SUMMARY
Modern techniques in molecular biology, genomics, and mass spectrometry–based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
This extensive summary of all known histone posttranslational modifications, their locations and functions, modifying enzymes, and primary references will be useful to all working in the field of epigenetics.
Histone posttranslational modifications (PTMs) have been linked to a variety of processes, including transcription, DNA replication, and DNA damage (Kouzarides 2007; Murr 2010; for a list of reviews, see Suggested Reviews). The growing list of histone PTMs has exploded in the last several years as a consequence of the considerable advances in available antibody reagents, peptide and protein array technology, and mass spectrometry–based proteomics (Karch et al. 2013). These approaches allow for identification and quantification of histone PTMs from global or more local chromatin states, especially when combined with chromatin immunoprecipitation experiments (Han and Garcia 2013). Here, we attempt to catalog the ever-growing number of histone PTMs that have been studied over the last several years. The tables are broken down into two groups: Section 1 (Tables 1–8) lists the histone PTMs that have been studied more and thus some functional aspects are known concerning the marks; Section 2 (Tables 9–16) lists the histone PTMs that have been detected, but in which rather limited function has been determined. The latter category of histone marks, being in their observed infancy, is very intriguing and represents a large opportunity for the chromatin biology and epigenetics communities to decipher their biological consequences and outcomes in the years to come. Histone acetylation and methylation were first discovered about 50 years ago (Allfrey et al. 1964); however, only in the last decade or so has its physiological function been uncovered. We anticipate that this will serve as a useful resource for those already working in the field, but also as motivation for those newer scientists beginning their research work in this area to continue to push the boundaries of knowledge.
Model organism key | |
An | Aspergillus nidulans |
At | Arabidopsis thaliana |
Bt | Bos torus |
Ce | Caenorhabditis elegans |
Dm | Drosophila melanogaster |
Hs | Homo sapiens |
Mm | Mus musculus |
Nc | Neurospora crassa |
Rn | Rattus norvegicus |
Sc | Saccharomyces cerevisiae |
Sp | Schizosaccharomyces pombe |
Tt | Tetrahymena thermophila |
Xl | Xenopus laevis |
Modification key | |||
ac | acetylation | mal | malonylation |
ar1 | mono-ADP-ribosylation | me1 | monomethylation |
bio | biotinylation | me2 | dimethylation |
but | butyrlyation | me3 | trimethylation |
cit | citrullination | og | O-GlcNAcylation |
cr | crotonylation | oh* | hydroxylation |
for | formylation | ox* | oxidation |
gt* | glutathionylation | ph | phosphorylation |
hib | 2-hydroxyisobutyrylation | su | SUMOylation |
iso | isomerization | ub | ubiquitination |
* XYZ modifications are known to occur on histone proteins but have not been included in these tables at individual amino acid residues.
Table heading key | |
Site | A known histone PTM is indicated, based on the Brno nomenclature (Turner 2005), by the numbered amino acid residue at which it occurs followed by the abbrevation for its chemical modification (see Modification key). |
Model | Refers to the model organism in which a PTM was characterized. |
Enzyme | Where known, the histone-modifying enzyme (writer) that transduces a PTM is indicated. Italics specify the valency of modification that an enzyme can catalyze. |
Function | The associated biological function of a histone PTM is indicated where known. |
Reference | The key primary references where a PTM and/or its function are described are listed. |
Table 1.
Histone H2A
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
K5ac | Hs, Sc | Tip60, p300/CBP, Hat1 | Transcriptional activation | Yamamoto and Horikoshi 1997; Kimura and Horikoshi 1998; Verreault et al. 1998 |
K9bio | HCS Biotinidase |
Acetylation and methylation dependent Involved in cell proliferation, gene silencing, and cellular response to DNA damage |
Stanley et al. 2001; Kothapalli et al. 2005a; Chew et al. 2006 | |
K7ac | Sc | Hat1, Esa1 | Transcriptional activation | Suka et al. 2001 |
K13bio | HCS Biotinidase |
Acetylation and methylation dependent Involved in cell proliferation, gene silencing, and cellular response to DNA damage |
Stanley et al. 2001; Kothapalli et al. 2005a; Chew et al. 2006 | |
K13ub | Mm | Rnf168 | Part of the DNA damage response to double-stranded DNA breaks | Mattiroli et al. 2012; Gatti et al. 2012 |
K15ub | Mm | Rnf168 | Part of the DNA damage response to double-stranded DNA breaks | Mattiroli et al. 2012; Gatti et al. 2012 |
K63ub | Mm | Rnf8 | Part of the DNA damage response to double-stranded DNA breaks | Huen et al. 2007; Mailand et al. 2007 |
Q105me | Sc, Hs | Nop1, fibrillarin: me1 | Ribosomal gene expression | Tessarz et al. 2014 |
K119ub | Dm, Hs | dRing, RING1B | Polycomb silencing UV damage response |
Wang et al. 2004; Kapetanaki et al. 2006 |
S121ph (S122ph) |
Sc Sp |
Mec1 PIKK Bub1 |
DNA damage response Telomere silencing Chromosomal stability |
Wyatt et al. 2003; Harvey et al. 2005 Kawashima et al. 2010 |
T125ph | Sc | Mec1 PIKK |
DNA damage response Telomere silencing |
Wyatt et al. 2003 |
K126bio | Hs | HCS Biotinidase |
Acetylation and methylation dependent Involved in cell proliferation, gene silencing, and cellular response to DNA damage. |
Stanley et al. 2001; Kothapalli et al. 2005a; Chew et al. 2006 |
K126su | Sc | Transcriptional repression Blocks histone acetylation and histone ubiquitination |
Nathan et al. 2006 | |
K127bio | Hs | HCS Biotinidase |
Acetylation and methylation dependent Involved in cell proliferation, gene silencing, and cellular response to DNA damage |
Stanley et al. 2001; Kothapalli et al. 2005a; Chew et al. 2006 |
S128ph (S129ph) |
Sc | Mec1 PIKK |
DNA damage response Telomere silencing |
Downs et al. 2000; Redon et al. 2003; Wyatt et al. 2003; Downs et al. 2004 |
K130bio | Hs | HCS Biotinidase |
Acetylation and methylation dependent Involved in cell proliferation, gene silencing, and cellular response to DNA damage |
Stanley et al. 2001; Kothapalli et al. 2005a; Chew et al. 2006 |
Additional H2A modifications: K4ac, K21ac, K74me (Pantazis and Bonner 1981; Song et al. 2003; Aihara et al. 2004).
HCS, holocarboxylase synthetase; PIKK, phosphatidylinositol 3-kinase-related kinase.
Table 2.
Histone H2AX
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
K13ub | Mm | Rnf168 | Part of the DNA damage response to double-stranded DNA breaks | Mattiroli et al. 2012; Gatti et al. 2012; Panier and Durocher 2013 |
K15ub | Mm | Rnf168 | Part of the DNA damage response to double-stranded DNA breaks | Mattiroli et al. 2012; Gatti et al. 2012; Panier and Durocher 2013 |
K63ub | Mm | Rnf8 | Part of the DNA damage response to double-stranded DNA breaks | Huen et al. 2007; Mailand et al. 2007; Panier and Durocher 2013 |
S139ph | Hs, Sc, Dm, Xl |
ATM DNA-PK ATR |
DNA repair M-phase related Also known as γH2AX |
Rogakou et al. 1998; Rogakou et al. 1999; Burma et al. 2001; Stiff et al. 2004; Ichijima et al. 2005; Mukherjee et al. 2006; Ward and Chen 2001 |
Y142ph | Hs, Mm | WSTF | DNA damage | Xiao et al. 2009 |
ATM, ataxia telangiectasia mutated; PK, protein kinase; ATR, ataxia telangiectasia and Rad3-related; WSTF, Williams–Beuren syndrome transcription factor.
Table 3.
Histone H2B
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
K5ac | Hs | Transcriptional activation | Puerta et al. 1995; Galasinski et al. 2002 | |
S10ph | Sc | Ste20 | Apoptosis | Ahn et al. 2005 |
S14ph | Hs, Mm | Mst1/krs2 kinase | Apoptosis Somatic hypermutation and class switch recombination |
Ajiro 2000; Cheung et al. 2003; Odegard et al. 2005 |
K16su | Sc | Gene repression | Nathan et al. 2006 | |
K17su | Sc | Gene repression | Nathan et al. 2006 | |
S33ph | Dm | CTK TAF1 |
Transcriptional activation | Maile et al. 2004 |
K34ub | Sc | MSL2 | Transcriptional activation | Wu et al. 2011 |
K120ub | Hs | RNF20/40 | Cell-cycle progression in concert with SAGA for transcriptional activation through H3 methylation, DNA damage response, meiosis | Robzyk et al. 2000; Sun and Allis 2002; Kao et al. 2004; Zhu et al. 2005 |
K123ub | Sc | Rad6(E2) Bre1(E3); ub1 |
Telomeric silencing by lowering histone methylation at H3K4 and H3K79 | Emre et al. 2005 |
Table 4.
Histone H3
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
R2me | Hs Mm |
CARM1; me1, me2a PRMT5; me1, me2s PRMT6; me1, me2a PRMT7; me1, me2s |
Gene expression | Chen et al. 1999; Schurter et al. 2001; Greer and Shi 2012 |
T3ph | Hs At |
Haspin | Centromere mitotic spindle function | Polioudaki et al. 2004; Dai et al. 2005 |
K4ac | Sc | GCN5, RTT109, Sir2, Hst1 | Transcription activation at some promoters | Guillemette et al. 2011 |
K4me | Sc Ce Ds Hs |
Set1; me3 Set-2; me1–3 Set1; me2/3 SETD1A; me1–3 SETD1B |
rDNA/telomeric silencing (Sc) Germ cell maintenance Transcriptional activation (All) |
Briggs et al. 2001; Roguev et al. 2001; Nagy et al. 2002; Bryk et al. 2002; Bernstein et al. 2002; Santos-Rosa et al. 2002; Lee and Skalnik 2005; Lee et al. 2007; Xiao et al. 2011 |
Tt | Transcriptional activation | Strahl et al. 1999 | ||
Ds Hs |
Trx MLL; me1–3 MLL2 |
Trithorax activation Gene activation |
Milne et al. 2002; Nakamura et al. 2002; Greer and Shi 2012 | |
Ds Hs |
Trr MLL3; me1–3 MLL4 |
Enhancer function | Herz et al. 2013 | |
Ce Ds Hs |
Ash-2; me1–3 Ash1; me3 ASH1L; me1/3 |
Germ cell specification Trithorax activation Gene activation |
Beisel et al. 2002; Xiao et al. 2011 | |
Hs | SETD7; me1 | Transcriptional activation | Wang et al. 2001a; Nishioka et al. 2002a; Wilson et al. 2002; Zegerman et al. 2002 | |
Hs | SMYD3; me2/3 | Transcriptional activation | Hamamoto et al. 2004 | |
Mm | Meisetz; me3 | Meiotic prophase progression | Hayashi et al. 2005 | |
T6ph | Hs | PKCβ | Inhibits AR-dependent transcription | Metzger et al. 2010 |
R8me | Hs | PRMT5; me1, me2s | Transcriptional repression | Pal et al. 2004 |
K9ac | Sc | SAGA GCN5 |
Transcriptional activation | Grant et al. 1999 |
Hs | SRC1 | Nuclear receptor coactivator | Spencer et al. 1997; Schubeler et al. 2000; Vaquero et al. 2004 | |
Dm | Transcriptional activation | Nowak and Corces 2000 | ||
K9me | Sp | Clr4; me1, me2 | Centromeric and mating-type silencing | Bannister et al. 2001; Nakayama et al. 2001 |
Nc | Dim5; me3 | DNA methylation | Tamaru and Selker 2001 | |
Ce | Met-2; me3 Mes-2; me3 |
Germ cells | Bessler et al. 2010 | |
Dm | Su(var)3–9; me2/3 | Dominant PEV modifier | Czermin et al. 2001; Schotta et al. 2002; Ebert et al. 2004 | |
At | KRYPTONITE; me2 | DNA methylation | Jackson et al. 2002; Jackson et al. 2004 | |
Mm | Suv39h1; me2/3 Suv39h2; me2/3 |
Pericentric heterochromatin | O’Carroll et al. 2000; Rea et al. 2000; Lachner et al. 2001; Peters et al. 2001 | |
Hs | SUV39H1; me3 | Rb-mediated silencing | Nielsen et al. 2001; Vandel et al. 2001 | |
Hs, Mm | ESET; me2/me3 (SETDB1) |
Transcriptional repression | Schultz et al. 2002; Yang et al. 2002; Dodge et al. 2004; Wang et al. 2004 | |
Mm, Hs | G9a; me1/me2 | Transcriptional repression Imprinting |
Tachibana et al. 2001, 2002; Ogawa et al. 2002; Xin et al. 2003 | |
Hs | EHMT1/GLP; me1/me2 | Transcriptional repression | Ogawa et al. 2002; Tachibana et al. 2005 | |
Hs | PRDM2/RIZ1; me2 | Tumor suppression and response to female sex hormones | Kim et al. 2003; Carling et al. 2004 | |
S10ph | Sc | Snf1 | Transcriptional activation | Lo et al. 2001 |
Dm | Jil-1 | Transcriptional up-regulation of male X-chromosome | Jin et al. 1999; Wang et al. 2001c | |
Hs | Rsk2 Msk1 Msk2 |
Transcriptional activation of immediate early genes (in concert with H3-K14 acetylation) | Sassone-Corsi et al. 1999; Thomson et al. 1999; Cheung et al. 2000; Clayton et al. 2000 | |
Hs | IKKα | Transcriptional up-regulation | Anest et al. 2003; Yamamoto et al. 2003 | |
Sc, Ce | Ip11/AuroraB | Mitotic chromosome condensation | Hendzel et al. 1997; Wei et al. 1999; Hsu et al. 2000 | |
An | NIMA | Mitotic chromosome condensation | De Souza et al. 2000 | |
Hs, Ce | Fyn kinase | UVB-induced MAP kinase pathway | He et al. 2005 | |
T11ph | Hs | Dlk/ZIP | Mitosis-specific phosphorylation | Preuss et al. 2003 |
K14ac | Sc, Tt, Mm | Gcn5 | Transcriptional activation | Brownell et al. 1996; Kuo et al. 1996 |
Hs, Dm | TAFII230 TAFII250 |
Transcriptional activation | Mizzen et al. 1996 | |
Hs | p300 | Transcriptional activation | Schiltz et al. 1999 | |
Hs | PCAF | Transcriptional activation | Schiltz et al. 1999 | |
Mm | SRC1 | Nuclear receptor coactivator | Spencer et al. 1997 | |
R17me | Hs, Mm | CARM1; me1, me2a | Transcriptional activation (in concert with H3-K18/23 acetylation) | Chen et al. 1999; Schurter et al. 2001; Bauer et al. 2002; Daujat et al. 2002 |
K18ac | Sc | SAGA Ada GCN5 |
Transcriptional activation | Grant et al. 1999 |
Hs | p300 | Transcriptional activation | Schiltz et al. 1999 | |
Hs | CBP | Transcriptional activation (in concert with H3-R17 methylation) | Daujat et al. 2002 | |
K23ac | Sc | SAGA | Transcriptional activation | Grant et al. 1999 |
Hs | CBP | Transcriptional activation (in concert with H3-R17 methylation) | Daujat et al. 2002 | |
R26me | Hs | CARM1; me1, me2a | In vitro methylation site | Chen et al. 1999; Schurter et al. 2001 |
K27ac | Sc, Dm | CBP, P300, GCN5 | Enhancer function, gene expression | Tie et al. 2009; Suka et al. 2001; Creyghton et al. 2010 |
K27me | Hs, Dm | E(z)/EZH2; me3 | Polycomb repression Early B-cell development X-chromosome inactivation |
Cao et al. 2002; Czermin et al. 2002; Kuzmichev et al. 2002; Muller et al. 2002; Su et al. 2003 |
S28ph | Hs | Aurora-B | Mitotic chromosome condensation | Goto et al. 1999; Goto et al. 2002 |
Hs | MSK1 | UVB-induced phosphorylation | Zhong et al. 2001 | |
K36me | Sc | Set2; me2 | Gene repression | Strahl et al. 2002; Kizer et al. 2005; Sun et al. 2005 |
Nc | Set2; me2 | Transcription activation | Adhvaryu et al. 2005 | |
Sp | Set2; me2 | Transcription elongation | Morris et al. 2005 | |
Ce | MES-4; me2 MET-1; me3 |
Dosage compensation in germline Meiosis |
Bender et al. 2006; Andersen and Horvitz 2007 | |
Dm | MES4; me3 SET2; me3 |
Transcription elongation | Bell et al. 2007 | |
Hs, Mm | SETD2; me1–3 NSD1–3; me1, me2 |
Transcription activation |
Edmunds et al. 2008 Wang et al. 2007 |
|
K36ac | Sc, Mm, Hs | GCN5 | Promoter mark on active genes | Morris et al. 2007 |
P38iso | Sc | Fpr4 | Gene expression | Nelson et al. 2006 |
Y41ph | Hs | JAK2 | Gene expression | Dawson et al. 2009 |
R43me | Hs | CARM1, PRMT6; me2a | Transcriptional activation | Casadio et al. 2013 |
T45ph | Sc, Hs | Cdc7, PKC | DNA replication; apoptosis | Baker et al. 2010; Hurd et al. 2009 |
K56ac | Sc | SPT10 | Transcriptional activation; DNA damage | Xu et al. 2005; Ozdemir et al. 2005; Masumoto et al. 2005 |
K56me | Hs | G9a; me1 | DNA replication | Yu et al. 2012 |
Hs | Suv39h; me3 | Heterochromatin | Jack et al. 2013 | |
K64ac | Hs/Mm | p300 | Nucleosome dynamics and transcription | Di Cerbo et al. 2014 |
K64me | Mm | me3 | Pericentric heterochromatin | Daujat et al. 2009 |
K79me | Sc, Hs | Dot1/DOT1L; me1–3 | Telomeric silencing, pachytene checkpoint DNA damage response |
Feng et al. 2002; Lacoste et al. 2002; Ng et al. 2002; van Leeuwen et al. 2002; Greer and Shi 2012 |
T80ph | Hs | Mitosis | Hammond et al. 2014 |
Table 5.
Histone H3.3
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
K4me | Dm | me1, me2, me3 | Transcriptional activation | McKittrick et al. 2004 |
K9me | Dm | me1, me2 | Transcriptional repression | McKittrick et al. 2004 |
K9ac | Dm, Hs | Transcriptional activation | McKittrick et al. 2004; Hake et al. 2006 | |
K14me | Dm | me1, me2 | McKittrick et al. 2004 | |
K14ac | Dm, Hs | Transcriptional activation | McKittrick et al. 2004; Hake et al. 2006 | |
K18ac | Hs | Transcriptional activation | Hake et al. 2006 | |
K23ac | Hs | Transcriptional activation | Hake et al. 2006 | |
K27me | Dm | me1, me2, me3 | Transcriptional repression | McKittrick et al. 2004 |
S31ph | Mammals | Mitosis-specific phosphorylation | Hake et al. 2005 | |
K36me | Dm, Hs | me1, me2, me3 | Transcriptional activation | McKittrick et al. 2004; Hake et al. 2006 |
K37me | Dm | me1, me2 | McKittrick et al. 2004 | |
K79me | Dm, Hs | me1, me2 | Transcriptional activation | McKittrick et al. 2004; Hake et al. 2006 |
Table 6.
CEN-H3/CENP-A
Site | Model | Enzyme | Function | Reference |
---|---|---|---|---|
G1me3 | Hs | RCC1 | Mitosis | Bailey et al. 2013 |
S7ph | Hs | Mitosis | Zeitlin et al. 2001 | |
S16ph | Hs | Chromosome segregation during mitosis | Bailey et al. 2013 | |
S18ph | Hs | Chromosome segregation during mitosis | Bailey et al. 2013 |
Table 7.
Histone H4
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
S1ph | Hs, Sc | Casein kinase II | DNA damage response | Ruiz-Carrillo et al. 1975; Cheung et al. 2005; van Attikum and Gasser 2005 |
R3me | Hs, Sc | PRMT1; me1, me2a PRMT5; me1, me2s PRMT6; me1, me2a PRMT7; me1, me2s |
Transcriptional activation | Wang et al. 2001b; Strahl et al. 2001; Greer and Shi 2012 |
K5ac | Tt, Dm, Hs | Hat1 | Histone deposition | Sobel et al. 1995; Parthun et al. 1996; Taplick et al. 1998; Kruhlak et al. 2001 |
Sc | Esa1/NuA4 | Cell-cycle progression | Smith et al. 1998; Allard et al. 1999; Clarke et al. 1999; Miranda et al. 2006; Bird et al. 2002 | |
Hs, Mm | ATF2 | Sequence-specific transcription factor | Kawasaki et al. 2000a | |
Hs | p300 | Transcriptional activation | Schiltz et al. 1999; Turner and Fellows 1989 | |
K5me | Hs | Smyd3; me1 | Contributes to cancer phenotype | Van Aller et al. 2012 |
K8ac | Hs, Mm | Y-ATF2 | Excluded from Xi Sequence-specific transcription factor |
Jeppesen and Turner 1993; Choy et al. 2001; Kruhlak et al. 2001; Kawasaki et al. 2000b |
Hs | PCAF/ p300 | Transcriptional activation | Schiltz et al. 1999; Turner and Fellows 1989 | |
K8me | Sc | SET5; me1 | Stress response | Green et al. 2012 |
K12ac | Sc, Hs | Hat1 | Excluded from Xi Histone deposition |
Jeppesen and Turner 1993; Kleff et al. 1995; Sobel et al. 1995; Parthun et al. 1996; Chang et al. 1997; Kruhlak et al. 2001; Turner and Fellows 1989 |
Sc | NuA4 | Mitotic and meiotic progression | Choy et al. 2001 | |
K12me | Sc | SET5; me1 | Stress response | Green et al. 2012 |
K12bio | Hs | HCS Biotinidase |
Decrease in response to DNA double-strand breaks Effects on cell proliferation |
Stanley et al. 2001; Kothapalli et al. 2005a,b |
K16ac | Mm | Excluded from Xi Cell-cycle-dependent acetylation |
Jeppesen and Turner 1993; Taplick et al. 1998 | |
Dm | MOF | Transcriptional up-regulation of male X chromosome | Akhtar and Becker 2000; Hsu et al. 2000 | |
Hs, Mm | ATF2 | Sequence-specific transcription factor | Kawasaki et al. 2000a; Turner 2000; Kruhlak et al. 2001; Turner and Fellows 1989; Vaquero et al. 2004 | |
K20me | Mm, Dm | Suv4–20h1; me2, me3 Suv4–20h2; me2, me3 |
Gene silencing | Schotta et al. 2004 |
Hs, Dm | SETD8/Pr-SET7; me1 |
Transcriptional silencing Mitotic condensation |
Fang et al. 2002; Nishioka et al. 2002b; Rice et al. 2002 | |
Dm | Ash1; me2 | Trithorax activation in concert with H3K4 and H3K9 methylation | Beisel et al. 2002 | |
K59me | Sc | Silent chromatin formation | Zhang et al. 2003 | |
K59su | Hs | SUMO-1 SUMO-3 |
Transcriptional repression | Shiio and Eisenman 2003 |
Table 8.
Histone H1
Site | Model | Enzyme | Function | Reference(s) |
---|---|---|---|---|
E2arn | Rn | PARP-1; ar1 | Involved in neurotrophic activity | Ogata et al. 1980b; Visochek et al. 2005 |
T10ph | Hs | Mitosis specific Transcriptional activation H1b |
Chadee et al. 1995; Garcia et al. 2004; Sarg et al. 2006 | |
E14arn | Rn | PARP-1; ar1 | Involved in neurotrophic activity | Ogata et al. 1980b; Visochek et al. 2005 |
S17ph | Hs | Interphase specific Transcriptional activation H1b |
Chadee et al. 1995; Garcia et al. 2004; Sarg et al. 2006 | |
K26me | Hs | EZH2; me2 | Mediates HP1 binding | Kuzmichev et al. 2004; Daujat et al. 2005 |
S27ph | Hs | EZH2; me2 | Blocks HP1 binding | Garcia et al. 2004; Daujat et al. 2005 |
R54cit | Mm | PADI4 | Cellular reprogramming/nucleosome binding | Christophorou et al. 2014 |
T137ph | Hs | Mitosis specific Transcriptional activation H1b |
Chadee et al. 1995; Garcia et al. 2004; Sarg et al. 2006 | |
T154ph | Hs | Mitosis specific Transcriptional activation H1b |
Chadee et al. 1995; Garcia et al. 2004; Sarg et al. 2006 | |
S172ph | Hs | Interphase specific Transcriptional activation H1b |
Chadee et al. 1995; Garcia et al. 2004; Sarg et al. 2006 | |
S188ph | Hs | Interphase specific Transcriptional activation H1b |
Chadee et al. 1995; Garcia et al. 2004; Sarg et al. 2006 | |
K213ar | Rn | PARP-1; ar1 | Involved in neurotrophic activity | Ogata et al. 1980b; Visochek et al. 2005 |
Table 9.
Histone H2Aa,b
aCarbonylation of H2A has been detected in Rn indirectly by Sharma et al. (2006).
b5-Hydroxylation of lysine residues has been reported for canonical histones (H2A, H2B, H3, and H4) by Unoki et al. (2013).
Table 10.
Histone H2AX
Site | Model | Method | Reference |
---|---|---|---|
K118ub | Mm | MS | Tweedie-Cullen et al. 2009 |
K119ub | Mm | MS | Tweedie-Cullen et al. 2009 |
Table 11.
Histone H2A.Z
Site | Model | Method | Reference(s) |
---|---|---|---|
K4ac; me1 | Hs; Hs/Mm | MS; MS/Ab | Tweedie-Cullen et al. 2009; Binda et al. 2013 |
K7ac; me1 | Hs; Hs/Mm | MS; MS/Ab | Bonenfant et al. 2006; Binda et al. 2013 |
K11ac | Hs | MS | Bonenfant et al. 2006 |
K13ac | Mm | MS | Tweedie-Cullen et al. 2009 |
K120ub | Mm | MS | Ku et al. 2012 |
K121ub | Mm | MS | Ku et al. 2012 |
K125ub | Mm | MS | Ku et al. 2012 |
Table 12.
Histone macroH2A
Site | Model | Method | Reference(s) |
---|---|---|---|
K17me1 | Hs | MS | Chu et al. 2006 |
K115ub | Hs | MS | Ogawa et al. 2005; Chu et al. 2006 |
K122me2 | Hs | MS | Chu et al. 2006 |
T128ph | Hs | MS/Ab | Chu et al. 2006; Bernstein et al. 2008 |
K238me1 | Hs | MS | Chu et al. 2006 |
K238me2 | Hs | MS | Chu et al. 2006 |
Table 13.
Histone H2B
Also, 5-hydroxylation of lysine residues has been reported (Unoki et al. 2013).
Table 14.
Histone H3
Also, 5-hydroxylation of lysine residues has been reported (Unoki et al. 2013).
Table 15.
Histone H4
Also, 5-hydroxylation of lysine residues has been reported (Unoki et al. 2013).
Table 16.
Histone H1
Pham (2000) found an enzyme that ubiquitinates histone H1
aH1S87 and H1K87 represent different histone H1 variants.
1. MORE-STUDIED HISTONE PTMS
The tables in this section list histone modifications with known functions and modifying enzymes, and primary references are indicated wherever possible (up until 2014). Distinct modification states are indicated in italics in the Enzyme column.
Additional modifications with currently unknown function are listed in Section 2. These modifications were obtained from a combination of sources.
The tables that constitute Section 1 have been extended from Appendix 2 in Allis et al. (2007) by Ben Garcia and Yingming Zhao, with additional input from Le Hehuang, Monika Lachner, and Marie-Laure Caparros. That appendix was based on an original setup from Lachner et al. (2003) and significantly extended by Roopsha Sengupta, Mario Richter, and Marie-Laure Caparros and verified by Patrick Trojer.
The histone modifications follow the nomenclature as proposed by Turner (2005).
2. LESS-STUDIED HISTONE PTMS
Methods key | |
The method by which novel histone modifications have been identified is indicated by the following abbreviations: | |
Ab | antibody |
Au | autoradiography |
MS | mass spectrometry |
These tables reflect modification sites that have been detected, but where no function has been assigned.
Footnotes
Editors: C. David Allis, Marie-Laure Caparros, Thomas Jenuwein, Danny Reinberg, and Monika Lachner
Additional Perspectives on Epigenetics available at www.cshperspectives.org
REFERENCES
- Adhvaryu KK, Morris SA, Strahl BD, Selker EU. 2005. Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot Cell 4: 1455–1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahn SH, Cheung WL, Hsu JY, Diaz RL, Smith MM, Allis CD. 2005. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120: 25–36. [DOI] [PubMed] [Google Scholar]
- Aihara H, Nakagawa T, Yasui K, Ohta T, Hirose S, Dhomae N, Takio K, Kaneko M, Takeshima Y, Muramatsu M, et al. 2004. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev 18: 877–888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ajiro K. 2000. Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. J Biol Chem 275: 439–443. [DOI] [PubMed] [Google Scholar]
- Akhtar A, Becker PB. 2000. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367–375. [DOI] [PubMed] [Google Scholar]
- Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, Cote J. 1999. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18: 5108–5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allfrey VG, Faulkner R, Mirsky AE. 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci 51: 786–794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allis CD, Jenuwein T, Reinberg D. eds. 2007. Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. [Google Scholar]
- Andersen EC, Horvitz HR. 2007. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 134: 2991–2999. [DOI] [PubMed] [Google Scholar]
- Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS. 2003. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423: 659–663. [DOI] [PubMed] [Google Scholar]
- Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai PJ, Bai DL, Russell DH, Macara IG, Shabanowitz J, Hunt DF, et al. 2013. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci 110: 11827–11832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM, Yates JR 3rd, Hunt DF, Grant PA. 2010. Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol 12: 294–298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124. [DOI] [PubMed] [Google Scholar]
- Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T. 2002. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3: 39–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beisel C, Imhof A, Greene J, Kremmer E, Sauer F. 2002. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419: 857–862. [DOI] [PubMed] [Google Scholar]
- Bell O, Wirbelauer C, Hild M, Scharf AN, Schwaiger M, MacAlpine DM, Zilbermann F, van Leeuwen F, Bell SP, Imhof A, et al. 2007. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J 26: 4974–4984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S. 2006. MES-4: An autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133: 3907–3917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL. 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci 99: 8695–8700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein E, Muratore-Schroeder TL, Diaz RL, Chow JC, Changolkar LN, Shabanowitz J, Heard E, Pehrson JR, Hunt DF, Allis CD. 2008. A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc Natl Acad Sci 105: 1533–1538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessler JB, Andersen EC, Villeneuve AM. 2010. Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line. PLoS Genet 6: e1000830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binda O, Sevilla A, LeRoy G, Lemischka IR, Garcia BA, Richard S. 2013. SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics 8: 177–183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF. 2002. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415. [DOI] [PubMed] [Google Scholar]
- Bonenfant D, Coulot M, Towbin H, Schindler P, van Oostrum J. 2006. Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics 5: 541–552. [DOI] [PubMed] [Google Scholar]
- Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. 2001. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15: 3286–3295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton LM, Newhart A, Bhanu NV, Sridharan R, Gonzales-Cope M, Plath K, Janicki SM, Garcia BA. 2013. Initial characterization of histone H3 serine 10 O-acetylation. Epigenetics 8: 1101–1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. 1996. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851. [DOI] [PubMed] [Google Scholar]
- Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F. 2002. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-dependent mechanism. Curr Biol 12: 165–170. [DOI] [PubMed] [Google Scholar]
- Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462–42467. [DOI] [PubMed] [Google Scholar]
- Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. 2002. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043. [DOI] [PubMed] [Google Scholar]
- Carling T, Kim KC, Yang XH, Gu J, Zhang XK, Huang S. 2004. A histone methyltransferase is required for maximal response to female sex hormones. Mol Cell Biol 24: 7032–7042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadio F, Lu X, Pollock SB, LeRoy G, Garcia BA, Muir TW, Roeder RG, Allis CD. 2013. H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci 110: 14894–14899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chadee DN, Taylor WR, Hurta RA, Allis CD, Wright JA, Davie JR. 1995. Increased phosphorylation of histone H1 in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase kinase. J Biol Chem 270: 20098–20105. [DOI] [PubMed] [Google Scholar]
- Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT. 1997. Histones in transit: Cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36: 469–480. [DOI] [PubMed] [Google Scholar]
- Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR. 1999. Regulation of transcription by a protein methyltransferase. Science 284: 2174–2177. [DOI] [PubMed] [Google Scholar]
- Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y. 2007. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6: 812–819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cel 5: 905–915. [DOI] [PubMed] [Google Scholar]
- Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, et al. 2003. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113: 507–517. [DOI] [PubMed] [Google Scholar]
- Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. 2005. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol 15: 656–660. [DOI] [PubMed] [Google Scholar]
- Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J. 2006. Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem 17: 225–233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choy JS, Tobe BT, Huh JH, Kron SJ. 2001. Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. J Biol Chem 276: 43653–43662. [DOI] [PubMed] [Google Scholar]
- Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, et al. 2014. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507: 104–108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu F, Nusinow DA, Chalkley RJ, Plath K, Panning B, Burlingame AL. 2006. Mapping post-translational modifications of the histone variant MacroH2A1 using tandem mass spectrometry. Mol Cell Proteomics 5: 194–203. [DOI] [PubMed] [Google Scholar]
- Clarke AS, Lowell JE, Jacobson SJ, Pillus L. 1999. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 19: 2515–2526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton AL, Rose S, Barratt MJ, Mahadevan LC. 2000. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 19: 3714–3726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci 107: 21931–21936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czermin B, Schotta G, Hulsmann BB, Brehm A, Becker PB, Reuter G, Imhof A. 2001. Physical and functional association of SU(VAR)3–9 and HDAC1 in Drosophila. EMBO Rep 2: 915–919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. 2002. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196. [DOI] [PubMed] [Google Scholar]
- Dai J, Sultan S, Taylor SS, Higgins JM. 2005. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19: 472–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, Debernardi A, Buchou T, Rousseaux S, Jin F, et al. 2014. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 10: 365–370. [DOI] [PubMed] [Google Scholar]
- Daujat S, Bauer UM, Shah V, Turner B, Berger S, Kouzarides T. 2002. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12: 2090–2097. [DOI] [PubMed] [Google Scholar]
- Daujat S, Zeissler U, Waldmann T, Happel N, Schneider R. 2005. HP1 binds specifically to Lys26-methylated histone H14, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 280: 38090–38095. [DOI] [PubMed] [Google Scholar]
- Daujat S, Weiss T, Mohn F, Lange UC, Ziegler-Birling C, Zeissler U, Lappe M, Schubeler D, Torres-Padilla ME, Schneider R. 2009. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol 16: 777–781. [DOI] [PubMed] [Google Scholar]
- Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, Kouzarides T. 2009. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461: 819–822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Souza CP, Osmani AH, Wu LP, Spotts JL, Osmani SA. 2000. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102: 293–302. [DOI] [PubMed] [Google Scholar]
- Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A, et al. 2014. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. eLife 3: e01632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodge JE, Kang YK, Beppu H, Lei H, Li E. 2004. Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24: 2478–2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downs JA, Lowndes NF, Jackson SP. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408: 1001–1004. [DOI] [PubMed] [Google Scholar]
- Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J. 2004. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979–990. [DOI] [PubMed] [Google Scholar]
- Ebert A, Schotta G, Lein S, Kubicek S, Krauss V, Jenuwein T, Reuter G. 2004. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18: 2973–2983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edmunds JW, Mahadevan LC, Clayton AL. 2008. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27: 406–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emre NC, Ingvarsdottir K, Wyce A, Wood A, Krogan NJ, Henry KW, Li K, Marmorstein R, Greenblatt JF, Shilatifard A, et al. 2005. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell 17: 585–594. [DOI] [PubMed] [Google Scholar]
- Fang J, Feng Q, Ketel CS, Wang H, Cao R, Xia L, Erdjument-Bromage H, Tempst P, Simon JA, Zhang Y. 2002. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol 12: 1086–1099. [DOI] [PubMed] [Google Scholar]
- Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y. 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12: 1052–1058. [DOI] [PubMed] [Google Scholar]
- Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, Sifers RN. 2012. β-N-Acetylglucosamine O-GlcNAc is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem 287: 12195–12203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galasinski SC, Louie DF, Gloor KK, Resing KA, Ahn NG. 2002. Global regulation of post-translational modifications on core histones. J Biol Chem 277: 2579–2588. [DOI] [PubMed] [Google Scholar]
- Garcia BA, Busby SA, Barber CM, Shabanowitz J, Allis CD, Hunt DF. 2004. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J Proteome Res 3: 1219–1227. [DOI] [PubMed] [Google Scholar]
- Garcia BA, Busby SA, Shabanowitz J, Hunt DF, Mishra N. 2005. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J Proteome Res 4: 2032–2042. [DOI] [PubMed] [Google Scholar]
- Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, et al. 2007. Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem 282: 7641–7655. [DOI] [PubMed] [Google Scholar]
- Garcia-Gimenez JL, Olaso G, Hake SB, Bonisch C, Wiedemann SM, Markovic J, Dasi F, Gimeno A, Perez-Quilis C, Palacios O, et al. 2013. Histone h3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure. Antioxid Redox Signal 19: 1305–1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatti M, Pinato S, Maspero E, Soffientini P, Polo S, Penengo L. 2012. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle 11: 2538–2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, et al. 1999. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274: 25543–25549. [DOI] [PubMed] [Google Scholar]
- Goto H, Yasui Y, Nigg EA, Inagaki M. 2002. Aurora-B phosphorylates histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7: 11–17. [DOI] [PubMed] [Google Scholar]
- Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL. 1999. Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274: 5895–5900. [DOI] [PubMed] [Google Scholar]
- Green EM, Mas G, Young NL, Garcia BA, Gozani O. 2012. Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nat Struct Mol Biol 19: 361–363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greer EL, Shi Y. 2012. Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet 13: 343–357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E, Thibault P, Verreault A, Festenstein RJ. 2011. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7: e1001354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD. 2005. Serine 31 phosphorylation of histone variant H33 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci 102: 6344–6349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF. 2006. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281: 559–568. [DOI] [PubMed] [Google Scholar]
- Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y. 2004. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6: 731–740. [DOI] [PubMed] [Google Scholar]
- Hammond SL, Byrum SD, Namjoshi S, Graves HK, Dennehey BK, Tackett AJ, Tyler JK. 2014. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle 13: 440–452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y, Garcia BA. 2013. Combining genomic and proteomic approaches for epigenetics research. Epigenomics 5: 439–452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey AC, Jackson SP, Downs JA. 2005. Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics 170: 543–553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi K, Yoshida K, Matsui Y. 2005. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438: 374–378. [DOI] [PubMed] [Google Scholar]
- He Z, Cho YY, Ma WY, Choi HS, Bode AM, Dong Z. 2005. Regulation of ultraviolet B-induced phosphorylation of histone H3 at serine 10 by Fyn kinase. J Biol Chem 280: 2446–2454. [DOI] [PubMed] [Google Scholar]
- Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD. 1997. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348–360. [DOI] [PubMed] [Google Scholar]
- Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, et al. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102: 279–291. [DOI] [PubMed] [Google Scholar]
- Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. 2007. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131: 901–914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurd PJ, Bannister AJ, Halls K, Dawson MA, Vermeulen M, Olsen JV, Ismail H, Somers J, Mann M, Owen-Hughes T, et al. 2009. Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284: 16575–16583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD. 2005. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25: 10060–10070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichijima Y, Sakasai R, Okita N, Asahina K, Mizutani S, Teraoka H. 2005. Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem Biophys Res Commun 336: 807–812. [DOI] [PubMed] [Google Scholar]
- Jack AP, Bussemer S, Hahn M, Punzeler S, Snyder M, Wells M, Csankovszki G, Solovei I, Schotta G, Hake SB. 2013. H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization. PloS One 8: e51765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson JP, Lindroth AM, Cao X, Jacobsen SE. 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560. [DOI] [PubMed] [Google Scholar]
- Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE. 2004. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112: 308–315. [DOI] [PubMed] [Google Scholar]
- Jeppesen P, Turner BM. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289. [DOI] [PubMed] [Google Scholar]
- Jiang L, Smith JN, Anderson SL, Ma P, Mizzen CA, Kelleher NL. 2007. Global assessment of combinatorial post-translational modification of core histones in yeast using contemporary mass spectrometry. LYS4 trimethylation correlates with degree of acetylation on the same H3 tail. J Biol Chem 282: 27923–27934. [DOI] [PubMed] [Google Scholar]
- Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM. 1999. JIL-1: A novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4: 129–135. [DOI] [PubMed] [Google Scholar]
- Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S, Osley MA. 2004. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18: 184–195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS. 2006. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci 103: 2588–2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karch KR, Denizio JE, Black BE, Garcia BA. 2013. Identification and interrogation of combinatorial histone modifications. Front Genet 4: 264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawasaki H, Taira K, Yokoyama K. 2000a. Histone acetyltransferase (HAT) activity of ATF-2 is necessary for the CRE-dependent transcription. Nucleic Acids Symp Ser 2000: 259–260. [DOI] [PubMed] [Google Scholar]
- Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK. 2000b. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405: 195–200. [DOI] [PubMed] [Google Scholar]
- Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y. 2010. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327: 172–177. [DOI] [PubMed] [Google Scholar]
- Kim KC, Geng L, Huang S. 2003. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63: 7619–7623. [PubMed] [Google Scholar]
- Kimura A, Horikoshi M. 1998. Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3: 789–800. [DOI] [PubMed] [Google Scholar]
- Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. 2005. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25: 3305–3316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleff S, Andrulis ED, Anderson CW, Sternglanz R. 1995. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270: 24674–24677. [DOI] [PubMed] [Google Scholar]
- Kothapalli N, Camporeale G, Kueh A, Chew YC, Oommen AM, Griffin JB, Zempleni J. 2005a. Biological functions of biotinylated histones. J Nutr Biochem 16: 446–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kothapalli N, Sarath G, Zempleni J. 2005b. Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells. J Nutr 135: 2337–2342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kouzarides T. 2007. Chromatin modifications and their function. Cell 128: 693–705. [DOI] [PubMed] [Google Scholar]
- Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP. 2001. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 276: 38307–38319. [DOI] [PubMed] [Google Scholar]
- Ku M, Jaffe JD, Koche RP, Rheinbay E, Endoh M, Koseki H, Carr SA, Bernstein BE. 2012. H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biol 13: R85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD. 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383: 269–272. [DOI] [PubMed] [Google Scholar]
- Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. 2002. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2893–2905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. 2004. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14: 183–193. [DOI] [PubMed] [Google Scholar]
- Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120. [DOI] [PubMed] [Google Scholar]
- Lachner M, O'Sullivan RJ, Jenuwein T. 2003. An epigenetic road map for histine lysine methylation. J Cell Sci 116: 2117–2124. [DOI] [PubMed] [Google Scholar]
- Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J. 2002. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277: 30421–30424. [DOI] [PubMed] [Google Scholar]
- Lee JH, Skalnik DG. 2005. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280: 41725–41731. [DOI] [PubMed] [Google Scholar]
- Lee JH, Tate CM, You JS, Skalnik DG. 2007. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J Biol Chem 282: 13419–13428. [DOI] [PubMed] [Google Scholar]
- Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL. 2001. Snf1—A histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293: 1142–1146. [DOI] [PubMed] [Google Scholar]
- Lu A, Zougman A, Pudelko M, Bebenek M, Ziolkowski P, Mann M, Wisniewski JR. 2009. Mapping of lysine monomethylation of linker histones in human breast and its cancer. J Proteome Res 8: 4207–4215. [DOI] [PubMed] [Google Scholar]
- Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. 2007. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131: 887–900. [DOI] [PubMed] [Google Scholar]
- Maile T, Kwoczynski S, Katzenberger RJ, Wassarman DA, Sauer F. 2004. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304: 1010–1014. [DOI] [PubMed] [Google Scholar]
- Masumoto H, Hawke D, Kobayashi R, Verreault A. 2005. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436: 294–298. [DOI] [PubMed] [Google Scholar]
- Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK. 2012. RNF168 ubiquitinates K13–15 on H2A/H2AX to drive DNA damage signaling. Cell 150: 1182–1195. [DOI] [PubMed] [Google Scholar]
- McKittrick E, Gafken PR, Ahmad K, Henikoff S. 2004. Histone H33 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci 101: 1525–1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM, Greschik H, Kirfel J, Ji S, et al. 2010. Phosphorylation of histone H3T6 by PKCβ(I) controls demethylation at histone H3K4. Nature 464: 792–796. [DOI] [PubMed] [Google Scholar]
- Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL. 2002. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107–1117. [DOI] [PubMed] [Google Scholar]
- Miranda TB, Sayegh J, Frankel A, Katz JE, Miranda M, Clarke S. 2006. Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of ω-NG-monomethylarginine in calf thymus histone H2A. Biochem J 395: 563–570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, et al. 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270. [DOI] [PubMed] [Google Scholar]
- Montellier E, Boussovar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Hery P, Jamshidikia M, et al. 2013. Chromotin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27: 1680–1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SI, Strahl BD. 2005. Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4: 1446–1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris SA, Rao B, Garcia BA, Hake SB, Diaz RL, Shabanowitz J, Hunt DF, Allis CD, Lieb JD, Strahl BD. 2007. Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem 282: 7632–7640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukherjee B, Kessinger C, Kobayashi J, Chen BP, Chen DJ, Chatterjee A, Burma S. 2006. DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair 5: 575–590. [DOI] [PubMed] [Google Scholar]
- Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA. 2002. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208. [DOI] [PubMed] [Google Scholar]
- Murr R. 2010. Interplay between different epigenetic modifications and mechanisms. Adv Genet 70: 101–141. [DOI] [PubMed] [Google Scholar]
- Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML. 2002. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci 99: 90–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113. [DOI] [PubMed] [Google Scholar]
- Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E. 2002. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119–1128. [DOI] [PubMed] [Google Scholar]
- Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, et al. 2006. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20: 966–976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson CJ, Santos-Rosa H, Kouzarides T. 2006. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126: 905–916. [DOI] [PubMed] [Google Scholar]
- Ng HH, Xu RM, Zhang Y, Struhl K. 2002. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277: 34655–34657. [DOI] [PubMed] [Google Scholar]
- Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O’Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, et al. 2001. Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561–565. [DOI] [PubMed] [Google Scholar]
- Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D. 2002a. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16: 479–489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, et al. 2002b. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9: 1201–1213. [DOI] [PubMed] [Google Scholar]
- Nowak SJ, Corces VG. 2000. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev 14: 3003–3013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O’Carroll D, Scherthan H, Peters AH, Opravil S, Haynes AR, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M, et al. 2000. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20: 9423–9433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odegard VH, Kim ST, Anderson SM, Shlomchik MJ, Schatz DG. 2005. Histone modifications associated with somatic hypermutation. Immunity 23: 101–110. [DOI] [PubMed] [Google Scholar]
- Ogata N, Ueda K, Hayaishi O. 1980a. ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site. J Biol Chem 255: 7610–7615. [PubMed] [Google Scholar]
- Ogata N, Ueda K, Kagamiyama H, Hayaishi O. 1980b. ADP-ribosylation of histone H1 identification of glutamic acid residues 2, 14, the COOH-terminal lysine residue as modification sites. J Biol Chem 255: 7616–7620. [PubMed] [Google Scholar]
- Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. 2002. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296: 1132–1136. [DOI] [PubMed] [Google Scholar]
- Ogawa Y, Ono T, Wakata Y, Okawa K, Tagami H, Shibahara KI. 2005. Histone variant macroH2A12 is mono-ubiquitinated at its histone domain. Biochem Biophys Res Commun 336: 204–209. [DOI] [PubMed] [Google Scholar]
- Ozdemir A, Spicuglia S, Lasonder E, Vermeulen M, Campsteijn C, Stunnenberg HG, Logie C. 2005. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J Biol Chem 280: 25949–25952. [DOI] [PubMed] [Google Scholar]
- Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. 2004. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24: 9630–9645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantazis P, Bonner WM. 1981. Quantitative determination of histone modification H2A acetylation and phosphorylation. J Biol Chem 256: 4669–4675. [PubMed] [Google Scholar]
- Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, et al. 2013. SIRTS-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50: 919–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parthun MR, Widom J, Gottschling DE. 1996. The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism. Cell 87: 85–94. [DOI] [PubMed] [Google Scholar]
- Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, et al. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337. [DOI] [PubMed] [Google Scholar]
- Pham AD, Sauer F. 2000. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289: 2357–2360. [DOI] [PubMed] [Google Scholar]
- Polioudaki H, Markaki Y, Kourmouli N, Dialynas G, Theodoropoulos PA, Singh PB, Georgatos SD. 2004. Mitotic phosphorylation of histone H3 at threonine 3. FEBS Lett 560: 39–44. [DOI] [PubMed] [Google Scholar]
- Preuss U, Landsberg G, Scheidtmann KH. 2003. Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31: 878–885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puerta C, Hernandez F, Lopez-Alarcon L, Palacian E. 1995. Acetylation of histone H2AH2B dimers facilitates transcription. Biochem Biophys Res Commun 210: 409–416. [DOI] [PubMed] [Google Scholar]
- Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, et al. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599. [DOI] [PubMed] [Google Scholar]
- Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM. 2003. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4: 678–684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD. 2002. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 16: 2225–2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robzyk K, Recht J, Osley MA. 2000. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287: 501–504. [DOI] [PubMed] [Google Scholar]
- Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868. [DOI] [PubMed] [Google Scholar]
- Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF. 2001. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20: 7137–7148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Carrillo A, Wangh LJ, Allfrey VG. 1975. Processing of newly synthesized histone molecules. Science 190: 117–128. [DOI] [PubMed] [Google Scholar]
- Sakabe K, Wang Z, Hart GW. 2010. β-N-acetylglucosamine O-GlcNAc is part of the histone code. Proc Natl Acad Sci 107: 19915–19920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419: 407–411. [DOI] [PubMed] [Google Scholar]
- Sarg B, Helliger W, Talasz H, Forg B, Lindner HH. 2006. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: Identification of a novel phosphorylation site on histone H1. J Biol Chem 281: 6573–6580. [DOI] [PubMed] [Google Scholar]
- Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD. 1999. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285: 886–891. [DOI] [PubMed] [Google Scholar]
- Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y. 1999. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274: 1189–1192. [DOI] [PubMed] [Google Scholar]
- Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G. 2002. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21: 1121–1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubeler D, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M. 2000. Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev 14: 940–950. [PMC free article] [PubMed] [Google Scholar]
- Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ III. 2002. SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16: 919–932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR, Aswad DW. 2001. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40: 5747–5756. [DOI] [PubMed] [Google Scholar]
- Sharma R, Nakamura A, Takahashi R, Nakamoto H, Goto S. 2006. Carbonyl modification in rat liver histones: Decrease with age and increase by dietary restriction. Free Radic Biol Med 40: 1179–1184. [DOI] [PubMed] [Google Scholar]
- Shiio Y, Eisenman RN. 2003. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci 100: 13225–13230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, Cook RG, Lucchesi JC, Allis CD. 1998. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci 95: 3561–3565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD. 1995. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci 92: 1237–1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song OK, Wang X, Waterborg JH, Sternglanz R. 2003. An Nα-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem 278: 38109–38112. [DOI] [PubMed] [Google Scholar]
- Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, et al. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198. [DOI] [PubMed] [Google Scholar]
- Stanley JS, Griffin JB, Zempleni J. 2001. Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem 268: 5424–5429. [DOI] [PubMed] [Google Scholar]
- Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA. 2004. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64: 2390–2396. [DOI] [PubMed] [Google Scholar]
- Strahl BD, Ohba R, Cook RG, Allis CD. 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci 96: 14967–14972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, et al. 2001. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 11: 996–1000. [DOI] [PubMed] [Google Scholar]
- Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, et al. 2002. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22: 1298–1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A. 2003. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 4: 124–131. [DOI] [PubMed] [Google Scholar]
- Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 8: 473–479. [DOI] [PubMed] [Google Scholar]
- Sun ZW, Allis CD. 2002. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104–108. [DOI] [PubMed] [Google Scholar]
- Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z. 2005. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280: 35261–35271. [DOI] [PubMed] [Google Scholar]
- Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. 2001. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276: 25309–25317. [DOI] [PubMed] [Google Scholar]
- Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, et al. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16: 1779–1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y. 2005. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19: 815–826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamaru H, Selker EU. 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283. [DOI] [PubMed] [Google Scholar]
- Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146: 1016–1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taplick J, Kurtev V, Lagger G, Seiser C. 1998. Histone H4 acetylation during interleukin-2 stimulation of mouse T cells. FEBS Lett 436: 349–352. [DOI] [PubMed] [Google Scholar]
- Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, Kouzarides T. 2014. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505: 564–568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC. 1999. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18: 4779–4793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, Diaz MO, Scacheri PC, Harte PJ. 2009. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136: 3131–3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner BM. 2005. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol 12: 110–112. [DOI] [PubMed] [Google Scholar]
- Turner BM, Fellows G. 1989. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur J Biochem 179: 131–139. [DOI] [PubMed] [Google Scholar]
- Tweedie-Cullen RY, Reck JM, Mansuy IM. 2009. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8: 4966–4982. [DOI] [PubMed] [Google Scholar]
- Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, Panse C, Mansuy IM. 2012. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PloS One 7: e36980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unoki M, Masuda A, Dohmae N, Arita K, Yoshimatsu M, Iwai Y, Fukui Y, Ueda K, Hamamoto R, Shirakawa M, et al. 2013. Lysyl 5-hydroxylation, a novel histone modification, by Jumonji domain containing 6 JMJD6. J Biol Chem 288: 6053–6062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF, McDevitt P, Sinnamon R, Le B, Mas G, et al. 2012. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7: 340–343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Attikum H, Gasser SM. 2005. The histone code at DNA breaks: A guide to repair? Nat Rev Mol Cell Biol 6: 757–765. [DOI] [PubMed] [Google Scholar]
- Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D. 2001. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21: 6484–6494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Leeuwen F, Gafken PR, Gottschling DE. 2002. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109: 745–756. [DOI] [PubMed] [Google Scholar]
- Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. 2004. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16: 93–105. [DOI] [PubMed] [Google Scholar]
- Verreault A, Kaufman PD, Kobayashi R, Stillman B. 1998. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8: 96–108. [DOI] [PubMed] [Google Scholar]
- Visochek L, Steingart RA, Vulih-Shultzman I, Klein R, Priel E, Gozes I, Cohen-Armon M. 2005. PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci 25: 7420–7428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldmann T, Izzo A, Kamieniarz K, Richter F, Vogler C, Sarg B, Lindner H, Young NL, Mittler G, Garcia BA, et al. 2011. Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4: 11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y. 2001a. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8: 1207–1217. [DOI] [PubMed] [Google Scholar]
- Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, et al. 2001b. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–857. [DOI] [PubMed] [Google Scholar]
- Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM. 2001c. The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433–443. [DOI] [PubMed] [Google Scholar]
- Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. 2004. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873–878. [DOI] [PubMed] [Google Scholar]
- Wang GG, Cai L, Pasillas MP, Kamps MP. 2007. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9: 804–812. [DOI] [PubMed] [Google Scholar]
- Ward IM, Chen J. 2001. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276: 47759–47762. [DOI] [PubMed] [Google Scholar]
- Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. 1999. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97: 99–109. [DOI] [PubMed] [Google Scholar]
- Weinert BT, Schölz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, Choudhary C. 2013. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4: 842–851. [DOI] [PubMed] [Google Scholar]
- Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S, Schneider R. 2010. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 3: 7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B. 2002. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111: 105–115. [DOI] [PubMed] [Google Scholar]
- Wisniewski JR, Zougman A, Kruger S, Mann M. 2007. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol Cell Proteomics 6: 72–87. [DOI] [PubMed] [Google Scholar]
- Wisniewski JR, Zougman A, Mann M. 2008. Nɛ-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 36: 570–577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu L, Zee BM, Wang Y, Garcia BA, Dou Y. 2011. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 43: 132–144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyatt HR, Liaw H, Green GR, Lustig AJ. 2003. Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair. Genetics 164: 47–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, et al. 2009. WSTF regulates the H2AX DNA damage response via a novel tyrosine kinase activity. Nature 457: 57–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao Y, Bedet C, Robert VJ, Simonet T, Dunkelbarger S, Rakotomalala C, Soete G, Korswagen HC, Strome S, Palladino F. 2011. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc Natl Acad Sci 108: 8305–8310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, Boeke JD, Zhao Y. 2012. Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11: 100–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xin Z, Tachibana M, Guggiari M, Heard E, Shinkai Y, Wagstaff J. 2003. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem 278: 14996–15000. [DOI] [PubMed] [Google Scholar]
- Xu F, Zhang K, Grunstein M. 2005. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121: 375–385. [DOI] [PubMed] [Google Scholar]
- Yamamoto T, Horikoshi M. 1997. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem 272: 30595–30598. [DOI] [PubMed] [Google Scholar]
- Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. 2003. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423: 655–659. [DOI] [PubMed] [Google Scholar]
- Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y. 2002. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21: 148–152. [DOI] [PubMed] [Google Scholar]
- Yu Y, Song C, Zhang Q, DiMaggio PA, Garcia BA, York A, Carey MF, Grunstein M. 2012. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol Cell 46: 7–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zegerman P, Canas B, Pappin D, Kouzarides T. 2002. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 277: 11621–11624. [DOI] [PubMed] [Google Scholar]
- Zeitlin SG, Barber CM, Allis CD, Sullivan KF. 2001. Differential regulation of CENP-A and histone H3 phosphorylation in G2/M. J Cell Sci 114: 653–661. [DOI] [PubMed] [Google Scholar]
- Zhang L, Eugeni EE, Parthun MR, Freitas MA. 2003. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112: 77–86. [DOI] [PubMed] [Google Scholar]
- Zhang K, Chen Y, Zhang Z, Zhao Y. 2009. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 8: 900–906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S, Roche K, Nasheuer HP, Lowndes NF. 2011. Modification of histones by sugar β-N-acetylglucosamine GlcNAc occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 286: 37483–37495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong S, Jansen C, She QB, Goto H, Inagaki M, Bode AM, Ma WY, Dong Z. 2001. Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J Biol Chem 276: 33213–33219. [DOI] [PubMed] [Google Scholar]
- Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D. 2005. Monoubiquitination of human histone H2B: The factors involved and their roles in HOX gene regulation. Mol Cell 20: 601–611. [DOI] [PubMed] [Google Scholar]
SUGGESTED REVIEWS
- Bannister AJ, Kouzarides T. 2005. Reversing histone methylation. Nature 436: 1103–1106. [DOI] [PubMed] [Google Scholar]
- Berger SL. 2002. Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12: 42–148. [DOI] [PubMed] [Google Scholar]
- Cosgrove MS, Boeke JD, Wolberger C. 2004. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11: 1037–1043. [DOI] [PubMed] [Google Scholar]
- Davie JR, Spencer VA. 2001. Signal transduction pathways and the modification of chromatin structure. Prog Nucleic Acid Res Mol Biol 65: 299–340. [DOI] [PubMed] [Google Scholar]
- Dobosy JR, Selker EU. 2001. Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci 58: 721–727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunleavy E, Pidoux A, Allshire R. 2005. Centromeric chromatin makes its mark. Trends Biochem Sci 30: 172–175. [DOI] [PubMed] [Google Scholar]
- Elgin SC, Grewal SI. 2003. Heterochromatin: Silence is golden. Curr Biol 13: R895–R898. [DOI] [PubMed] [Google Scholar]
- Emre NC, Berger SL. 2004. Histone H2B ubiquitylation and deubiquitylation in genomic regulation. Cold Spring Harbor Symp Quant Biol 69: 289–299. [DOI] [PubMed] [Google Scholar]
- Esteller M. 2006. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 94: 179–183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg AP, Tycko B. 2004. The history of cancer epigenetics. Nat Rev Cancer 4: 143–153. [DOI] [PubMed] [Google Scholar]
- Fischer A, Hofmann I, Naumann K, Reuter G. 2006. Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J Plant Physiol 163: 358–368. [DOI] [PubMed] [Google Scholar]
- Fischle W, Wang Y, Allis CD. 2003. Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475–479. [DOI] [PubMed] [Google Scholar]
- Fischle W, Wang Y, Allis CD. 2003. Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183. [DOI] [PubMed] [Google Scholar]
- Grewal SI, Elgin SC. 2002. Heterochromatin: New possibilities for the inheritance of structure. Curr Opin Genet Dev 12: 178–187. [DOI] [PubMed] [Google Scholar]
- Grunstein M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352. [DOI] [PubMed] [Google Scholar]
- Grunstein M. 1997. Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol 9: 383–387. [DOI] [PubMed] [Google Scholar]
- Grunstein M. 1998. Yeast heterochromatin: Regulation of its assembly and inheritance by histones. Cell 93: 325–328. [DOI] [PubMed] [Google Scholar]
- Henikoff S, Ahmad K. 2005. Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21: 133–153. [DOI] [PubMed] [Google Scholar]
- Herz HM, Garruss A, Shilatifard A. 2013. SET for life: Biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38: 621–639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hild M, Paro R. 2003. Anti-silencing from the core: A histone H2A variant protects euchromatin. Nat Cell Biol 5: 278–280. [DOI] [PubMed] [Google Scholar]
- Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293: 1074–1080. [DOI] [PubMed] [Google Scholar]
- Kimmins S, Sassone-Corsi P. 2005. Chromatin remodelling and epigenetic features of germ cells. Nature 434: 583–589. [DOI] [PubMed] [Google Scholar]
- Kurdistani SK, Grunstein M. 2003. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4: 276–284. [DOI] [PubMed] [Google Scholar]
- Lachner M, O’Sullivan RJ, Jenuwein T. 2003. An epigenetic road map for histone lysine methylation. J Cell Sci 116: 2117–2124. [DOI] [PubMed] [Google Scholar]
- Luger K, Richmond TJ. 1998. The histone tails of the nucleosome. Curr Opin Genet Dev 8: 140–146. [DOI] [PubMed] [Google Scholar]
- Mellone BG, Allshire RC. 2003. Stretching it: Putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13: 191–198. [DOI] [PubMed] [Google Scholar]
- Millar CB, Kurdistani SK, Grunstein M. 2004. Acetylation of yeast histone H4 lysine 16: A switch for protein interactions in heterochromatin and euchromatin. Cold Spring Harbor Symp Quant Biol 69: 193–200. [DOI] [PubMed] [Google Scholar]
- Nightingale KP, O’Neill LP, Turner BM. 2006. Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16: 125–136. [DOI] [PubMed] [Google Scholar]
- Panier S, Durocher D. 2013. Push back to respond better: Regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol 14: 661–772. [DOI] [PubMed] [Google Scholar]
- Peterson CL, Laniel MA. 2004. Histones and histone modifications. Curr Biol 14: R546–R551. [DOI] [PubMed] [Google Scholar]
- Pinder JB, Attwood KM, Dellaire G. 2013. Reading, writing, repair: The role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front Genet 4: 45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinberg D, Chuikov S, Farnham P, Karachentsev D, Kirmizis A, Kuzmichev A, Margueron R, Nishioka K, Preissner TS, Sarma K, et al. 2004. Steps toward understanding the inheritance of repressive methyl-lysine marks in histones. Cold Spring Harbor Symp Quant Biol 69: 171–182. [DOI] [PubMed] [Google Scholar]
- Sarma K, Reinberg D. 2005. Histone variants meet their match. Nat Rev Mol Cell Biol 6: 139–149. [DOI] [PubMed] [Google Scholar]
- Spencer VA, Davie JR. 2000. Signal transduction pathways and chromatin structure in cancer cells. J Cell Biochem Suppl 35: 27–35. [DOI] [PubMed] [Google Scholar]
- Sternglanz R. 1996. Histone acetylation: A gateway to transcriptional activation. Trends Biochem Sci 21: 357–358. [PubMed] [Google Scholar]
- Turner BM. 2000. Histone acetylation and an epigenetic code. Bioessays 22: 836–845. [DOI] [PubMed] [Google Scholar]
- van Attikum H, Gasser SM. 2005. The histone code at DNA breaks: A guide to repair? Nat Rev Mol Cell Biol 6: 757–765. [DOI] [PubMed] [Google Scholar]
- Vaughn MW, Tanurdzic M, Martienssen R. 2005. Replication, repair, reactivation. Dev Cell 9: 724–725. [DOI] [PubMed] [Google Scholar]
- Wade PA, Wolffe AP. 1997. Histone acetyltransferases in control. Curr Biol 7: R82–R84. [DOI] [PubMed] [Google Scholar]
- Wade PA, Pruss D, Wolffe AP. 1997. Histone acetylation: Chromatin in action. Trends Biochem Sci 22: 128–132. [DOI] [PubMed] [Google Scholar]
- Zilberman D, Henikoff S. 2005. Epigenetic inheritance in Arabidopsis: Selective silence. Curr Opin Genet Dev 15: 557–562. [DOI] [PubMed] [Google Scholar]