Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jan 15;90(2):582–586. doi: 10.1073/pnas.90.2.582

Paradoxical structure and function in a mutant human insulin associated with diabetes mellitus.

Q X Hua 1, S E Shoelson 1, K Inouye 1, M A Weiss 1
PMCID: PMC45707  PMID: 8421693

Abstract

The solution structure of a diabetes-associated mutant human insulin (insulin Los Angeles; PheB24-->Ser) was determined by 13C-edited NMR spectroscopy and distance-geometry/simulated annealing calculations. Among vertebrate insulins PheB24 is invariant, and in crystal structures the aromatic ring appears to anchor the putative receptor-binding surface through long-range packing interactions in the hydrophobic core. B24 substitutions are of particular interest in relation to the mechanism of receptor binding. In one analogue ([GlyB24]insulin), partial unfolding of the B chain has been observed with paradoxical retention of near-native bioactivity. The present study of [SerB24]insulin extends this observation: relative to [GlyB24]insulin, near-native structure is restored despite significant loss of function. To our knowledge, our results provide the first structural study of a diabetes-associated mutant insulin and support the hypothesis that insulin undergoes a change in conformation on receptor binding.

Full text

PDF
582

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
  2. Bentley G., Dodson G., Lewitova A. Rhombohedral insulin crystal transformation. J Mol Biol. 1978 Dec 25;126(4):871–875. doi: 10.1016/0022-2836(78)90026-8. [DOI] [PubMed] [Google Scholar]
  3. Clore G. M., Gronenborn A. M., Brünger A. T., Karplus M. Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. Combined use of 1H nuclear magnetic resonance and restrained molecular dynamics. J Mol Biol. 1985 Nov 20;186(2):435–455. doi: 10.1016/0022-2836(85)90116-0. [DOI] [PubMed] [Google Scholar]
  4. Cutfield J., Cutfield S., Dodson E., Dodson G., Hodgkin D., Reynolds C. Evidence concerning insulin activity from the structure of a cross-linked derivative. Hoppe Seylers Z Physiol Chem. 1981 Jun;362(6):755–761. doi: 10.1515/bchm2.1981.362.1.755. [DOI] [PubMed] [Google Scholar]
  5. Haneda M., Kobayashi M., Maegawa H., Watanabe N., Takata Y., Ishibashi O., Shigeta Y., Inouye K. Decreased biologic activity and degradation of human [SerB24]-insulin, a second mutant insulin. Diabetes. 1985 Jun;34(6):568–573. doi: 10.2337/diab.34.6.568. [DOI] [PubMed] [Google Scholar]
  6. Haneda M., Polonsky K. S., Bergenstal R. M., Jaspan J. B., Shoelson S. E., Blix P. M., Chan S. J., Kwok S. C., Wishner W. B., Zeidler A. Familial hyperinsulinemia due to a structurally abnormal insulin. Definition of an emerging new clinical syndrome. N Engl J Med. 1984 May 17;310(20):1288–1294. doi: 10.1056/NEJM198405173102004. [DOI] [PubMed] [Google Scholar]
  7. Havel T. F. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog Biophys Mol Biol. 1991;56(1):43–78. doi: 10.1016/0079-6107(91)90007-f. [DOI] [PubMed] [Google Scholar]
  8. Hua Q. X., Shoelson S. E., Kochoyan M., Weiss M. A. Receptor binding redefined by a structural switch in a mutant human insulin. Nature. 1991 Nov 21;354(6350):238–241. doi: 10.1038/354238a0. [DOI] [PubMed] [Google Scholar]
  9. Hua Q. X., Weiss M. A. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry. 1991 Jun 4;30(22):5505–5515. doi: 10.1021/bi00236a025. [DOI] [PubMed] [Google Scholar]
  10. Kobayashi M., Ohgaku S., Iwasaki M., Maegawa H., Shigeta Y., Inouye K. Supernormal insulin: [D-PheB24]-insulin with increased affinity for insulin receptors. Biochem Biophys Res Commun. 1982 Jul 16;107(1):329–336. doi: 10.1016/0006-291x(82)91708-9. [DOI] [PubMed] [Google Scholar]
  11. Kristensen S. M., Jørgensen A. M., Led J. J., Balschmidt P., Hansen F. B. Proton nuclear magnetic resonance study of the B9(Asp) mutant of human insulin. Sequential assignment and secondary structure. J Mol Biol. 1991 Mar 5;218(1):221–231. doi: 10.1016/0022-2836(91)90886-b. [DOI] [PubMed] [Google Scholar]
  12. Markussen J., Jørgensen K. H., Sørensen A. R., Thim L. Single chain des-(B30) insulin. Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. Int J Pept Protein Res. 1985 Jul;26(1):70–77. [PubMed] [Google Scholar]
  13. Mirmira R. G., Tager H. S. Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor. Importance of main chain conformation. J Biol Chem. 1989 Apr 15;264(11):6349–6354. [PubMed] [Google Scholar]
  14. Nakagawa S. H., Tager H. S. Perturbation of insulin-receptor interactions by intramolecular hormone cross-linking. Analysis of relative movement among residues A1, B1, and B29. J Biol Chem. 1989 Jan 5;264(1):272–279. [PubMed] [Google Scholar]
  15. Nakagawa S. H., Tager H. S. Role of the COOH-terminal B-chain domain in insulin-receptor interactions. Identification of perturbations involving the insulin mainchain. J Biol Chem. 1987 Sep 5;262(25):12054–12058. [PubMed] [Google Scholar]
  16. Nakagawa S. H., Tager H. S. Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects. J Biol Chem. 1986 Jun 5;261(16):7332–7341. [PubMed] [Google Scholar]
  17. Nanjo K., Sanke T., Miyano M., Okai K., Sowa R., Kondo M., Nishimura S., Iwo K., Miyamura K., Given B. D. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin. J Clin Invest. 1986 Feb;77(2):514–519. doi: 10.1172/JCI112331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shoelson S. E., Lu Z. X., Parlautan L., Lynch C. S., Weiss M. A. Mutations at the dimer, hexamer, and receptor-binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions. Biochemistry. 1992 Feb 18;31(6):1757–1767. doi: 10.1021/bi00121a025. [DOI] [PubMed] [Google Scholar]
  19. Shoelson S., Fickova M., Haneda M., Nahum A., Musso G., Kaiser E. T., Rubenstein A. H., Tager H. Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7390–7394. doi: 10.1073/pnas.80.24.7390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shoelson S., Haneda M., Blix P., Nanjo A., Sanke T., Inouye K., Steiner D., Rubenstein A., Tager H. Three mutant insulins in man. Nature. 1983 Apr 7;302(5908):540–543. doi: 10.1038/302540a0. [DOI] [PubMed] [Google Scholar]
  21. Tager H., Given B., Baldwin D., Mako M., Markese J., Rubenstein A., Olefsky J., Kobayashi M., Kolterman O., Poucher R. A structurally abnormal insulin causing human diabetes. Nature. 1979 Sep 13;281(5727):122–125. doi: 10.1038/281122a0. [DOI] [PubMed] [Google Scholar]
  22. Wagner G., Braun W., Havel T. F., Schaumann T., Go N., Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol. 1987 Aug 5;196(3):611–639. doi: 10.1016/0022-2836(87)90037-4. [DOI] [PubMed] [Google Scholar]
  23. Wang S. H., Hu S. Q., Burke G. T., Katsoyannis P. G. Insulin analogues with modifications in the beta-turn of the B-chain. J Protein Chem. 1991 Jun;10(3):313–324. doi: 10.1007/BF01025630. [DOI] [PubMed] [Google Scholar]
  24. Weiss M. A., Hua Q. X., Lynch C. S., Frank B. H., Shoelson S. E. Heteronuclear 2D NMR studies of an engineered insulin monomer: assignment and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design. Biochemistry. 1991 Jul 30;30(30):7373–7389. doi: 10.1021/bi00244a004. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES