Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Dec 20;91(26):12976–12979. doi: 10.1073/pnas.91.26.12976

Thermodynamic procedure to synthesize heteropolymers that can renature to recognize a given target molecule.

V S Pande 1, A Y Grosberg 1, T Tanaka 1
PMCID: PMC45563  PMID: 7809158

Abstract

We suggest a procedure to synthesize polymers with characteristics similar to those observed in globular proteins: renaturability and the existence of an "active site" capable of specifically recognizing a given target molecule. This procedure is investigated by computer simulation, which finds a yield of up to 65%. We believe that, in principle, this scheme can be realized in vitro. The applicability of this approach as a model of prebiotic synthesis in vivo is also discussed.

Full text

PDF
12976

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Pande V. S., Grosberg A. Y., Tanaka T. Nonrandomness in protein sequences: evidence for a physically driven stage of evolution? Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12972–12975. doi: 10.1073/pnas.91.26.12972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Peng C. K., Buldyrev S. V., Goldberger A. L., Havlin S., Sciortino F., Simons M., Stanley H. E. Long-range correlations in nucleotide sequences. Nature. 1992 Mar 12;356(6365):168–170. doi: 10.1038/356168a0. [DOI] [PubMed] [Google Scholar]
  3. Shakhnovich E. I., Gutin A. M. Engineering of stable and fast-folding sequences of model proteins. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7195–7199. doi: 10.1073/pnas.90.15.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES