Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2015 Sep 13.
Published in final edited form as: Blood Cells Mol Dis. 2010 Feb 18;44(4):291–299. doi: 10.1016/j.bcmd.2010.01.009

Hematologically Important Mutations: The Autosomal Recessive Forms of Chronic Granulomatous Disease (Second Update)

Dirk Roos 1, Douglas B Kuhns 2, Anne Maddalena 3, Jacinta Bustamante 4, Caroline Kannengiesser 5, Martin de Boer 1, Karin van Leeuwen 1, M Yavuz Köker 6, Baruch Wolach 7, Joachim Roesler 8, Harry L Malech 9, Steven M Holland 10, John I Gallin 9, Marie-José Stasia 11
PMCID: PMC4568122  NIHMSID: NIHMS182113  PMID: 20167518

Mutations in the genes encoding four of the phagocyte NADPH oxidase components, p22-phox, p47-phox, p67-phox and 40-phox, cause the autosomal recessive forms of chronic granulomatous disease (CGD). These four forms of the disease collectively account for approximately one-third of all CGD cases. Many new mutations have been identified in these four genes since publication of the first updated version of the tables with these mutations (1). The remaining two-thirds of cases are caused by mutations in the X-linked gene for gp91-phox, CYBB; these mutations have been tabulated previously in this journal (2). The incidence of CGD as a whole is between 1 in 200,000 and 1 in 250,000 individuals.

The protein p22-phox is one of two membrane-bound subunits of cytochrome b558 (the other is gp91-phox), and mutations in the p22-phox gene (CYBA, located at 16q24, OMIM *608508) account for about 6% of CGD (Table 1). Also about 6% of CGD cases are caused by mutations in the gene for p67-phox (NCF2, 1q25, OMIM *608515), a cytosolic component of the superoxide-generating NADPH oxidase system (Table 2). The most common form of autosomal recessive CGD (about 20% of all cases) is caused by mutations in the gene for p47-phox (NCF1, 7q11.23, OMIM *608512), a second cytosolic component of the enzyme (Table 3). Only one patient has been described with mutations in NCF4 (22q13.1, OMIM *601488), the gene encoding p40-phox, the third cytosolic NADPH oxidase component (Table 4). The type, position and number of the mutations in these four genes is depicted in figure 1. Tables 5-8 list apparently benign polymorphisms that have been identified in the CYBA, NCF2, NCF1 and NCF4 genes, respectively. It is important to realize that SNPs and other sequence variants available on the internet are not necessarily functionally neutral.

Table 1.

Mutations in the p22-phox gene CYBA.

Nucleotide change Mutation Amino acid or mRNA change CGD type Reference Families (alleles)a Accession number(s)g
g. del>10 kb Deletion NAb A22° [28] 1(2)
c.2T>A Missense p.Met1Lys A22? unpubl. d 1(2) c *
c.7C>T Nonsense p.Gln3X A22° [29] unpubl. 5(10) H0023
H0026
c.26G>A Nonsense p.Trp9X A22° [30] 1(1) H0017
c.27G>A Nonsense p.Trp9X A22° [31] 1(2) H0027
c.58+4_+7delAGTG e Splice site ins. 79 bp in intron 1
p.Ile20SerfsX77
A22° [31,32] unpubl. 5(9) H0028
H0039
g.exon2_3del Deletion p.Ile20ArgfsX6 A22° [30] 1(2)
g.exon2_5del Deletion p.Ile20SerfsX68 A22° unpubl. 1(2) c *
c.70G>A Missense p.Gly24Arg A22° [16,2931,33] unpubl. 9(14) H0021
H0024
H0025
H0028
H0030
H0034
c.71G>A Missense p.Gly24Glu A22° [16] 1(2) *
c.74G>T Missense p.Gly25Val A22° [30] 1(1) H0017
c.77delT Deletion p.Ile26ThrfsX48 A22° unpubl. 1(1) *
c.107G>A Nonsense p.Trp36X A22° [30] 1(1) H0021
g.exon3_5del Deletion p.Ile43MetfsX68 A22° [34] 1(2) *
g.exon3_6del Deletion NA A22° [33] 1(2) *
c.152T>A Missense p.Leu51Gln A22° unpubl. 1(1) *
c.155T>C Missense p.Leu52Pro A22° [30] 1(2) H0014
c.158A>T Missense p.Glu53Val A22° [35] 1(1) H0005
c.164C>G Missense p.Pro55Arg A22° [16] 1(2) *
c.166dupC Insertion p.Arg56ProfsX157 A22° [30,33] unpubl. 5(8) H0019
H0020
c.171delG Deletion p.Lys58ArgfsX16 A22° unpubl. 1(2) *
c.171dupG Insertion p.Lys58GlufsX155 A22° [16,35] unpubl. 5(9) H0005
H0032
H0036
H0037
c.173delA # Deletion p.Lys58ArgfsX16 A22° [34] 1(2) H0041 *
c.203+1G>T e Splice site del. exon 3
p.Ile43_Trp68delinsMet
A22° [30] 1(2) H0016
c.204–2A>G e Splice site del. exon 4?
p.Gly69_Leu96del?
A22° [36] 1(2) *
c.223delG # Deletion p.Ala75ProfsX3 A22° [34] 1(2) H0042 *
c.246delC Deletion p.Phe83LeufsX108 A22° [28,30] 2(3) H0001
H0015
c.261C>G Nonsense p.Tyr87X A22° unpubl. 1(2) *
c.261C>A Nonsense p.Tyr87X A22° unpubl. 1(2) *
c.268C>T Missense p.Arg90Trp A22° [30] unpubl. 8(14) H0018
H0019
H0020
c.268C>G Missense p.Arg90Gly A22° unpubl. 1(2) *
c.269G>A Missense p.Arg90Gln A22° [28,37] 2(3) H0001
H0006
H0007
H0008
c.269G>C Missense p.Arg90Pro A22° unpubl. 1(2) *
c.281A>G Missense p.His94Arg A22° [37] 1(2) H0012
c.287+1G>A e Splice site del. exon 4 p.Gly69_Leu96del A22° [37] unpubl. 2(4) H0009
H0035
c.287+1G>T e Splice site del. exon 4 p.Gly69_Leu96del A22° unpubl. 1(2) *
c.287+2T>C e Splice site del. exon 4?
p.Gly69_Leu96del?
A22° unpubl. 1(1) f *
c.288–6_296del16 e Splice site del. exon5
p.Leu97ArgfsX68
A22° unpubl. 1(1) *
c.288–15_308del36 e Splice site intron4ins179/exon5del21 A22° [38] 1(2) H0038 *
c.288G>T Splice site del. exon 5
p.Leu97ArgfsX68
A22° unpubl. 1(2) *
c.295_301delGTGCCCG Deletion p.Val99ProfsX90 A22° [13,17,19] unpubl. 5(10) c H0040 *
c.339C>A Nonsense p.Cys113X A22° [33] 1(2) *
c.354C>A Missense p.Ser118Arg A22° [28,30] unpubl. 4(8) H0003
H0010
H0022
c.369+1G>C e Splice site del. exon 5
p.Leu97ArgfsX68
A22° [6,39] 1(2) H0002
c.369+1G>A e Splice site del exon 5
p.Leu97ArgfsX68
A22° [34] 1(2) H0045
H0046
*
c.370G>T Missense p.Ala124Ser A22° [17] 1(2) *
c.371C>T Missense p.Ala124Val A22° [31] 1(1) H0030
c.373G>A Missense p.Ala125Thr A22° [34] 1(2) H0047 *
c.385G>A Missense p.Glu129Lys A22? unpubl. 1(2) *
c.385_388delGAGC Deletion p.Glu129SerfsX61 A22° [34] 2(4) H0043
H0044
*
c.399delC Deletion p.Ile134SerfsX57 A22? unpubl. 1(2) c *
c.408delC Deletion p.Lys137SerfsX54 # A22° [33] 1(2) *
c.467C>A Missense p.Pro156Gln A22+ [40] 1(2) H0011
c.472_484del Deletion p.Pro160AlafsX27 A22? [1] 1(2) c H0031
c.571_604del Deletion p.Thr191ProfsX A22° [31] 1(2)
Mutations in CYBA

Number of different alleles Total number of alleles

Deletions 16 alleles (29.1%) 42 alleles (24.3%)
Nonsense mutations 7 alleles (12.7%) 20 alleles (11.6%)
Splice site mutations 11 alleles (20.0%) 29 alleles (16.8%)
Missense mutations 19 alleles (34.6%) 65 alleles (37.5%)
Insertions 2 alleles (3.6%) 17 alleles (9.8%)
Total 55 different allelic mutations Total 87 families with 173 identified alleles in the 96 patients
a

Number of different families with patients with this mutation (number of alleles carrying this mutation).

b

Not applicable.

c

One patient presumed homozygous for this mutation.

d

Unpublished data from the authors' laboratories.

e

Position of introns in CYBA: intron 1 c.58_59; intron 2 c.128_129; intron 3 c.203_204; intron 4 c.287_288; intron 5 c.369_370.

f

Patient is heterozygous for this mutation and for an unidentified mutation in the other allele.

g

Accession number in database at http://www.uta.fi/imt/bioinfo/CYBAbase/.

*

New mutations since ref. [1].

#

Corrected after consultation of the authors.

Table 2.

Mutations in the p67-phox gene NCF-2.

Nucleotide change Mutation Amino acid or mRNA change CGD type Families (alleles) Reference Accession number h
c.–547–?_174+?del g Deletion p.Met1_Lys58del A67° 1(2) Unpubl. *
c–274–?_174 + ?del∼400 g Deletion p.Met1_Lys58del A67° 1(2) Unpubl. *
c–274–?_174 + ?del∼400 g Deletion p.Met1_Lys58del A67° 1(2) Unpubl. *
c.1A>G Missense p.Met1Val A67° 1(1) Unpubl. *
c.29G>A Nonsense p.Trp10X A67° 1(2) Unpubl. *
c.55_63delAAGAAGGAC a Deletion p.Lys19_Asp21del A67° 4(4) [4143] unpubl. M0004
M0015
c.125A>G Missense p.Asn42Ser A67° 1(2) Unpubl. *
c.130G>C Missense p.Gly44Arg A67? 2(4) b [1,43]
c.130G>T Missense p.Gly44Cys A67° 1(2) Unpubl. *
c.172_174delAAG Deletion p.Lys58del A67+ 2(3) c [44,45] unpubl. M0009
c.175–1G>A g Splice site del. exon 3?
p.Ala59IlefsX2?
A67° 1(2) Unpubl. *
c.196C>T Nonsense p.Arg66X A67° 3(5) [42]
c.229C>T Nonsense p.Arg77X A67° 4(7) [46], unpubl. *
c.230G>A Missense p.Arg77Gln A67° 3(3) [42], unpubl. M0016
c.233G>A Missense p.Gly78Glu A67° 1(2) [47] M0002
c.257+2T>C g Splice site del. exon3
p.Ala59IlefsX2
A67° 2(4) [13,48] M0010
M0020
c.258–?_366 + ?del∼1100 g Deletion p.Tyr87CysfsX22 A67? 1(2) Unpubl. *
c.279C>G d Missense p.Asp93Glu A67° 4(8) [46], unpubl. *
c.287_289delAAG Deletion p.Glu96del A67 1(2) Unpubl. *
c.298C>T Nonsense p.Gln100X A67° 5(5) [42], unpubl. M0016
c.304C>T Nonsense p.Arg102X A67° 6(11) b [16,41,46,48] unpubl. M0001
c.305G>C Missense p.Arg102Pro A67+? 1(1) Unpubl. *
c.323A>T Missense p.Asp108Val A67−? 1(2) [43] *
c.364_366+2delGAGGT g Splice site del. exon 4?
p.Tyr87CysfsX2?
A67° 1(2) [17] *
c.366+1G>A g Splice site del. exon 3_4
p.Ala59_Glu122del
A67° 8(12) [17,4143] unpubl. M0011
M0018
c.366+1G>C e, g Splice site del. exon 4?
p.Tyr87CysfsX22?
A67° 4(8) Unpubl. *
c.366+2401_502–527 del1380 g Deletion del. exon 5
p.Val123_Trp167del
A67° 4(8) [50] *
c.383C>T Missense p.Ala128Val A67° 1(2) [42] M0013
c.398_399dupAG Insertion p.Lys134ArgfsX12 A67° 1(2) [51] M0006
c.409T>A Missense p.Trp137Arg A67 1(2) Unpubl. *
c.419C>G Missense p.Ala140Asp A67° 1(1) Unpubl. *
c.[479A>T; 481A>G] Dbl. missense p.AspLys160_161
ValGlu
A67° 1(1) f [52] M0012
c.482delA Deletion p.Lys161ArgfsX16 A67? 1(2) b Unpubl. *
c.488_501delTGGAGTGTGTCTGG g Deletion/splice site del.exon 5
p.Val123_Trp167del
A67° 1(1) Unpubl. *
c.502–1G>T g Splice site del exon 6?
p.Lys168_Thr203del?
A67° 1(2) Unpubl. *
c.505C>G Missense p.Gln169Glu A67? 1(2) Unpubl. *
c.550C>T Nonsense p.Arg184X A67? 1(2) Unpubl. *
c.551G>C Missense p.Arg184Pro A67° 1(2) Unpubl. *
c.576C>T Nonsense p.Gln192X A67? 1(2) b [53] *
c.586_588delAAG Deletion p.Lys196del A67+ 1(2) Unpubl. *
c.605C>T Missense p.Ala202Val A67 2(4) [46] unpubl. *
c.714-? _924+?dup∼1100 g Insertion p.Glu309GlyfsX15 A67° 2(3) f [54] unpubl. *
c.714–1G>T g Splice site del. exon 9?
p.Ala239ArgfsX59?
A67° 1(1) Unpubl. *
c.728delA Deletion p.Glu243GlyfsX28 A67° 1(1) [41] *
c.767_768dupAA Insertion p.Glu257LysfsX15 A67° 1(2) Unpubl. *
c.799_800delGT Deletion pVal267LeufsX8 A67° 1(2) [17] *
c.835_836delAC Deletion p.Thr279GlyfsX16 A67° 2(4) b [42] unpubl. M0017
c.855+1G>A g Splice site del. exon 8_9
p.Ala224_Gln285del
A67° 1(2) [55] M0007
c.1026G>A g Splice site del. exon 12
p.Gln335SerfsX38
A67° 2(2) [49] *
c.1034dupA Insertion p.Leu346AlafsX36 A67? 1(1) Unpubl. *
c.1099C>T Nonsense p.Gln367X A67? 1(2) b Unpubl. *
c.1171_1175delAAGCT Deletion p.Lys391GlufsX9 A67° 6(12) [16,19,41] M0005
c.1179–2A>T g Splice site del. exon 14?
p.Ser393ArgfsX54?
A67° 1(2) Unpubl. *
c.1256A>T Missense p.Asn419Ile A67° 1(2) [13] M0019 *
Mutations in NCF2

Number of different alleles Total number of alleles

Deletions 14 alleles (25.9%) 48 alleles (28.1%)
Nonsense mutations 8 alleles (14.8%) 36 alleles (21.0%)
Splice site mutations 11 alleles (20.4%) 38 alleles (22.2%)
Missense mutations 17 alleles (31.5%) 41 alleles (24.0%)
Insertions 4 alleles (7.4%) 8 alleles (4.7%)
Total 54 different allelic mutations Total 83 families with 171 identified alleles in the 95 patients
a

Always in combination with c.1183C>T (polymorphism, rs13306575) on the same allele.

b

One patient presumed homozygous for this mutation.

c

One patient is heterozygous for this mutation and for an undefined deletion of 11-13 kb in the other allele [44,45].

d

Always in combination with c.366+1G>C on the same allele.

e

Always in combination with c.279C>G on the same allele.

f

One patient is heterozygous for this mutation and for an unidentified mutation in the other allele [54].

g

Positions of introns in NCF2: intron 1 c.–510_–274 in 5′ UTR; intron 2 c.174_175; intron 3 c.257_258; intron 4 c.366_367; intron 5 c.501_502; intron 6 c.609_610; intron 7 c.669_670; intron 8 c.713_714; intron 9 c.855_856; intron 10 c.924_925; intron 11 c.1000_1001; intron 12 c.1026_1027; intron 13 c.1178_1179; intron 14 c.1290_1291; intron 15 c.1468_1469.

h

Accession number in database at http://www.uta.fi/imt/bioinfo/NCF2base/.

Table 3.

Mutations in the p47-phox gene NCF1.

Nucleotide change Mutation Amino acid or mRNA change CGD type Families (alleles) Reference Accession number(s) a
c.72+1G>A e Splice site del. exon 1?
p.Met1_Tyr24del?
A47° 1(1) [8] N0031
c.72+3G>T e Splice site del. exon 1?
p.Met1_Tyr24del?
A47° 1(1)] [8 N0032
c.75_76delGT Deletion p.Tyr26HisfsX26 A47° >300 homozygous, 20 heterozygous b [319] unpubl. N0004–7,9–23, 27–29, 31–35, 40–63, 69,70
c.125G>A Missense p.Arg42Gln A47° 3(3) [8] unpubl. N0034N0035
c.153+1G>A e Splice site c.153+1_+73insc
p.Lys52MetX24
A47° 1(1) [14] N0068 *
c.154–283_451+821 del2858 e Deletion del. exon 3_5
p.Lys52ThrfsX82
A47° 1(1) [14] N0061 *
c.271C>T Nonsense p.Gln91X A47° 1(1) [14] N0027 *
c.333T>A Nonsense p.Cys111X A47° 1(1) [9,14] N0028
N0056
N0057
N0058
c.353_354delCC insAA Deletion/insertion p.Phe118X A47° 1(1) [10,14] N0059 *
c.417_451+650 del685 e Deletion del. exon 5
p.Thr133HisfsX66
A47° 1(1) unpubl. *
c.502delG Deletion p.Glu168ArgfsX19 A47° 1(1) [5] N0002
c.574G>A e Splice site del. exon 6+7 d
p.Asp151_Ala227del
A47° 4(7) unpubl. [8, 14] N0036
N0064
N0065
N0066
N0067
c.579G>A Nonsense p.Trp193X A47° 17(31) [14,16,56] unpubl. N0024
N0025
N0026
N0037
N0038
N0039
N0060
N0068
*
c.604C>T Nonsense p.Arg202X A47° 1(1) [17] *
c.612G>A Nonsense p.Trp204X A47? 1(2) f [57] *
c.678T≫G Nonsense p.Tyr226X A47° 1(2) [17] *
c.682+1G>C e Splice site del. exon 7
p.Trp193_Gly228del
A47° 1(1) [14] N0062
N0063
*
c.730G>A Missense p.Glu244Lys A47° 1(1) unpubl. *
c.734_748del15 Deletion p.Val245_Glu249del A47° 1(2) unpubl. *
c.784G>A Missense p.Gly262Ser A47° 1(1) [8] N0033
c.789G>C Missense p.Trp263Cys A47° 1(1) unpubl. *
c.811delG Deletion p.Val271SerfsX105 A47° 1(1) [8]
c.838delC Deletion p.Leu280CysfsX96 A47° 1(1) [18] *
Mutations in NCF1

Number of different alleles Total number of alleles

Deletions 7 alleles (30.4%) 7 alleles (11.1%)
Nonsense mutations 6 alleles (26.1%) 38 alleles (60.3%)
Splice site mutations 5 alleles (21.7%) 11 alleles (17.5%)
Missense mutations 4 alleles (17.4%) 6 alleles (9.5%)
Deletion/insertions 1 allele (4.4%) 1 allele (1.6%)
Total 23 different allelic mutations (including delta-GT) Total 42 families with 6 (other than delta-GT) in 3 identified alleles the 53 patients
a

Accession number in database at http://www.uta.fi/imt/bioinfo/NCF1base/.

b

One patient is a compound heterozygote for this mutation and for an undefined chromosomal microdeletion on the other allele [58].

c

Activation of cryptic donor splice site in intron 2, leading to incorporation of 73 nucleotides from the 5′ side of intron 2 into mRNA, including the mutated G>A at position +1 of intron 2. At the protein level, this mutation predicts incorporation of 24 aberrant amino acids after His51, followed by a stop codon at position 76 [14].

d

In addition, these patients show evidence of mRNA for p47phox from which the last 22 bp at the 3′ region of exon 6 has been skipped (r.552_574del), as well as mRNA in which intron 6 has been included and in which the mutated exon 6 is expressed (r.[intron6+1_exon6–1ins; 574 g>a]) [14].

e

Positions of introns in NCF1: intron 1 c.72_73; intron 2 c.153_154; intron 3 c. 229_230; intron 4 c.395_396; intron 5 c.451_452; intron 6 c.574_575; intron 7 c.682_683; intron 8 c.801_802; intron 9 c.905_906; intron 10 c.1051_1052.

f

Patient presumed to be homozygous for the mutation.

Table 4.

Mutations in the p40-phox gene NCF4.

Nucleotide change Mutation Amino acid or mRNA change CGD type Families (alleles) Reference
c.143_152dup10 Insertion p.Lys52ArgfsX79 A40° 1(1) [59] *
c.314G>A Missense p.Arg105Gln A40+ 1(1) [59] *

Figure 1. Schematic overview of mutations in NCF2, CYBA, NCF4 and NCF1.

Figure 1

For each cDNA, the exon positions and the corresponding protein domains have been depicted. For some of the protein domains, their interaction with other proteins has been indicated. The PX domains interact with phosphatidyl-inositol-phosphates. The type of mutations (explained in the right hand corner), their position and number of mutated alleles are indicated. Splice site mutations are given at the exon borders.

Table 5.

Polymorphisms in the p22-phox gene CYBA.

Polymorphic nucleotide Amino acid change Reference
c.59–37A/G NA [30]
c.36A/G p.Glu12Glu [60]
c.179A/C p.Lys60Thr [30]
c.214C/T p.His72Tyr [28,60]
c.288–138ins50 NA [13]
c.381T/C p.Arg127Arg [60]
c.403G/A p.Glu135Lys [30]
c.480G/A p.Pro160Pro [30,37,60]
c.512A/G p.Glu171Gly [60]
c.521C/T p.Ala174Val [28,30,31,60]
c.579G/T p.Glu193Asp [60]
c.612A/G (+24 of 3′ UT region) NA [37,60]

Table 8.

Polymorphisms in the p40-phox gene NCF4.

Polymorphic nucleotidea Amino acid change Reference
c.32+1258G/T N.A. [61]
c.33–1101T/C N.A. [61]
c.33–728T/C N.A. [61]
c.118–360G/A N.A. [61]
c.342+202G/C N.A. [61]
c.342+342G/T N.A. [61]
c.342+1326G/A N.A. [61]
c.343–1378A/G N.A. [61]
c.343–339A/G N.A. [61]
c.528+16G/A N.A. [61]
c.627+711G/A N.A. [61]
c.627+1040G/T N.A. [61]
c.628–1193G/A N.A. [61]
c.758+57A/T N.A. [61]
a

Positions of introns in NCF4: intron 1 c.32_33; intron 2 c.117_118; intron 3 c.271_272; intron 4 c.342_343; intron 5 c.470_471; intron 6 c.528_529; intron 7 c.627_628; intron 8 c.758_759; intron 9 c.824_825.

Unlike the other autosomal recessive and X-linked forms of the disease, in which there is a large heterogeneity among mutations, a single defect accounts for the vast majority of cases of p47-phox-deficiency. Of ∼250 patients investigated worldwide at the DNA level, all but 53 patients in 42 families appear to be homozygous for a dinucleotide (GT) deletion (ΔGT) at the start of exon 2 (3-19). Of the 42 families with exceptions, 20 had patients who were compound heterozygotes for the GT deletion and one additional mutation, and the others had patients with mutations other than ΔGT on both alleles of NCF1 (20 homozygous, 2 compound heterozygous). The ΔGT-bearing allele of NCF1 is therefore the most common CGD-causing allele in the population, carried by approximately 1 in 250 individuals. The reason for this predominance is that most normal individuals have two p47-phox pseudogenes, each of which co-localizes with the functional gene to 7q11.23 and carries ΔGT. Recombination events between NCF1 and these highly homologous pseudogenes lead to the incorporation of ΔGT into NCF1 (7, 20).

Additional information about the tabulated mutations and about CGD in general can be found in recent reviews (21-25) and in the cited literature. In the following tables we have used the standard notation for differentiating the various phenotypes of CGD (e.g., A22°, A22+, A67°, A67+, A67 , A47°, A40° and A40+). In this nomenclature the first letter refers to the mode of inheritance (autosomal recessive), the numeral indicates the phox component affected, and the superscript symbol indicates whether the protein is absent (°), diminished () or normal (+), based on immunoblot analysis. When this information is unavailable, that has been indicated as (?). The respective proteins can be non-functional, exert residual activity, or in case of () be fully functional. Online Mendelian Inheritance in Man (OMIM) numbers for A22, A67, A47 CGD are #233690, #233710, and #233700, respectively. Mutations added since the last updated versions of Tables 1-3 were published (1) are marked with an asterisk in the right hand column. The nucleotide numbering system we have used is based on the cDNA sequence and follows the convention that +1 is the A of the ATG initiator codon. This differs from the numbering of the GenBank sequences; for p22-phox (GenBank accession nos. M21186 and J03774) subtract 28 from the GenBank sequence number to make the initiator A +1; for p67-phox (accession no. M32011) subtract 67 from the GenBank numbering; for p47-phox (GenBank accession nos. M25665 and M26193) subtract 12 from the GenBank numbering, and for p40-phox (accession no. NM_000631) subtract 184 from the GenBank numbering. The notation of the mutations and polymorphisms follows the recommendations of the Human Genome Variation Society (26) (see also www.hgvs.org/mutnomen). Where possible we have cross-referenced the mutations listed here with those in three CGD databases that list CGD patients by accession number. These databases contain additional biochemical, genetic and clinical information and are available at http://www.uta.fi/imt/bioinfo/CYBAbase/ (or NCF1base/, or NCF2base/). In addition, information can also be found in the HGMD database at http://www.hgdm.cf.ac.uk/ac.search.php. The consequences of the mutations for protein composition have been checked with the Mutalyzer program (www.lovd.nl/mutalyzer) (27).

Table 6.

Polymorphisms in the p67-phox gene NCF2.

Polymorphic nucleotide Amino acid change Reference
c.–185G/A NA [41,42]
c.–181G/A NA [41,42]
c.–24C/T NA [41,42]
c.235A/G p.Met79Val [41]
c.542A/G p.Lys181Arg [41,42,51]
c.606G/A p.Ala202Ala [42]
c.895C/T p.Leu299Leu [41,47,51]
c.925–21G/A NA [41]
c.983G/A p.Arg328Lys [41,47,51]
c.1105G/A p.Gly369Arg [42]
c.1167C/A p.His389Gln [41,42]
c.1183C/T p.Arg395Trp [4143]

Table 7.

Polymorphisms in the p47-phox gene NCF1.

Polymorphic nucleotidea Amino acid change Reference
c.66G/C p.Glu22His Unpubl.
c.73G/A p.Val25Met Unpubl.
c.345C/T p.Leu115Leu [8]
c.468C/T p.Ile156Ile Unpubl.
c.558A/G p.Val186Val Unpubl.
c.621G/A p.Ala206Ala Unpubl.
c.825C/T p.Phe275Phe Unpubl.
c.849A/G p.Ser283Ser Unpubl.
c.936C/T p.His312His Unpubl.
a

Identification of polymorphic sites in NCF1 is complicated by the p47-phox pseudogenes, which contain several differences from the functional gene; the referenced polymorphism was identified after amplification of NCF1 with primers that do not bind to the pseudogenes [8]. More synonymous polymorphisms can be expected to be introduced into NCF1 by recombination with the pseudogenes [20].

Acknowledgments

We thank the CGD Research Trust, London, UK, for financial support. We thank Katrin Höhne (Univ. Children's Hospital, Dresden, Germany), for excellent assistance. We are grateful to Cécile Martel, Michelle Mollin and Sylvain Beaumel for their constant and excellent technical assistance and we sincerely thank all the physicians collaborating with and trusting in the CGD diagnosis and research Center in Grenoble, France.

This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

References

  • 1.Cross AR, Noack D, Rae J, Curnutte JT, Heyworth PG. Hematologically important mutations: The autosomal recessive forms of chronic granulomatous disease (first update) Blood Cells Mol Dis. 2000;22:268–270. doi: 10.1006/bcmd.2000.0333. [DOI] [PubMed] [Google Scholar]
  • 2.Heyworth PG, Curnutte JT, Rae J, Noack D, Roos D, van Koppen E, Cross AR. Hematologically important mutations: X-linked chronic granulomatous disease (second update) Blood Cells Mol Dis. 2001;23:443–450. doi: 10.1006/bcmd.2000.0347. [DOI] [PubMed] [Google Scholar]
  • 3.Casimir CM, Bu-Ghanim HN, Rodaway ARF, Bentley DL, Rowe P, Segal AW. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proc Natl Acad Sci USA. 1991;88:2753–2757. doi: 10.1073/pnas.88.7.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Iwata M, Nunoi H, Yamazaki H, Nakano T, Niwa H, Tsuruta S, Ohga S, Ohmi S, Kanegasaki S, Matsuda I. Homologous dinucleotide (GT or TG) deletion in Japanese patients with chronic granulomatous disease with p47-phox deficiency. Biochem Biophys Res Commun. 1994;199:1372–1377. doi: 10.1006/bbrc.1994.1382. [DOI] [PubMed] [Google Scholar]
  • 5.Volpp BD, Lin Y. In vitro molecular reconstitution of the respiratory burst in B lymphoblasts from p47-phox-deficient chronic granulomatous disease. J Clin Invest. 1993;91:201–207. doi: 10.1172/JCI116171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Roos D, De Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW, Åhlin A, Nemet K, Hossle JP, Bernatowska-Matuszkiewicz E, Middleton-Price H. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood. 1996;87:1663–1681. [PubMed] [Google Scholar]
  • 7.Roesler J, Curnutte JT, Rae J, Barrett D, Patiño P, Chanock SJ, Görlach A. Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood. 2000;95:2150–2156. [PubMed] [Google Scholar]
  • 8.Noack D, Rae J, Cross AR, Ellis BA, Newburger PE, Curnutte JT, Heyworth PG. Autosomal recessive chronic granulomatous disease caused by defects in NCF1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF1 pseudogenes. Blood. 2001;97:305–311. doi: 10.1182/blood.v97.1.305. [DOI] [PubMed] [Google Scholar]
  • 9.Vihinen M, Arredondo-Vega FX, Casanova JL, Etzioni A, Giliani S, Hammarström L, Hershfield MS, Heyworth PG, Hsu AP, Lähdesmäki A, Lappalainen I, Notarangelo LD, Puck JM, Reith W, Roos D, Schumacher RF, Schwarz K, Vezzoni P, Villa A, Väliaho J, Smith CIE. Primary immunodeficiency mutation databases. In: Hall JC, Dunlap JC, Friedmann T, Giannelli F, editors. Advances in Genetics. Vol. 43. 2000. in press. [DOI] [PubMed] [Google Scholar]
  • 10.Jurkowska M, Kurenko-Deptuch M, Bal J, Roos D. The search for a genetic defect in Polish patients with chronic granulomatous disease. Arch Immunol Ther Exp. 2004;52:441–446. [PubMed] [Google Scholar]
  • 11.Prando-Andrade C, Agudelo-Florez P, Lopez JA, Aparecida de Souza Paiva M, Costa-Carvalho BT, Condino-Neto A. Autosomal chronic granulomatous disease: case report and mutation analysis of two Brazilian siblings. J Pediatr (Rio J) 2004;80:425–428. [PubMed] [Google Scholar]
  • 12.Agudelo-Flórez P, Cardoso Prando-Andrade C, López JA, Costa-Carvalho BT, Quezada A, Espinosa FJ, Aparacida de Souza Paiva M, Roxo P, Grumach A, Abe Jacob C, Salles Carneiro-Sampaio MM, Newburger PE, Condino-Neto A. Chronic granulomatous Disease in Latin American patients: clinical spectrum and molecular genetics. Pediatr Blood Cancer. 2006;46:243–252. doi: 10.1002/pbc.20455. [DOI] [PubMed] [Google Scholar]
  • 13.El Kares R, Barbouche MR, Elloumi-Zghal H, Bejaoui M, Chemli J, Mellouli F, Tebib N, Abdelmoula MS, Boukthir S, Fitouri Z, M'Rad S, Bouslama K, Touiri H, Abdelhak S, Dellagi MK. Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunesia. J Hum Genet. 2006;51:887–895. doi: 10.1007/s10038-006-0039-8. [DOI] [PubMed] [Google Scholar]
  • 14.Roos D, de Boer M, Köker MY, Dekker J, Singh-Gupta V, Åhlin A, Palmblad J, Sanal Ö, Kurenko-Deptuch M, Jolles S, Wolach B. Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase. Hum Mutat. 2006;27:1218–1229. doi: 10.1002/humu.20413. [DOI] [PubMed] [Google Scholar]
  • 15.Köker MY, Sanal Ö, de Boer M, Teczan İ, Metin A, Ersoy F, Roos D. Mutations of chronic granulomatous disease in Turkish families. Eur J Clin Invest. 2007;37:589–595. doi: 10.1111/j.1365-2362.2007.01828.x. [DOI] [PubMed] [Google Scholar]
  • 16.Wolach B, Gavrieli R, de Boer M, Gottesman G, Ben-Ari J, Rottem M, Schlesinger Y, Etzioni A, Roos D. Chronic granulomatous disease in Israel: functional and molecular studies of 38 patients. Clin Immunol. 2008;129:103–114. doi: 10.1016/j.clim.2008.06.012. [DOI] [PubMed] [Google Scholar]
  • 17.Kannengiesser C, Gérard B, El Benna J, Henri D, Kroviarski Y, Chollet-Martin S, Gougerot-Pocidalo MA, Elbim C, Grandchamp B. Molecular epidemiology of chronic granulomatous disease in a series of 80 kindreds: identification of 31 novel mutations. Hum Mutat. 2008;29:E132–E149. doi: 10.1002/humu.20820. [DOI] [PubMed] [Google Scholar]
  • 18.Van de Vosse E, van Wengen A, van Geelen JA, de Boer M, Roos D, van Dissel JT. A novel mutation in NCF1 in an adult CGD patient with a liver abscess as First presentation. J Hum Genet. 2009;54:313–316. doi: 10.1038/jhg.2009.24. [DOI] [PubMed] [Google Scholar]
  • 19.Bakri FG, Martel C, Khuri-Bulos N, Mahafza A, El-Khateeb MS, Al-Wahadneh AM, Hayajneh WA, Hamamy HA, Maquet E, Molin M, Stasia MJ. First report of clinical, functional, and molecular investigation of chronic granulomatous disease in nine Jordanian families. J Clin Immunol. 2009;29:215–230. doi: 10.1007/s10875-008-9243-y. [DOI] [PubMed] [Google Scholar]
  • 20.Görlach A, Lee PL, Roesler J, Hopkins PJ, Christensen B, Green ED, Chanock SJ, Curnutte JT. A p47-phox pseudogene carries the most common mutation causing p47-phox-deficient chronic granulomatous disease. J Clin Invest. 1997;100:1907–1918. doi: 10.1172/JCI119721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Roos D, Kuijpers TW, Curnutte JT. Chronic granulomatous disease. In: Ochs HD, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases, a molecular and genetic approach. 2nd. Oxford University Press; New York: 2007. pp. 525–549. [Google Scholar]
  • 22.Stasia MJ, Li XJ. Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol. 2008;30:209–235. doi: 10.1007/s00281-008-0121-8. [DOI] [PubMed] [Google Scholar]
  • 23.Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, Rossi P, Gattorno M, Rabusin M, Azzari C, Dellepiane RM, Pietrogrande MC, Trizzino A, DiBartolomeo P, Martino S, Carpino L, Cossu F, Locatelli F, Maccario R, Pierani P, Putti MC, Stabile A, Notarangelo LD, Ugazio AG, Plebani A, De Mattia D. Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol. 2008;126:155–164. doi: 10.1016/j.clim.2007.09.008. [DOI] [PubMed] [Google Scholar]
  • 24.Jones LB, McGrogan P, Flood TJ, Gennery AR, Morton L, Thrasher A, Goldblatt D, Parker L, Cant AJ. Chronic granulomatous disease in the United Kingdom and Ireland: a comprehensive national patient-based registry. Clin Exp Immunol. 2008;152:211–218. doi: 10.1111/j.1365-2249.2008.03644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Van den Berg JM, van Koppen E, Åhlin A, Belohradsky BH, Bernatowska E, Corbeel L, Espanõl T, Fischer A, Kurenko-Deptuch M, Mouy R, Petropoulou T, Roesler J, Seger R, Stasia MJ, Valerius NH, Weening RS, Wolach B, Roos D, Kuijpers TW. Chronic granulomatous disease: the European experience. PLoS ONE. 2009;4:e5234. doi: 10.1371/journal.pone.0005234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15:7–12. doi: 10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 27.Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE. Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum Mutat. 2008;29:6–13. doi: 10.1002/humu.20654. [DOI] [PubMed] [Google Scholar]
  • 28.Dinauer MC, Pierce EA, Bruns GAP, Curnutte JT, Orkin SH. Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest. 1990;86:1729–1737. doi: 10.1172/JCI114898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Yamada M, Ariga T, Kawamura N, Ohtsu M, Imajoh-Ohmi S, Ohshika E, Tatsuzawa O, Kobayashi K, Sakiyama Y. Genetic studies of three Japanese patients with p22-phox-deficient chronic granulomatous disease: detection of a possible common mutant CYBA allele in Japan and a genotype-phenotype correlation in these patients. Br J Haematol. 2000;108:511–517. doi: 10.1046/j.1365-2141.2000.01857.x. [DOI] [PubMed] [Google Scholar]
  • 30.Rae J, Noack D, Heyworth PG, Ellis BA, Curnutte JT, Cross AR. Molecular analysis of nine new families with chronic granulomatous disease caused by mutations in CYBA, the gene encoding p22-phox. Blood. 2000;96:1106–1112. [PubMed] [Google Scholar]
  • 31.Ishibashi F, Nunoi H, Endo F, Matsuda I, Kanegasaki S. Statistical and mutational analysis of chronic granulomatous disease in Japan with special reference to gp91-phox and p22-phox deficiency. Hum Genet. 2000;106:473–481. doi: 10.1007/s004390000288. [DOI] [PubMed] [Google Scholar]
  • 32.De Boer M, Hartl D, Wintergerst U, Belohradsky BH, Roos D. A donor splice site mutation in intron 1 of CYBA, leading to chronic granulomatous disease. Blood Cells Mol Dis. 2005;35:365–369. doi: 10.1016/j.bcmd.2005.08.002. [DOI] [PubMed] [Google Scholar]
  • 33.Köker MY, van Leeuwen K, de Boer M, Çelmeli F, Metin A, Özgür TT, Sanal Ö, Roos D. Six different CYBA mutations including three novel mutations in ten families from Turkey, resulting in autosomal recessive chronic granulomatous disease. Eur J Clin Invest. 2009;39:311–319. doi: 10.1111/j.1365-2362.2009.02093.x. [DOI] [PubMed] [Google Scholar]
  • 34.Teimourian S, Zomorodian E, Badalzadeh M, Pouya A, Kannengiesser C, Mansouri D, Cheraghi T, Parvaneh N. Characterization of six novel mutations in CYBA: the gene causing autosomal recessive chronic granulomatous disease. Br J Haematol. 2008;141:848–851. doi: 10.1111/j.1365-2141.2008.07148.x. [DOI] [PubMed] [Google Scholar]
  • 35.Hossle JP, De Boer M, Seger RA, Roos D. Identification of allele-specific p22-phox mutations in a compound heterozygous patient with chronic granulomatous disease by mismatch PCR and restriction enzyme analysis. Hum Genet. 1994;93:437–442. doi: 10.1007/BF00201671. [DOI] [PubMed] [Google Scholar]
  • 36.Bagg A, Gonzales-Peralta R, Petrovic A, Sleasman JW. Novel CYBA gene mutation in a patient with chronic granulomatous disease associated with autoimmune hepatitis. J Allergy Clin Immunol. 2007;119(Suppl. 1):S16. [Google Scholar]
  • 37.De Boer M, De Klein A, Hossle JP, Seger R, Corbeel L, Weening RS, Roos D. Cytochrome b558-negative, autosomal recessive chronic granulomatous disease: two new mutations in the cytochrome b558 light chain of the NADPH oxidase (p22-phox) Am J Hum Genet. 1992;51:1127–1135. [PMC free article] [PubMed] [Google Scholar]
  • 38.Stasia MJ, Bordigoni P, Martel C, Morel F. A novel and unusual case of chronic granulomatous disease in a child with homozygous 36-bp deletion in the CYBA gene (A22°) leading to the activation of a cryptic splice site in intron 4. Hum Genet. 2002;110:444–450. doi: 10.1007/s00439-002-0720-8. [DOI] [PubMed] [Google Scholar]
  • 39.Porter CD, Parkar MH, Kinnon C. Identification of a donor splice site mutation leading to loss of p22-phox exon 5 in autosomal chronic granulomatous disease. Hum Mutat. 1996;7:374. doi: 10.1002/humu.1380070402. [DOI] [PubMed] [Google Scholar]
  • 40.Dinauer MC, Pierce EA, Erickson RW, Muhlebach TJ, Messner H, Orkin SH, Seger RA, Curnutte JT. Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease. Proc Natl Acad Sci USA. 1991;88:11231–11235. doi: 10.1073/pnas.88.24.11231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Patiño PJ, Rae J, Noack D, Erickson RW, Ding J, Garcia de Olarte D, Curnutte JT. Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the NADPH oxidase component p67-phox. Blood. 1999;94:2505–2514. [PubMed] [Google Scholar]
  • 42.Noack D, Rae J, Cross AR, Munoz J, Salmen S, Mendoza JA, Rossi N, Curnutte JT, Heyworth PG. Autosomal recessive chronic granulomatous disease caused by novel mutations in NCF-2, the gene encoding the p67-phox component of phagocyte oxidase. Hum Genet. 1999;105:460–467. doi: 10.1007/s004399900152. [DOI] [PubMed] [Google Scholar]
  • 43.Yu G, Hong DK, Dionis KY, Rae J, Heyworth PG, Curnutte JT, Lewis DB. The continuing diagnostic challenge of autosomal recessive chronic granulomatous disease. Clin Immunol. 2008;128:117–126. doi: 10.1016/j.clim.2008.05.008. [DOI] [PubMed] [Google Scholar]
  • 44.Åhlin A, De Boer M, Roos D, Leusen J, Smith CIE, Sundin U, Rabbani H, Palmblad J, Elinder G. Prevalence, genetics and clinical presentation of chronic granulomatous disease in Sweden. Acta Paediatr. 1995;84:1386–1394. doi: 10.1111/j.1651-2227.1995.tb13575.x. [DOI] [PubMed] [Google Scholar]
  • 45.Leusen JHW, De Klein A, Hilarius PM, Åhlin A, Palmblad J, Smith CIE, Diekmann D, Hall A, Verhoeven AJ, Roos D. Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med. 1996;184:1243–1249. doi: 10.1084/jem.184.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Köker MY, Sanal Ö, van Leeuwen K, de Boer M, Metin A, Patıroğlu T, Özgür TT, Tezcan I, Roos D. Four different NCF2 mutations in six families from Turkey and an overview of NCF2 gene mutations. Eur J Clin Invest. 2009;39:942–951. doi: 10.1111/j.1365-2362.2009.02195.x. [DOI] [PubMed] [Google Scholar]
  • 47.De Boer M, Hilarius-Stokman PM, Hossle JP, Verhoeven AJ, Graf N, Kenney RT, Seger R, Roos D. Autosomal recessive chronic granulomatous disease with absence of the 67-kD cytosolic NADPH oxidase component: identification of mutation and detection of carriers. Blood. 1994;83:531–536. [PubMed] [Google Scholar]
  • 48.Tanugi-Cholley LC, Issartel JP, Lunardi J, Freycon F, Morel F, Vignais PV. A mutation located at the 5′ splice junction sequence of intron 3 in the p67-phox gene causes the lack of p67-phox mRNA in a patient with chronic granulomatous disease. Blood. 1995;85:242–249. [PubMed] [Google Scholar]
  • 49.Khan HA, Good RA, Tangsinmankong N, Rae J, Noack D, Heyworth P, Day NK, Bahna S. P67-phox deficient chronic granulomatous disease due to heterozygous defects in exons 4 and 12 of the NCF2 gene. J Allergy Clin Immunol. 2002;109(Suppl. 1):S278. [Google Scholar]
  • 50.Gentsch M, Kaczmarczyk A, van Leeuwen K, de Boer M, Kaus-Drobek M, Dagher MC, Kaiser P, Arkwright P, Gahr M, Rösen-Wolff A, Bochtler M, Secord E, Saifi M, Maddalena A, Dbaibo G, Bustamante J, Casanova JL, Roos D, Roesler J. Alu-repeat-induced deletions within the NCF2 gene cause p67-phox-deficient chronic granulomatous disease (CGD) Hum Mutat. 2009 Dec 1; doi: 10.1002/humu.21156. Epub ahead of print. [DOI] [PubMed] [Google Scholar]
  • 51.Nunoi H, Iwata M, Tatsuzawa S, Onoe Y, Shimizu S, Kanegasaki S, Matsuda I. AG dinucleotide insertion in a patient with chronic granulomatous disease lacking cytosolic 67-kD protein. Blood. 1995;86:329–333. [PubMed] [Google Scholar]
  • 52.Bonizzato A, Russo MP, Donini M, Dusi S. Identification of a double mutation (D160V-K161E) in the p67-phox gene of a chronic granulomatous disease patient. Biochem Biophys Res Commun. 1997;231:861–863. doi: 10.1006/bbrc.1997.6204. [DOI] [PubMed] [Google Scholar]
  • 53.Al-Muhsen S, Al-Hemidan A, Al-Sheri A, Al-Harbi A, Al-Ghonaium A, Al-Saud B, Al-Mousa H, Al-Dhekri H, Arnaout R, Al-Mohsen I, Alsmadi O. Ocular manifestations in chronic granulomatous disease in Saoudi Arabia. J Am Ass Pediatr Ophtalmol Strabismus. 2009;13:396–399. doi: 10.1016/j.jaapos.2009.05.011. [DOI] [PubMed] [Google Scholar]
  • 54.Borgato L, Bonizzato A, Lunardi C, Dusi S, Andrioli G, Scarperi A, Corrocher R. A 1.1-kb duplication in the p67-phox gene causes chronic granulomatous disease. Hum Genet. 2001;108:504–510. doi: 10.1007/s004390100526. [DOI] [PubMed] [Google Scholar]
  • 55.Aoshima M, Nunoi H, Shimazu M, Shimizu S, Tatsuzawa O, Kenney RT, Kanegasaki S. Two-exon skipping due to a point mutation in p67-phox-deficient chronic granulomatous disease. Blood. 1996;88:1841–1845. [PubMed] [Google Scholar]
  • 56.De Boer M, Singh V, Dekker J, Di Rocco M, Goldblatt D, Roos D. Prenatal diagnosis in two families with autosomal, p47phox-deficient chronic granulomatous disease due to a novel point mutation in NCF1. Prenatal Diagn. 2002;22:235–240. doi: 10.1002/pd.296. [DOI] [PubMed] [Google Scholar]
  • 57.Jakobsen MA, Pedersen SS, Barington T. Detection of non-ΔGT NCF1 mutations in chronic granulomatous disease. Genet Test Mol Biomarkers. 2009;13:505–510. doi: 10.1089/gtmb.2009.0016. [DOI] [PubMed] [Google Scholar]
  • 58.Kabuki T, Kawai T, Kin Y, Joh K, Ohashi H, Kosho T, Yachie A, Kanegane H, Miyawaki T, Oh-ishi T. A case of Williams syndrome with p47-phox-deficient chronic granulomatous disease. Nihon Rinsho Meneki Gakkai Kaishi. 2003;26:299–303. doi: 10.2177/jsci.26.299. [DOI] [PubMed] [Google Scholar]
  • 59.Matute JD, Arias AA, Wright NAM, Wrobel I, Waterhouse CCM, Li XJ, Marchal CC, Stull ND, Lewis DB, Steele M, Kellner JD, Yu W, Meroueh SO, Nauseef WM, Dinauer MC. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009 doi: 10.1182/blood-2009-07-231498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Bedard K, Attar H, Bonnefont J, Jaquet V, Borel C, Plastre O, Stasia MJ, Antonarakis SE, Krause KH. Three common polymorphisms in the CYBA gene form a haplotype associated with decreased ROS formation. Hum Mutat. 2009;30:1123–1133. doi: 10.1002/humu.21029. [DOI] [PubMed] [Google Scholar]
  • 61.Olsson LM, Lindqvist AK, Källberg H, Padyukov L, Burkhardt H, Alfredsson L, Klareskog L, Holmdahl R. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res Ther. 2007;9:R98. doi: 10.1186/ar2299. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES