Abstract
The ard gene of Drosophila melanogaster encodes a structural homologue of vertebrate nicotinic acetylcholine receptors (AChR) and is expressed exclusively in nervous tissue. To study the nature of the ARD protein, antibodies were raised against fusion constructs containing two regions of this polypeptide. One segment is putatively extracellular (amino acids 65-212), the other domain is exposed to the cytoplasm (amino acids 305-444). The ARD antisera obtained served to investigate the physical relationship between the ARD protein and alpha-bungarotoxin (alpha-Btx) binding sites occurring in Drosophila. Two different high-affinity binding sites for [125I]alpha-Btx, a highly potent antagonist of vertebrate muscle AChR, were detected in fly head membranes. Equilibrium binding and kinetic studies revealed Kd values of approximately 0.1 nM (site 1) and approximately 4 nM (site 2). The estimated maximal binding (Bmax) was approximately 240 and 1080 fmol/mg protein respectively. Both sites exhibited a nicotinic-cholinergic pharmacology. Immunoprecipitation experiments with the ARD antisera indicated that the ARD protein is associated with the [125I]alpha-Btx binding site 1 only. These data support the previously postulated hypothesis that the ARD protein is part of an alpha-Btx binding neuronal AChR of Drosophila. Furthermore, they indicate heterogeneity in nicotinic-cholinergic binding sites in the insect nervous system.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barkas T., Mauron A., Roth B., Alliod C., Tzartos S. J., Ballivet M. Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Science. 1987 Jan 2;235(4784):77–80. doi: 10.1126/science.2432658. [DOI] [PubMed] [Google Scholar]
- Betz H. Characterization of the alpha-bungarotoxin receptor in chick-embryo retina. Eur J Biochem. 1981 Jun;117(1):131–139. doi: 10.1111/j.1432-1033.1981.tb06311.x. [DOI] [PubMed] [Google Scholar]
- Betz H., Pfeiffer F. Monoclonal antibodies against the alpha-bungarotoxin-binding protein of chick optic lobe. J Neurosci. 1984 Aug;4(8):2095–2105. doi: 10.1523/JNEUROSCI.04-08-02095.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bossy B., Ballivet M., Spierer P. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J. 1988 Mar;7(3):611–618. doi: 10.1002/j.1460-2075.1988.tb02854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. 1986 Jan 30-Feb 5Nature. 319(6052):368–374. doi: 10.1038/319368a0. [DOI] [PubMed] [Google Scholar]
- Breer H., Kleene R., Hinz G. Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J Neurosci. 1985 Dec;5(12):3386–3392. doi: 10.1523/JNEUROSCI.05-12-03386.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dowding A. J., Hall Z. W. Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor. Biochemistry. 1987 Oct 6;26(20):6372–6381. doi: 10.1021/bi00394a010. [DOI] [PubMed] [Google Scholar]
- Dudai Y., Amsterdam A. Nicotinic receptors in the brain of Drosophila melanogaster demonstrated by autoradiography with [125I]alpha-bungarotoxin. Brain Res. 1977 Jul 22;130(3):551–555. doi: 10.1016/0006-8993(77)90117-2. [DOI] [PubMed] [Google Scholar]
- Dudai Y. Properties of an alpha-bungarotoxin-binding cholinergic nicotinic receptor from Drosophila melanogaster. Biochim Biophys Acta. 1978 Apr 3;539(4):505–517. doi: 10.1016/0304-4165(78)90084-3. [DOI] [PubMed] [Google Scholar]
- Goldman D., Deneris E., Luyten W., Kochhar A., Patrick J., Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell. 1987 Mar 27;48(6):965–973. doi: 10.1016/0092-8674(87)90705-7. [DOI] [PubMed] [Google Scholar]
- Goodman C. S., Spitzer N. C. Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature. 1979 Jul 19;280(5719):208–214. doi: 10.1038/280208a0. [DOI] [PubMed] [Google Scholar]
- Hanke W., Breer H. Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature. 1986 May 8;321(6066):171–174. doi: 10.1038/321171a0. [DOI] [PubMed] [Google Scholar]
- Hermans-Borgmeyer I., Zopf D., Ryseck R. P., Hovemann B., Betz H., Gundelfinger E. D. Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J. 1986 Jul;5(7):1503–1508. doi: 10.1002/j.1460-2075.1986.tb04389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez F., Rudloff E. Analysis of the solubilized nicotinic acetylcholine receptor of Drosophila melanogaster. FEBS Lett. 1980 May 5;113(2):183–188. doi: 10.1016/0014-5793(80)80587-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lees G., Beadle D. J., Botham R. P. Cholinergic receptors on cultured neurones from the central nervous system of embryonic cockroaches. Brain Res. 1983 Dec 12;288(1-2):49–59. doi: 10.1016/0006-8993(83)90080-x. [DOI] [PubMed] [Google Scholar]
- Maelicke A., Fulpius B. W., Klett R. P., Reich E. Acetylcholine receptor. Responses to drug binding. J Biol Chem. 1977 Jul 25;252(14):4811–4830. [PubMed] [Google Scholar]
- Meeker R. B., Michels K. M., Libber M. T., Hayward J. N. Characteristics and distribution of high- and low-affinity alpha bungarotoxin binding sites in the rat hypothalamus. J Neurosci. 1986 Jul;6(7):1866–1875. doi: 10.1523/JNEUROSCI.06-07-01866.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nef P., Oneyser C., Alliod C., Couturier S., Ballivet M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 1988 Mar;7(3):595–601. doi: 10.1002/j.1460-2075.1988.tb02852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumann D., Barchan D., Safran A., Gershoni J. M., Fuchs S. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. Proc Natl Acad Sci U S A. 1986 May;83(9):3008–3011. doi: 10.1073/pnas.83.9.3008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudloff E. Acetylcholine receptors in the central nervous system of Drosophila melanogaster. Exp Cell Res. 1978 Jan;111(1):185–190. doi: 10.1016/0014-4827(78)90248-3. [DOI] [PubMed] [Google Scholar]
- Salvaterra P. M., Bournias-Vardiabasis N., Nair T., Hou G., Lieu C. In vitro neuronal differentiation of Drosophila embryo cells. J Neurosci. 1987 Jan;7(1):10–22. doi: 10.1523/JNEUROSCI.07-01-00010.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt-Nielsen B. K., Gepner J. I., Teng N. N., Hall L. M. Characterization of an alpha-bungarotoxin binding component from Drosophila melanogaster. J Neurochem. 1977 Dec;29(6):1013–1029. doi: 10.1111/j.1471-4159.1977.tb06505.x. [DOI] [PubMed] [Google Scholar]
- Schneider M., Adee C., Betz H., Schmidt J. Biochemical characterization of two nicotinic receptors from the optic lobe of the chick. J Biol Chem. 1985 Nov 25;260(27):14505–14512. [PubMed] [Google Scholar]
- Stanley K. K., Luzio J. P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984 Jun;3(6):1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strebel K., Beck E., Strohmaier K., Schaller H. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins. J Virol. 1986 Mar;57(3):983–991. doi: 10.1128/jvi.57.3.983-991.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wadsworth S. C., Rosenthal L. S., Kammermeyer K. L., Potter M. B., Nelson D. J. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system. Mol Cell Biol. 1988 Feb;8(2):778–785. doi: 10.1128/mcb.8.2.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whiting P., Esch F., Shimasaki S., Lindstrom J. Neuronal nicotinic acetylcholine receptor beta-subunit is coded for by the cDNA clone alpha 4. FEBS Lett. 1987 Jul 27;219(2):459–463. doi: 10.1016/0014-5793(87)80272-7. [DOI] [PubMed] [Google Scholar]
- Whiting P., Lindstrom J. Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci U S A. 1987 Jan;84(2):595–599. doi: 10.1073/pnas.84.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zabeau M., Stanley K. K. Enhanced expression of cro-beta-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda. EMBO J. 1982;1(10):1217–1224. doi: 10.1002/j.1460-2075.1982.tb00016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]