Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jan 15;90(2):552–556. doi: 10.1073/pnas.90.2.552

Erosion kinetics of hydrolytically degradable polymers.

J A Tamada 1, R Langer 1
PMCID: PMC45701  PMID: 8421690

Abstract

Degradable polymers are beginning to play an increasing role as materials for environmental and medical applications. Understanding factors that control erosion, such as bond cleavage and the dissolution and diffusion of degradation products, will be critical to the future development of these materials. Erosion kinetics, photomicroscopy, and infrared spectroscopy were used to understand the erosion mechanism of two families of degradable polymers, polyanhydrides and polyesters. Polyanhydrides exhibit behavior more characteristic of surface erosion, whereas the polyesters exhibit bulk erosion patterns. Control of erosion times from a few days to several years can be achieved by a judicious choice of monomer units and bond selection.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal C. M., Haas K. F., Leopold D. A., Clark H. G. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. Biomaterials. 1992;13(3):176–182. doi: 10.1016/0142-9612(92)90068-y. [DOI] [PubMed] [Google Scholar]
  2. Brem H., Mahaley M. S., Jr, Vick N. A., Black K. L., Schold S. C., Jr, Burger P. C., Friedman A. H., Ciric I. S., Eller T. W., Cozzens J. W. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991 Mar;74(3):441–446. doi: 10.3171/jns.1991.74.3.0441. [DOI] [PubMed] [Google Scholar]
  3. Cohen S., Yoshioka T., Lucarelli M., Hwang L. H., Langer R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res. 1991 Jun;8(6):713–720. doi: 10.1023/a:1015841715384. [DOI] [PubMed] [Google Scholar]
  4. D'Emanuele A., Hill J., Tamada J. A., Domb A. J., Langer R. Molecular weight changes in polymer erosion. Pharm Res. 1992 Oct;9(10):1279–1283. doi: 10.1023/a:1015801216466. [DOI] [PubMed] [Google Scholar]
  5. Leong K. W., Brott B. C., Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J Biomed Mater Res. 1985 Oct;19(8):941–955. doi: 10.1002/jbm.820190806. [DOI] [PubMed] [Google Scholar]
  6. Leong K. W., D'Amore P. D., Marletta M., Langer R. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res. 1986 Jan;20(1):51–64. doi: 10.1002/jbm.820200106. [DOI] [PubMed] [Google Scholar]
  7. Ratcliffe J. H., Hunneyball I. M., Smith A., Wilson C. G., Davis S. S. Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. J Pharm Pharmacol. 1984 Jul;36(7):431–436. doi: 10.1111/j.2042-7158.1984.tb04419.x. [DOI] [PubMed] [Google Scholar]
  8. Wang H. T., Palmer H., Linhardt R. J., Flanagan D. R., Schmitt E. Degradation of poly(ester) microspheres. Biomaterials. 1990 Nov;11(9):679–685. doi: 10.1016/0142-9612(90)90026-m. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES