino acids for humans. The non-linear optical properties of organic molecules and crystals have been reviewed by Zyss (Chemla & Zyss, 1987; Zyss & Ledoux, 1994; Zyss & Nicoud, 1996). For similar properties and most the common confirmations of L-tryptophan have been reported (Bye et al., 1973; Bakke & Mostad, 1980). Compared with other amino acids, there are less than 30 tryptophan structures listed in the Cambridge Structural Database (Groom & Allen, 2014), due to the difficulty of obtaining good optical quality crystals; as noted by (Hubschle et al., 2002) who studied the crystal structure of L-tryptophan formic acid solvate. We successfully obtained good quality hard golden-yellow single crystals of L-tryptophan fumaric acid monohydrate, and we report herein on its synthesis and crystal structure.

In the title compound, Fig. 1, L-tryptophan is zwitterionic, as are most amino acids in the solid state, and fumaric acid is neutral. The bond lengths and angles in L-trypophan and fumaric acid are similar to those reported previously (Gorbitz, 2006; Gorbitz et al., 2012; Goswami et al., 1999).

In the crystal, the three components are linked by a series of O—H···O, N—H···O and C—H···O hydrogen bonds forming slabs lying parallel to (001); Table 1 and Fig. 2. The slabs are connected by O—H···O hydrogen bonds, involving inversion related fumaric acid groups, leading to the formation of a three-dimensional structure; Table 1 and Fig. 3.

S2. Synthesis and crystallization

An aqueous solution of L-tryptophan and fumaric acid in a 1:1 stoichiometric ratio was stirred at room temperature for 6 h. The resulting yellow solution was filtered and kept in a Petri dish. Yellow prismatic-shaped hard crystals suitable for X-ray analysis were obtained over a period of 5 days.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound, acid and water H atoms were located in a difference Fourier map. The NH and NH3 H atoms were freely refined. The water H atoms were refined with distance restraints: O—H = 0.86 (2) Å, H···H = 1.388 (20) Å with Uiso(H) = 1.5Ueq(O). The acid (OH) H atoms and the C-bound H atoms were included in calculated positions and treated as riding atoms: Uiso(H) = 1.5Ueq(O,C) for OH and methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C11H12N2O2·C4H4O4·H2O F(000) = 712
Mr = 338.31 Dx = 1.392 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 11.3928 (8) Å Cell parameters from 5033 reflections
b = 6.6476 (4) Å θ = 2.8–27.9°
c = 21.4219 (13) Å µ = 0.11 mm1
β = 95.801 (3)° T = 296 K
V = 1614.07 (18) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2731 reflections with I > 2σ(I)
Radiation source: Sealed X-ray tube Rint = 0.025
ω and φ scan θmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −14→14
Tmin = 0.898, Tmax = 0.978 k = −8→8
10737 measured reflections l = −26→26
3157 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.2154P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3157 reflections Δρmax = 0.18 e Å3
242 parameters Δρmin = −0.15 e Å3
4 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0069 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.75082 (19) 0.1813 (4) 0.77433 (10) 0.0380 (5)
H1 0.825 (3) 0.191 (5) 0.7735 (13) 0.047 (8)*
N2 0.5095 (2) 0.4264 (3) 0.91895 (10) 0.0276 (5)
H2A 0.472 (3) 0.534 (5) 0.9350 (15) 0.056 (10)*
H2B 0.563 (3) 0.476 (5) 0.8921 (14) 0.049 (8)*
H2C 0.554 (3) 0.365 (4) 0.9546 (15) 0.047 (9)*
O1 0.24153 (16) 0.1425 (3) 0.89730 (8) 0.0483 (5)
O2 0.35274 (17) 0.2275 (3) 0.98224 (8) 0.0485 (6)
O3 0.50562 (13) 0.6533 (3) 0.80307 (7) 0.0334 (4)
O4 0.69014 (13) 0.6700 (3) 0.77851 (7) 0.0381 (4)
H4O 0.7050 0.6615 0.8167 0.057*
O5 0.63962 (18) 0.6937 (5) 0.54724 (8) 0.0706 (7)
H5O 0.6080 0.6855 0.5112 0.106*
O6 0.45352 (18) 0.6884 (4) 0.57018 (8) 0.0595 (6)
O7 0.37013 (19) 0.7265 (3) 0.97085 (11) 0.0532 (6)
H7A 0.304 (2) 0.705 (5) 0.9880 (16) 0.080*
H7B 0.382 (3) 0.852 (4) 0.9713 (18) 0.080*
C1 0.3327 (2) 0.2159 (3) 0.92463 (10) 0.0263 (5)
C2 0.4263 (2) 0.2860 (3) 0.88365 (10) 0.0244 (5)
H2 0.3876 0.3556 0.8468 0.029*
C3 0.4928 (2) 0.1034 (4) 0.86179 (12) 0.0328 (6)
H3A 0.5345 0.0401 0.8983 0.039*
H3B 0.4354 0.0073 0.8432 0.039*
C4 0.5792 (2) 0.1458 (4) 0.81563 (11) 0.0302 (5)
C5 0.6979 (2) 0.1602 (4) 0.82805 (11) 0.0357 (6)
H5 0.7379 0.1562 0.8681 0.043*
C6 0.6657 (2) 0.1816 (4) 0.72436 (11) 0.0333 (6)
C7 0.6742 (2) 0.1930 (5) 0.66020 (12) 0.0445 (7)
H7 0.7471 0.2041 0.6445 0.053*
C8 0.5720 (3) 0.1874 (5) 0.62093 (12) 0.0508 (7)
H8 0.5756 0.1951 0.5778 0.061*
C9 0.4630 (2) 0.1705 (5) 0.64405 (13) 0.0507 (7)
H9 0.3951 0.1677 0.6160 0.061*
C10 0.4529 (2) 0.1579 (5) 0.70688 (11) 0.0417 (6)
H10 0.3792 0.1472 0.7216 0.050*
C11 0.5557 (2) 0.1615 (4) 0.74880 (11) 0.0312 (5)
C13 0.57628 (19) 0.6648 (4) 0.76415 (10) 0.0286 (5)
C14 0.5377 (2) 0.6733 (4) 0.69680 (10) 0.0365 (6)
H14 0.4570 0.6672 0.6848 0.044*
C15 0.6070 (2) 0.6888 (5) 0.65258 (11) 0.0418 (7)
H15 0.6880 0.6994 0.6632 0.050*
C16 0.5603 (2) 0.6899 (5) 0.58582 (11) 0.0447 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0245 (11) 0.0520 (14) 0.0381 (12) 0.0037 (12) 0.0067 (9) −0.0028 (12)
N2 0.0274 (12) 0.0345 (12) 0.0219 (11) −0.0020 (9) 0.0072 (9) 0.0000 (9)
O1 0.0374 (11) 0.0818 (15) 0.0254 (9) −0.0268 (11) 0.0019 (7) −0.0006 (10)
O2 0.0441 (11) 0.0834 (16) 0.0183 (9) −0.0273 (11) 0.0045 (7) −0.0019 (9)
O3 0.0300 (9) 0.0449 (10) 0.0260 (8) −0.0024 (9) 0.0056 (7) 0.0031 (8)
O4 0.0278 (9) 0.0651 (11) 0.0216 (8) −0.0034 (10) 0.0026 (6) 0.0003 (10)
O5 0.0548 (13) 0.133 (2) 0.0237 (9) −0.0004 (17) 0.0058 (9) −0.0012 (15)
O6 0.0464 (12) 0.1044 (17) 0.0265 (9) 0.0027 (13) −0.0027 (8) 0.0012 (12)
O7 0.0511 (13) 0.0543 (13) 0.0578 (13) 0.0096 (11) 0.0227 (10) 0.0010 (11)
C1 0.0249 (12) 0.0323 (13) 0.0220 (11) −0.0021 (10) 0.0034 (10) −0.0003 (10)
C2 0.0250 (13) 0.0331 (12) 0.0149 (11) 0.0015 (10) 0.0011 (9) 0.0015 (9)
C3 0.0399 (15) 0.0318 (13) 0.0275 (13) 0.0034 (11) 0.0073 (12) −0.0007 (10)
C4 0.0304 (12) 0.0315 (12) 0.0295 (12) 0.0041 (12) 0.0074 (9) −0.0047 (11)
C5 0.0371 (14) 0.0387 (13) 0.0312 (13) 0.0068 (13) 0.0029 (10) −0.0028 (12)
C6 0.0327 (13) 0.0365 (13) 0.0317 (12) 0.0040 (12) 0.0076 (10) −0.0033 (12)
C7 0.0416 (15) 0.0558 (17) 0.0384 (14) 0.0055 (15) 0.0158 (12) −0.0013 (14)
C8 0.0600 (19) 0.0640 (19) 0.0291 (13) 0.0095 (18) 0.0084 (13) 0.0003 (15)
C9 0.0446 (16) 0.0678 (19) 0.0374 (14) 0.0066 (17) −0.0071 (12) −0.0061 (16)
C10 0.0301 (13) 0.0578 (16) 0.0373 (14) 0.0054 (15) 0.0033 (11) −0.0047 (15)
C11 0.0286 (12) 0.0331 (12) 0.0323 (12) 0.0049 (12) 0.0056 (9) −0.0043 (12)
C13 0.0286 (12) 0.0313 (12) 0.0257 (11) −0.0016 (12) 0.0024 (9) 0.0003 (11)
C14 0.0328 (13) 0.0500 (15) 0.0263 (12) −0.0002 (14) 0.0002 (10) −0.0013 (14)
C15 0.0339 (14) 0.0630 (18) 0.0278 (13) 0.0024 (15) −0.0002 (11) −0.0004 (14)
C16 0.0429 (16) 0.0637 (19) 0.0279 (13) 0.0031 (16) 0.0053 (11) −0.0018 (15)

Geometric parameters (Å, º)

N1—C5 1.359 (3) C3—H3A 0.9700
N1—C6 1.370 (3) C3—H3B 0.9700
N1—H1 0.85 (3) C4—C5 1.355 (3)
N2—C2 1.482 (3) C4—C11 1.433 (3)
N2—H2A 0.92 (4) C5—H5 0.9300
N2—H2B 0.94 (3) C6—C7 1.390 (3)
N2—H2C 0.96 (3) C6—C11 1.413 (3)
O1—C1 1.240 (3) C7—C8 1.366 (4)
O2—C1 1.235 (3) C7—H7 0.9300
O3—C13 1.219 (3) C8—C9 1.387 (4)
O4—C13 1.303 (3) C8—H8 0.9300
O4—H4O 0.8200 C9—C10 1.365 (4)
O5—C16 1.285 (3) C9—H9 0.9300
O5—H5O 0.8200 C10—C11 1.401 (3)
O6—C16 1.229 (3) C10—H10 0.9300
O7—H7A 0.88 (2) C13—C14 1.466 (3)
O7—H7B 0.85 (2) C14—C15 1.297 (3)
C1—C2 1.521 (3) C14—H14 0.9300
C2—C3 1.529 (3) C15—C16 1.475 (3)
C2—H2 0.9800 C15—H15 0.9300
C3—C4 1.491 (3)
C5—N1—C6 108.8 (2) N1—C5—H5 124.4
C5—N1—H1 123.6 (19) N1—C6—C7 131.2 (2)
C6—N1—H1 127.6 (19) N1—C6—C11 107.1 (2)
C2—N2—H2A 113 (2) C7—C6—C11 121.7 (2)
C2—N2—H2B 109.4 (19) C8—C7—C6 117.9 (2)
H2A—N2—H2B 108 (3) C8—C7—H7 121.1
C2—N2—H2C 113.4 (17) C6—C7—H7 121.1
H2A—N2—H2C 105 (2) C7—C8—C9 121.4 (2)
H2B—N2—H2C 108 (2) C7—C8—H8 119.3
C13—O4—H4O 109.5 C9—C8—H8 119.3
C16—O5—H5O 109.5 C10—C9—C8 121.6 (3)
H7A—O7—H7B 107 (3) C10—C9—H9 119.2
O2—C1—O1 123.9 (2) C8—C9—H9 119.2
O2—C1—C2 119.2 (2) C9—C10—C11 118.9 (2)
O1—C1—C2 116.79 (19) C9—C10—H10 120.6
N2—C2—C1 110.35 (18) C11—C10—H10 120.6
N2—C2—C3 110.2 (2) C10—C11—C6 118.6 (2)
C1—C2—C3 109.37 (19) C10—C11—C4 134.3 (2)
N2—C2—H2 109.0 C6—C11—C4 107.1 (2)
C1—C2—H2 109.0 O3—C13—O4 123.4 (2)
C3—C2—H2 109.0 O3—C13—C14 121.5 (2)
C4—C3—C2 115.7 (2) O4—C13—C14 115.07 (19)
C4—C3—H3A 108.4 C15—C14—C13 125.3 (2)
C2—C3—H3A 108.4 C15—C14—H14 117.4
C4—C3—H3B 108.4 C13—C14—H14 117.4
C2—C3—H3B 108.4 C14—C15—C16 121.5 (2)
H3A—C3—H3B 107.4 C14—C15—H15 119.3
C5—C4—C11 105.8 (2) C16—C15—H15 119.3
C5—C4—C3 126.6 (2) O6—C16—O5 124.5 (2)
C11—C4—C3 127.4 (2) O6—C16—C15 121.0 (2)
C4—C5—N1 111.1 (2) O5—C16—C15 114.6 (2)
C4—C5—H5 124.4
O2—C1—C2—N2 −21.1 (3) C8—C9—C10—C11 −0.3 (5)
O1—C1—C2—N2 161.6 (2) C9—C10—C11—C6 1.1 (4)
O2—C1—C2—C3 100.3 (3) C9—C10—C11—C4 −177.8 (3)
O1—C1—C2—C3 −77.0 (3) N1—C6—C11—C10 179.9 (3)
N2—C2—C3—C4 −64.7 (3) C7—C6—C11—C10 −1.5 (4)
C1—C2—C3—C4 173.8 (2) N1—C6—C11—C4 −0.9 (3)
C2—C3—C4—C5 101.2 (3) C7—C6—C11—C4 177.6 (3)
C2—C3—C4—C11 −84.9 (3) C5—C4—C11—C10 180.0 (3)
C11—C4—C5—N1 −0.7 (3) C3—C4—C11—C10 5.1 (5)
C3—C4—C5—N1 174.2 (2) C5—C4—C11—C6 1.0 (3)
C6—N1—C5—C4 0.1 (3) C3—C4—C11—C6 −173.9 (2)
C5—N1—C6—C7 −177.9 (3) O3—C13—C14—C15 178.9 (3)
C5—N1—C6—C11 0.5 (3) O4—C13—C14—C15 −1.3 (4)
N1—C6—C7—C8 179.2 (3) C13—C14—C15—C16 178.1 (3)
C11—C6—C7—C8 1.0 (4) C14—C15—C16—O6 4.4 (5)
C6—C7—C8—C9 −0.1 (5) C14—C15—C16—O5 −175.9 (3)
C7—C8—C9—C10 −0.3 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.85 (3) 2.11 (3) 2.912 (3) 158 (3)
N2—H2A···O7 0.92 (4) 1.94 (4) 2.845 (3) 170 (3)
N2—H2B···O1ii 0.94 (3) 2.30 (3) 3.085 (3) 140 (2)
N2—H2B···O3 0.94 (3) 2.28 (3) 2.901 (3) 123 (2)
N2—H2C···O2iii 0.96 (3) 1.87 (3) 2.832 (3) 174 (3)
O4—H4O···O1ii 0.82 1.74 2.559 (2) 178
O5—H5O···O6iv 0.82 1.81 2.630 (3) 174
O7—H7A···O1v 0.88 (2) 2.60 (3) 3.261 (3) 133 (3)
O7—H7A···O2v 0.88 (2) 1.97 (2) 2.824 (3) 165 (3)
O7—H7B···O2vi 0.85 (2) 2.53 (3) 3.347 (3) 162 (3)
C3—H3B···O3vii 0.97 2.66 3.255 (3) 120
C5—H5···O7i 0.93 2.58 3.491 (3) 166

Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x+1/2, y+1/2, z; (iii) −x+1, y, −z+2; (iv) −x+1, y, −z+1; (v) −x+1/2, y+1/2, −z+2; (vi) x, y+1, z; (vii) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5176).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Bakke, O., Mostad, A., Grynfarb, M., Bartfai, T. & Enzell, C. R. (1980). Acta Chem. Scand. 34b, 559–570.
  3. Bednowitz, A. L. & Post, B. (1966). Acta Cryst. 21, 566–571.
  4. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bye, E., Mostad, A., Rømming, C., Husebye, S., Klaeboe, P. & Swahn, C. (1973). Acta Chem. Scand. 27, 471–484.
  6. Chemla, D. S. & Zyss, J. (1987). In Nonlinear optical properties of organic molecules and crystals, Vol. 1–2. Orlando, New York: Academic Press.
  7. Demchenko, A. P. (1986). In Ultraviolet Spectroscopy of Proteins. Berlin: Springer.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Görbitz, C. H. (2006). Acta Cryst. C62, o328–o330. [DOI] [PubMed]
  10. Görbitz, C. H., Törnroos, K. W. & Day, G. M. (2012). Acta Cryst. B68, 549–557. [DOI] [PubMed]
  11. Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999). Acta Cryst. C55, 583–585.
  12. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  13. Hübschle, C. B., Dittrich, B. & Luger, P. (2002). Acta Cryst. C58, o540–o542. [DOI] [PubMed]
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Reis, A. & Schneider, E. (1928). Z. Kristallogr. 68, 543–545.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Yardley, J. (1925). J. Chem. Soc. Trans. 127, 2207–2219.
  19. Zyss, J. & Ledoux, I. (1994). Chem. Rev. 94, 77–105.
  20. Zyss, J. & Nicoud, J. F. (1996). Curr. Opin. Solid State Mater. Sci. 1, 533–546.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901501484X/su5176sup1.cif

e-71-0o661-sup1.cif (372.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501484X/su5176Isup2.hkl

e-71-0o661-Isup2.hkl (252.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501484X/su5176Isup3.cml

. DOI: 10.1107/S205698901501484X/su5176fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

a . DOI: 10.1107/S205698901501484X/su5176fig2.tif

The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

b . DOI: 10.1107/S205698901501484X/su5176fig3.tif

The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1417535

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES