Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jan 15;90(2):557–561. doi: 10.1073/pnas.90.2.557

Barium-induced exocytosis is due to internal calcium release and block of calcium efflux.

D A Przywara 1, P S Chowdhury 1, S V Bhave 1, T D Wakade 1, A R Wakade 1
PMCID: PMC45702  PMID: 8421691

Abstract

The concentration of cytosolic free Ca2+ ([Ca2+]i) and the release of tritiated norepinephrine ([3H]NE) were monitored during Ba2+ stimulation of sympathetic neurons cultured from chick embryos. Ba2+ (2.5 mM in Ca(2+)-free medium) caused a rise in [Ca2+]i in all regions (cell bodies, neurites, and growth cones) of sympathetic neurons and evoked [3H]NE release in the absence of other stimuli. The increase in [Ca2+]i and release of [3H]NE were sustained for up to 30 min in the presence of Ba2+. When Ba(2+)-stimulated cells were immediately washed in Ca(2+)-free Ba(2+)-free EGTA solution, both the elevated [Ca2+]i and [3H]NE release returned to basal levels, with similar, fast, time courses. Ba2+ also blocked Ca2+ efflux from neurons loaded with 45Ca. We conclude from the parallel effects of Ba2+ on [Ca2+]i and [3H]NE release that Ba2+ stimulates exocytosis by a Ca(2+)-dependent mechanism. The Ba(2+)-induced rise in [Ca2+]i is a result of two separate actions: (i) the release of Ca2+ from intracellular sites and (ii) an effective block of Ca2+ extrusion. The ability of Ba2+ to release Ca2+ in growth cones that are insensitive to caffeine suggests that Ba2+ may displace Ca2+ from binding sites other than endoplasmic reticulum.

Full text

PDF
557

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augustine G. J., Charlton M. P., Smith S. J. Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987;10:633–693. doi: 10.1146/annurev.ne.10.030187.003221. [DOI] [PubMed] [Google Scholar]
  2. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  3. Burgoyne R. D., Morgan A., O'Sullivan A. J. The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C. Cell Signal. 1989;1(4):323–334. doi: 10.1016/0898-6568(89)90051-x. [DOI] [PubMed] [Google Scholar]
  4. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  5. Chao S. H., Suzuki Y., Zysk J. R., Cheung W. Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol. 1984 Jul;26(1):75–82. [PubMed] [Google Scholar]
  6. Creutz C. E., Dowling L. G., Sando J. J., Villar-Palasi C., Whipple J. H., Zaks W. J. Characterization of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+. J Biol Chem. 1983 Dec 10;258(23):14664–14674. [PubMed] [Google Scholar]
  7. DOUGLAS W. W., RUBIN R. P. STIMULANT ACTION OF BARIUM ON THE ADRENAL MEDULLA. Nature. 1964 Jul 18;203:305–307. doi: 10.1038/203305a0. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hardcastle J., Hardcastle P. T., Noble J. M. The effect of barium chloride on intestinal secretion in the rat. J Physiol. 1983 Nov;344:69–80. doi: 10.1113/jphysiol.1983.sp014924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hardcastle J., Hardcastle P. T., Noble J. M. The secretory action of barium chloride in rat colon. J Physiol. 1985 Apr;361:19–33. doi: 10.1113/jphysiol.1985.sp015630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heldman E., Levine M., Raveh L., Pollard H. B. Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J Biol Chem. 1989 May 15;264(14):7914–7920. [PubMed] [Google Scholar]
  12. Kirpekar S. M., Wakade A. R., Prat J. C. Effect of tetraethylammonium and barium on the release of noradrenaline from the perfused cat spleen by nerve stimulation and potassium. Naunyn Schmiedebergs Arch Pharmacol. 1976 Jul;294(1):23–29. doi: 10.1007/BF00692781. [DOI] [PubMed] [Google Scholar]
  13. Lipscombe D., Madison D. V., Poenie M., Reuter H., Tsien R. Y., Tsien R. W. Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2398–2402. doi: 10.1073/pnas.85.7.2398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin W. H., Creutz C. E. Chromobindin A. A Ca2+ and ATP regulated chromaffin granule binding protein. J Biol Chem. 1987 Feb 25;262(6):2803–2810. [PubMed] [Google Scholar]
  15. Mattson M. P., Guthrie P. B., Kater S. B. A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEB J. 1989 Nov;3(13):2519–2526. doi: 10.1096/fasebj.3.13.2572500. [DOI] [PubMed] [Google Scholar]
  16. McLachlan E. M. The effects of strontium and barium ions at synapses in sympathetic ganglia. J Physiol. 1977 May;267(2):497–518. doi: 10.1113/jphysiol.1977.sp011823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Metz S. A. Lipoxygenase inhibitors reduce insulin secretion without impairing calcium mobilization. Endocrinology. 1987 Jun;120(6):2534–2546. doi: 10.1210/endo-120-6-2534. [DOI] [PubMed] [Google Scholar]
  18. Przywara D. A., Bhave S. V., Bhave A., Wakade T. D., Wakade A. R. Dissociation between intracellular Ca2+ and modulation of [3H]noradrenaline release in chick sympathetic neurons. J Physiol. 1991 Jun;437:201–220. doi: 10.1113/jphysiol.1991.sp018591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schilling W. P., Rajan L., Strobl-Jager E. Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. Saturability, selectivity, and kinetics. J Biol Chem. 1989 Aug 5;264(22):12838–12848. [PubMed] [Google Scholar]
  20. Silinsky E. M. On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses. J Physiol. 1978 Jan;274:157–171. doi: 10.1113/jphysiol.1978.sp012141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Südhof T. C., Walker J. H., Obrocki J. Calelectrin self-aggregates and promotes membrane aggregation in the presence of calcium. EMBO J. 1982;1(10):1167–1170. doi: 10.1002/j.1460-2075.1982.tb00008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
  23. Wakade A. R., Wakade T. D. Comparison of transmitter release properties of embryonic sympathetic neurons growing in vivo and in vitro. Neuroscience. 1988 Dec;27(3):1007–1019. doi: 10.1016/0306-4522(88)90205-9. [DOI] [PubMed] [Google Scholar]
  24. Wakade T. D., Bhave S. V., Bhave A., Przywara D. A., Wakade A. R. Ca2+ mobilized by caffeine from the inositol 1,4,5-trisphosphate-insensitive pool of Ca2+ in somatic regions of sympathetic neurons does not evoke [3H]norepinephrine release. J Neurochem. 1990 Nov;55(5):1806–1809. doi: 10.1111/j.1471-4159.1990.tb04972.x. [DOI] [PubMed] [Google Scholar]
  25. van der Merwe P. A., Millar R. P., Davidson J. S. Calcium stimulates luteinizing-hormone (lutropin) exocytosis by a mechanism independent of protein kinase C. Biochem J. 1990 Jun 1;268(2):493–498. doi: 10.1042/bj2680493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES