Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jan 1;90(1):327–331. doi: 10.1073/pnas.90.1.327

Spontaneous and radiation-induced renal tumors in the Eker rat model of dominantly inherited cancer.

O Hino 1, A J Klein-Szanto 1, J J Freed 1, J R Testa 1, D Q Brown 1, M Vilensky 1, R S Yeung 1, K D Tartof 1, A G Knudson 1
PMCID: PMC45653  PMID: 8419937

Abstract

Hereditary renal carcinoma (RC) in the rat, originally reported by R. Eker in 1954, is an example of a Mendelian dominant predisposition to a specific cancer in an experimental animal. At the histologic level, RCs develop through multiple stages from early preneoplastic lesions (e.g., atypical tubules) to adenomas in virtually all heterozygotes by the age of 1 year. The homozygous mutant condition is lethal at approximately 10 days of fetal life. Ionizing radiation induces additional tumors in a linear dose-response relationship, suggesting that in heterozygotes two events (one inherited, one somatic) are necessary to produce tumors, and that the predisposing gene is a tumor suppressor gene. No genetic linkage has yet been found between the Eker mutation and rat DNA sequences homologous to those in human chromosome 3p, the presumed site of the putative tumor suppressor gene responsible for human RC. Nonrandom loss of rat chromosome 5 in RC-derived cell lines is sometimes associated with homozygous deletion of the interferon gene loci at rat chromosome bands 5q31-q33. Since this locus is not linked with the predisposing inherited gene in the Eker rat, it probably represents a second tumor suppressor gene involved in tumor progression.

Full text

PDF
327

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chuman L., Fine L. G., Cohen A. H., Saier M. H., Jr Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium. J Cell Biol. 1982 Sep;94(3):506–510. doi: 10.1083/jcb.94.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen A. J., Li F. P., Berg S., Marchetto D. J., Tsai S., Jacobs S. C., Brown R. S. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979 Sep 13;301(11):592–595. doi: 10.1056/NEJM197909133011107. [DOI] [PubMed] [Google Scholar]
  3. Diaz M. O., Rubin C. M., Harden A., Ziemin S., Larson R. A., Le Beau M. M., Rowley J. D. Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med. 1990 Jan 11;322(2):77–82. doi: 10.1056/NEJM199001113220202. [DOI] [PubMed] [Google Scholar]
  4. Dietrich D. R., Swenberg J. A. Preneoplastic lesions in rodent kidney induced spontaneously or by non-genotoxic agents: predictive nature and comparison to lesions induced by genotoxic carcinogens. Mutat Res. 1991 Jun;248(2):239–260. doi: 10.1016/0027-5107(91)90060-2. [DOI] [PubMed] [Google Scholar]
  5. Eker R., Mossige J., Johannessen J. V., Aars H. Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol. 1981 Jan-Mar;4(1):99–110. [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Funaki K., Everitt J., Oshimura M., Freed J. J., Knudson A. G., Jr, Walker C. Hereditary renal cell carcinoma in the rat associated with nonrandom loss of chromosomes 5 and 6. Cancer Res. 1991 Aug 15;51(16):4415–4422. [PubMed] [Google Scholar]
  8. Hino O., Kitagawa T., Sugano H. Relationship between serum and histochemical markers for hepatitis B virus and rate of viral integration in hepatocellular carcinomas in Japan. Int J Cancer. 1985 Jan 15;35(1):5–10. doi: 10.1002/ijc.2910350103. [DOI] [PubMed] [Google Scholar]
  9. Ikeuchi T. Inhibitory effect of ethidium bromide on mitotic chromosome condensation and its application to high-resolution chromosome banding. Cytogenet Cell Genet. 1984;38(1):56–61. doi: 10.1159/000132030. [DOI] [PubMed] [Google Scholar]
  10. Islam M. Q., Szpirer J., Szpirer C., Islam K., Dasnoy J. F., Levan G. A gene for the suppression of anchorage independence is located in rat chromosome 5 bands q22-23, and the rat alpha-interferon locus maps at the same region. J Cell Sci. 1989 Feb;92(Pt 2):147–162. doi: 10.1242/jcs.92.2.147. [DOI] [PubMed] [Google Scholar]
  11. Knudson A. G., Jr Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985 Apr;45(4):1437–1443. [PubMed] [Google Scholar]
  12. Kovacs A., Kovacs G. Low chromosome number in chromophobe renal cell carcinomas. Genes Chromosomes Cancer. 1992 Apr;4(3):267–268. doi: 10.1002/gcc.2870040313. [DOI] [PubMed] [Google Scholar]
  13. Kovacs G., Brusa P., De Riese W. Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int J Cancer. 1989 Mar 15;43(3):422–427. doi: 10.1002/ijc.2910430313. [DOI] [PubMed] [Google Scholar]
  14. Lafage-Pochitaloff M., Courcoul M., Simonetti J., Sainty D., Dastugue N., Tabilio A., Hagemeijer A., Birg F. Expression of the ETS2 and transferrin receptor genes in Philadelphia-positive chronic myeloid leukemia patients with a reciprocal t(3;21). Genes Chromosomes Cancer. 1992 Jul;5(1):1–13. doi: 10.1002/gcc.2870050102. [DOI] [PubMed] [Google Scholar]
  15. Levan G. Nomenclature for G-bands in rat chromosomes. Hereditas. 1974;77(1):37–52. doi: 10.1111/j.1601-5223.1974.tb01352.x. [DOI] [PubMed] [Google Scholar]
  16. Levan G., Szpirer J., Szpirer C., Klinga K., Hanson C., Islam M. Q. The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics. 1991 Jul;10(3):699–718. doi: 10.1016/0888-7543(91)90455-n. [DOI] [PubMed] [Google Scholar]
  17. Seizinger B. R., Rouleau G. A., Ozelius L. J., Lane A. H., Farmer G. E., Lamiell J. M., Haines J., Yuen J. W., Collins D., Majoor-Krakauer D. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988 Mar 17;332(6161):268–269. doi: 10.1038/332268a0. [DOI] [PubMed] [Google Scholar]
  18. Testa J. R., Taguchi T., Knudson A. G., Hino O. Localization of the interferon-alpha gene cluster to rat chromosome bands 5q31----q33 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1992;60(3-4):247–249. doi: 10.1159/000133350. [DOI] [PubMed] [Google Scholar]
  19. Walker C., Everitt J., Freed J. J., Knudson A. G., Jr, Whiteley L. O. Altered expression of transforming growth factor-alpha in hereditary rat renal cell carcinoma. Cancer Res. 1991 Jun 1;51(11):2973–2978. [PubMed] [Google Scholar]
  20. Walker C., Goldsworthy T. L., Wolf D. C., Everitt J. Predisposition to renal cell carcinoma due to alteration of a cancer susceptibility gene. Science. 1992 Mar 27;255(5052):1693–1695. doi: 10.1126/science.1553556. [DOI] [PubMed] [Google Scholar]
  21. Yamakawa K., Morita R., Takahashi E., Hori T., Ishikawa J., Nakamura Y. A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res. 1991 Sep 1;51(17):4707–4711. [PubMed] [Google Scholar]
  22. de Lucca E. J., Dhaliwal M. K., Furlong C. L., Pathak S. A high-resolution G-banding idiogram of Rattus norvegicus chromosomes. Cytobios. 1990;62(250-251):153–160. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES