Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 4;71(Pt 8):879–882. doi: 10.1107/S2056989015012463

Crystal structure of [1,1′′′-bis­(pyrimidin-2-yl)-4,4′:2′,2′′:4′′,4′′′-quaterpyridine-1,1′′′-diium-κ2 N 1′,N 1′′]bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]iridium(III) tris­(hexa­fluorido­phosphate) aceto­nitrile tris­olvate

Benjamin J Coe a,*, Martyn K Peers b, James Raftery a, Nigel S Scrutton b
PMCID: PMC4571346  PMID: 26396745

In the title compound, the Ir3+ cation is coordinated by two C atoms and four N atoms in a slightly distorted octa­hedral geometry. The asymmetric unit consists of one complex trication, three hexa­fluorido­phosphate anions and three aceto­nitrile solvent mol­ecules.

Keywords: crystal structure; iridium(III); cyclo­metalated; 4,4′:2′,2′′:4′′,4′′′-quaterpyridyl ligand

Abstract

In the title compound, [Ir(C11H8N)2(C28H20N8)](PF6)3·3CH3CN or [IrIII(ppy)2{(2-pym)2qpy2+}](PF6)3·3CH3CN (ppy = deprotonated 2-phenyl­pyridine, pym = pyrimidyl and qpy = 4,4′:2′,2′′:4′′,4′′′-quaterpyrid­yl), the Ir3+ cation is coordinated by two C atoms and four N atoms in a slightly distorted octa­hedral geometry. The asymmetric unit consists of one complex trication, three hexa­fluorido­phosphate anions and three aceto­nitrile solvent mol­ecules. The average Ir—C distance is 2.011 (14) Å, the average Ir—N(ppy) distance is 2.05 (6) Å and the average Ir—N(qpy) distance is longer at 2.132 (10) Å. The dihedral angles within the 4,4′-bipyridyl units are 31.5 (6) and 23.8 (7)°, while those between the 2-pym and attached pyridyl rings are rather smaller, at 11.7 (9) and 7.1 (9)°. The title compound was refined as a two-component inversion twin.

Chemical context  

Iridium complexes of cyclo­metalating ligands have been studied widely, mainly due to their inter­esting photophysical properties (Flamigni et al., 2007; You & Nam, 2012; Ladouceur & Zysman-Colman, 2013). Complexes of the form [IrIII(ppy)2(N–N)]+ (N–N = 2,2′-bipyridyl or a related α-di­imine ligand) are well known, and many examples have been structurally characterized (e.g. Ladouceur et al., 2010; Zhao et al., 2010; Constable et al., 2013; Schneider et al., 2014).graphic file with name e-71-00879-scheme1.jpg

However, such compounds containing ligands with pyridin­ium substituents are scarce, and the only ones reported to our knowledge are the complex salts [IrIII(C–N)2(Me2qpy2+)][PF6]3 (L–L = ppy or benzo[h]quinoline) (Ahmad et al., 2014). We report here a related new compound and what appears to be the first X-ray crystal structure determination of an iridium complex containing a qpy-based ligand.

Structural commentary  

The mol­ecular structure (Fig. 1) of the complex cation in [IrIII(ppy)2{(2-pym)2qpy2+}][PF6]3·3CH3CN (I) is as indicated by 1H NMR spectroscopy, with a slightly distorted octa­hedral coordination geometry. The bite angle of the qpy-based ligand is 76.6 (2)°, while those of the ppy ligands are slightly larger at 80.1 (6) and 80.8 (5)°. As for other related complexes (Ladouceur et al., 2010; Zhao et al., 2010; Constable et al., 2013; Schneider et al., 2014), the strong trans effects of a σ-bonded phenyl ring (Coe & Glenwright, 2000) causes these units to adopt a cis orientation, so that the pyridyl rings of the ppy ligands are oriented trans. The structural trans effect of the phenyl rings is shown by the ca 0.08 Å lengthening of the Ir—N(qpy) distances [average = 2.132 (10) Å] with respect to the Ir—N(ppy) ones [average = 2.05 (6) Å]. The Ir—C distances (Table 1) are shorter still, with an average value of 2.01 (14) Å. All of the geometric parameters around the Ir3+ cation are similar to those reported for related structures.

Figure 1.

Figure 1

View of the molecular components of (I) (50% probability displacement ellipsoids)

Table 1. Selected geometric parameters (, ).

C35Ir1 2.021(16) Ir1N9 2.095(13)
C46Ir1 2.000(15) Ir1N1 2.125(11)
Ir1N10 2.011(14) Ir1N5 2.139(11)
       
C46Ir1N10 80.8(5) C35Ir1N1 172.7(6)
C46Ir1C35 86.0(3) N9Ir1N1 93.8(4)
N10Ir1C35 94.2(6) C46Ir1N5 173.1(6)
C46Ir1N9 93.9(5) N10Ir1N5 94.4(5)
N10Ir1N9 172.5(2) C35Ir1N5 99.4(6)
C35Ir1N9 80.1(6) N9Ir1N5 91.3(4)
C46Ir1N1 98.4(6) N1Ir1N5 76.6(2)
N10Ir1N1 92.3(5)    

The dihedral angles within the 4,4′-bipyridyl units in (I) are larger than those [20.8 (6) and 21.0 (5)°] in the only other structurally characterized complex of the (2-pym)2qpy2+ ligand, [RuII(bpy)2{(2-pym)2qpy2+}][PF6]4 (bpy = 2,2′-bi­pyr­id­yl) (Coe et al., 2011). On the other hand, the dihedral angles between the 2-pyrimidyl and attached pyridyl rings are closely similar in (I), whereas two quite different such angles are observed in [RuII(bpy)2{(2-pym)2qpy2+}][PF6]4 [6.0 (9) and 20.0 (5)°].

Supra­molecular features  

The unit cell contains four complex cations with their qpy units aligned approximately parallel (Fig. 2). There may be a weak π-stacking inter­action between a 2-pym ring and one of the rings of the bpy fragment in an adjacent complex, with a centroid-to-centroid distance of 3.854 (8) Å and a dihedral angle of 9.8 (6)°. RuII complexes of (2-pym)2qpy2+ and related ligands show inter­esting non-linear optical (NLO) properties (Coe et al. 2005). In this context, crystal packing arrangements are of great importance because macroscopic polarity is necessary for the existence of bulk quadratic NLO effects. The space group Cc adopted by (I) is non-centrosymmetric, potentially affording a polar material that could display such NLO properties. However, the overall orientation of the dipoles formed by the electron-donating IrIII(ppy)2 units and the accepting (2-pym)2qpy2+ ligands is anti­parallel (Fig. 3). Therefore, significant bulk quadratic NLO behaviour is not expected for this particular crystal form.

Figure 2.

Figure 2

Crystal packing diagram, viewed approximately along the b axis, showing the alignment of the qpy fragments. The H atoms, PF6 anions and aceto­nitrile solvent mol­ecules have been removed for clarity.

Figure 3.

Figure 3

Crystal packing diagram, viewed approximately along the a axis, showing the anti­parallel alignment of the mol­ecular dipoles (represented by arrows for the extreme left and right complexes). The H atoms, PF6 anions and aceto­nitrile solvent mol­ecules have been removed for clarity.

Synthesis and crystallization  

The new compound (I) was synthesised simply by cleaving the commercial chloride-bridged dimer [IrIII(ppy)2Cl]2 with the proligand salt [(2-pym)2qpy2+]Cl2 (Coe et al., 2011) in refluxing 2-meth­oxy­ethanol/water.

[IrIII(ppy)2Cl]2 (40 mg, 0.037 mmol) and N′′,N′′′-di(2-pyrimid­yl)-4,4′:2′,2′′:4′′,4′′′-quaterpyridinium chloride·2.3H2O (47 mg, 0.081 mmol) in argon-sparged 2-meth­oxy­ethanol/water (3:1, 10 ml) were heated at reflux for 20 h. After cooling to room temperature, the solvent was removed by rotary evaporation and the residue redissolved in a minimum volume of methanol to which was added an excess of solid NH4PF6. Cold water was added and the precipitate was filtered off and washed with water. The product was purified by column chromatography on silica gel, eluting with 0.1 M NH4PF6 in aceto­nitrile, to afford a brown–green solid. Yield: 68 mg (65%). Analysis calculated for C50H36F18IrN10P3·H2O: C 42.2, H 2.7, N 9.8%; found: C 42.0, H 2.5, N 9.6%. Spectroscopic analysis: 1H NMR (400 MHz, CD3CN, δ, p.p.m.) 10.12 (4H, dd, J = 7.5, 1.9 Hz), 9.18 (2H, d, J = 1.4 Hz), 9.13 (4H, d, J = 4.9 Hz), 8.68 (4H, dd, J = 7.4, 1.8 Hz), 8.31 (2H, d, J = 5.6 Hz), 8.13 (2H, dt, J = 8.1, 0.8 Hz), 8.05 (2H, dd, J = 5.7, 1.8 Hz), 7.93–7.87 (8H), 7.71 (2H, ddd, J = 5.9, 1.5, 0.7 Hz), 7.14–6.98 (8H), 6.33 (2H, dd, J = 7.6, 0.9 Hz). MALDI–MS m/z = 1405 ({M}+), 1260 ({M – PF6}+), 1115 ({M – 2PF6}+), 970 ({M – 3PF6}+).

Single crystals (amber plates) suitable for X-ray diffraction studies were grown by slow diffusion of diethyl ether vapour into an aceto­nitrile solution at room temperature.

Other Characterization  

The complex salt (I) shows a relatively weak, broad visible absorption band at λmax = 562 nm (∊ = 1,800 M −1 dm3) in aceto­nitrile. Based on the results of time-dependent density functional theory (TD–DFT) calculations on the related complex [IrIII(ppy)2(Me2qpy2+)]3+ (Peers, 2012), this absorption is attributable to d→π* metal-to-ligand charge-transfer (MLCT) transitions directed towards the qpy-based ligand, with significant contributions by the ppy ligands to the donor orbitals introducing also ligand-to-ligand CT character. Below 500 nm, absorption increases steadily into the UV region, with another maximum at 378 nm (∊ = 16,600 M −1 dm3), and a shoulder at ca 410 nm. By way of contrast, the lowest energy band for [IrIII(ppy)2(Me2qpy2+)][PF6]3 appears at λmax = 531 nm (∊ = 1,200 M −1 dm3) in aceto­nitrile (Peers, 2012). The substantial red-shift of this band on moving to (I) is due to the enhanced electron-accepting ability of the N-(2-pyrimid­yl)pyridinium groups. The higher intensity for (I) is a consequence of extended π-conjugation involving the 2-pym rings.

Cyclic voltammetric studies on (I) reveal an irreversible oxidation process at E pa = 1.43 V vs Ag–AgCl {aceto­nitrile, 0.1 M [N(n-Bu4)]PF6, 2 mm Pt disc working electrode, 100 mV s−1, ferrocene/ferrocenium standard at 0.44 V (ΔE p = 70–90 mV)}. The reductive region shows a reversible wave at E 1/2 = −0.29 V (ΔE p = 80 mV), followed by an irreversible process with E pc = −0.79 V. Based on the relative peak currents, the reversible wave is assigned as a two-electron process involving reduction of both pyridinium units. The redox behaviour of this complex can be rationalized with the aid of DFT results obtained for [IrIII(ppy)2(Me2qpy2+)]3+ (Peers, 2012). The irreversible oxidation wave corresponds with removing an electron from the HOMO comprising the Ir and ppy ligands. The first and second reductions involve adding electrons to the LUMO based on the (2-pym)2qpy2+ ligand. The oxidation occurs at the same E pa value for (I) and its methyl­ated analogue, [IrIII(ppy)2(Me2qpy2+)][PF6]3, but the first two reductions appear as overlapping reversible waves at E 1/2 = −0.62 V (ΔE p = 70 mV) and E 1/2 = −0.73 V (ΔE p = 60 mV) in the latter compound. These waves can be resolved by using differential pulse voltammetry (potential increment = 2 mV, amplitude = 50 mV, pulse width = 0.01 s). The anodic shift in the reduction waves is consistent with the qpy-based ligand being more electron-deficient, and therefore easier to reduce, in (I). The lack of splitting of these waves in (I) indicates that electronic communication between the pyridyl radicals is diminished with respect to its methyl analogue. Inter­estingly, for the related compound [RuII(bpy)2{(2-pym)2qpy2+}][PF6]4, the first two reductions are irreversible under the same conditions using a glassy carbon working electrode (Coe et al., 2011).

Refinement  

The structure was solved by direct methods. The two rings of one of the ppy ligands are indistinguishable by bond lengths, and the presented structure gives the lowest R factors. Crystal twinning is present. There is a pseudo-twofold axis that manifests itself as high correlation between parameters during refinement. The non-hydrogen atoms were refined anisotropically, but a rigid bond restraint (RIGU in SHELX) was applied for atoms with pseudo-symmetry-related counterparts. H atoms were included in calculated positions with C—H bond lengths of 0.95 (CH), 0.99 (CH2) and 0.98 (CH3) Å; U ĩso(H) values were fixed at 1.2U eq(C) except for CH3 where it was 1.5U eq(C). Crystal data, data collection and structure refinement details are given in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Ir(C11H8N)2(C28H20N8)](PF6)33C2H3N
M r 1527.16
Crystal system, space group Monoclinic, C c
Temperature (K) 100
a, b, c () 22.2647(16), 14.6139(11), 18.6288(14)
() 102.447(1)
V (3) 5918.9(8)
Z 4
Radiation type Mo K
(mm1) 2.45
Crystal size (mm) 0.25 0.20 0.03
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.697, 0.930
No. of measured, independent and observed [I > 2(I)] reflections 25080, 13146, 11295
R int 0.037
(sin /)max (1) 0.669
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.041, 0.093, 1.00
No. of reflections 13146
No. of parameters 824
No. of restraints 434
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.24, 1.00
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.384(7)

Computer programs: SMART and SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008) and SHELXL2014/7 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012463/zl2625sup1.cif

e-71-00879-sup1.cif (883.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012463/zl2625Isup2.hkl

CCDC reference: 1409461

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the BBSRC for support in the form of a PhD studentship (MKP). NSS is supported by an EPSRC Established Career Fellowship (grant EP/J020192/1) and was funded by a Royal Society Wolfson Merit Award.

supplementary crystallographic information

Crystal data

[Ir(C11H8N)2(C28H20N8)](PF6)3·3C2H3N F(000) = 3024
Mr = 1527.16 Dx = 1.714 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 22.2647 (16) Å Cell parameters from 5333 reflections
b = 14.6139 (11) Å θ = 2.2–23.6°
c = 18.6288 (14) Å µ = 2.44 mm1
β = 102.447 (1)° T = 100 K
V = 5918.9 (8) Å3 Plate, brown
Z = 4 0.25 × 0.20 × 0.03 mm

Data collection

Bruker SMART CCD area-detector diffractometer 11295 reflections with I > 2σ(I)
φ and ω scans Rint = 0.037
Absorption correction: multi-scan (SADABS; Bruker, 2001) θmax = 28.4°, θmin = 1.7°
Tmin = 0.697, Tmax = 0.930 h = −29→29
25080 measured reflections k = −19→19
13146 independent reflections l = −24→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 1.24 e Å3
13146 reflections Δρmin = −1.00 e Å3
824 parameters Absolute structure: Refined as an inversion twin.
434 restraints Absolute structure parameter: 0.384 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2259 (6) 0.2672 (9) 0.2388 (7) 0.016 (2)
C2 0.1948 (6) 0.3457 (9) 0.2574 (7) 0.022 (3)
H2 0.2117 0.4048 0.2540 0.027*
C3 0.1400 (6) 0.3367 (9) 0.2803 (7) 0.022 (3)
C4 0.1148 (6) 0.2499 (9) 0.2826 (7) 0.021 (3)
H4 0.0773 0.2415 0.2982 0.025*
C5 0.1461 (6) 0.1756 (9) 0.2613 (8) 0.022 (3)
H5 0.1283 0.1165 0.2612 0.027*
C6 0.1124 (8) 0.4180 (9) 0.3043 (10) 0.025 (3)
C7 0.1177 (6) 0.5038 (10) 0.2731 (7) 0.029 (3)
H7 0.1422 0.5094 0.2374 0.035*
C8 0.0887 (6) 0.5808 (9) 0.2923 (8) 0.028 (3)
H8 0.0926 0.6382 0.2699 0.033*
C9 0.0490 (6) 0.4917 (9) 0.3774 (8) 0.029 (3)
H9 0.0257 0.4879 0.4144 0.034*
C10 0.0776 (6) 0.4132 (9) 0.3577 (8) 0.022 (2)
H10 0.0732 0.3564 0.3809 0.027*
C11 0.0220 (6) 0.6533 (9) 0.3638 (7) 0.024 (3)
C12 −0.0487 (6) 0.7102 (9) 0.4174 (8) 0.045 (4)
H12 −0.0782 0.7039 0.4471 0.055*
C13 −0.0393 (7) 0.7960 (10) 0.3933 (8) 0.039 (3)
H13 −0.0618 0.8481 0.4030 0.047*
C14 0.0060 (7) 0.7995 (10) 0.3538 (9) 0.045 (4)
H14 0.0163 0.8577 0.3371 0.054*
C15 0.2866 (7) 0.2711 (10) 0.2175 (9) 0.029 (3)
C16 0.3129 (6) 0.3483 (9) 0.2000 (7) 0.023 (3)
H16 0.2934 0.4058 0.2024 0.028*
C17 0.3691 (6) 0.3434 (10) 0.1782 (8) 0.025 (3)
C18 0.3968 (6) 0.2579 (10) 0.1791 (8) 0.029 (3)
H18 0.4362 0.2525 0.1675 0.035*
C19 0.3678 (6) 0.1829 (10) 0.1964 (7) 0.027 (3)
H19 0.3869 0.1249 0.1962 0.032*
C20 0.4021 (8) 0.4263 (8) 0.1574 (11) 0.027 (4)
C21 0.3913 (7) 0.5118 (11) 0.1809 (10) 0.049 (5)
H21 0.3612 0.5207 0.2094 0.058*
C22 0.4228 (9) 0.5822 (11) 0.1639 (12) 0.054 (6)
H22 0.4137 0.6414 0.1799 0.065*
C23 0.4759 (6) 0.4923 (9) 0.0972 (8) 0.033 (3)
H23 0.5045 0.4867 0.0663 0.039*
C24 0.4456 (8) 0.4188 (10) 0.1122 (10) 0.043 (4)
H24 0.4531 0.3610 0.0925 0.051*
C25 0.5026 (5) 0.6526 (9) 0.1111 (7) 0.023 (2)
C26 0.5170 (7) 0.8075 (10) 0.1180 (8) 0.039 (3)
H26 0.5070 0.8670 0.1324 0.047*
C27 0.5625 (7) 0.7970 (10) 0.0824 (9) 0.041 (3)
H27 0.5830 0.8492 0.0688 0.049*
C28 0.5797 (5) 0.7123 (9) 0.0654 (8) 0.039 (3)
H28 0.6146 0.7043 0.0444 0.047*
C29 0.3416 (6) 0.0041 (8) 0.3583 (7) 0.021 (2)
C30 0.3697 (6) −0.0094 (10) 0.4323 (7) 0.029 (3)
H30 0.4010 −0.0544 0.4455 0.035*
C31 0.3525 (7) 0.0409 (11) 0.4848 (8) 0.029 (3)
H31 0.3710 0.0319 0.5352 0.035*
C32 0.3089 (7) 0.1038 (12) 0.4643 (8) 0.032 (3)
H32 0.2968 0.1414 0.5002 0.038*
C33 0.2812 (5) 0.1147 (11) 0.3905 (7) 0.025 (3)
H33 0.2495 0.1588 0.3764 0.030*
C34 0.3566 (7) −0.0476 (10) 0.2978 (8) 0.025 (3)
C35 0.3202 (7) −0.0283 (11) 0.2284 (9) 0.024 (3)
C36 0.3307 (8) −0.0773 (8) 0.1672 (10) 0.025 (4)
H36 0.3059 −0.0649 0.1200 0.030*
C37 0.3771 (6) −0.1442 (9) 0.1744 (8) 0.025 (3)
H37 0.3836 −0.1781 0.1332 0.030*
C38 0.4124 (6) −0.1580 (9) 0.2432 (7) 0.026 (3)
H38 0.4454 −0.2006 0.2492 0.032*
C39 0.4022 (6) −0.1135 (10) 0.3030 (8) 0.027 (3)
H39 0.4269 −0.1277 0.3499 0.032*
C40 0.1739 (6) −0.0114 (9) 0.1020 (8) 0.025 (3)
C41 0.1474 (6) −0.0268 (10) 0.0296 (7) 0.031 (3)
H41 0.1184 −0.0750 0.0171 0.037*
C42 0.1623 (7) 0.0272 (11) −0.0272 (9) 0.036 (3)
H42 0.1429 0.0162 −0.0771 0.044*
C43 0.2074 (7) 0.0991 (11) −0.0083 (8) 0.026 (3)
H43 0.2188 0.1363 −0.0450 0.031*
C44 0.2327 (6) 0.1113 (11) 0.0641 (7) 0.029 (3)
H44 0.2619 0.1591 0.0770 0.034*
C45 0.1616 (7) −0.0586 (8) 0.1663 (8) 0.021 (3)
C46 0.1983 (7) −0.0308 (10) 0.2348 (8) 0.020 (3)
C47 0.1897 (7) −0.0784 (9) 0.2961 (9) 0.026 (4)
H47 0.2142 −0.0643 0.3432 0.031*
C48 0.1464 (7) −0.1454 (10) 0.2891 (8) 0.033 (4)
H48 0.1405 −0.1745 0.3326 0.040*
C49 0.1101 (6) −0.1740 (9) 0.2227 (7) 0.032 (3)
H49 0.0807 −0.2216 0.2205 0.038*
C50 0.1188 (6) −0.1296 (10) 0.1591 (7) 0.033 (3)
H50 0.0960 −0.1474 0.1120 0.039*
C51 0.2934 (8) 0.7144 (9) 0.3228 (9) 0.083 (5)
H51A 0.2700 0.7210 0.3614 0.125*
H51B 0.2848 0.7665 0.2890 0.125*
H51C 0.3375 0.7127 0.3452 0.125*
C52 0.2755 (5) 0.6290 (7) 0.2821 (7) 0.050 (3)
C53 0.2087 (8) 0.6642 (11) 0.0818 (8) 0.084 (5)
H53A 0.2270 0.7128 0.1157 0.126*
H53B 0.2356 0.6104 0.0892 0.126*
H53C 0.1684 0.6477 0.0911 0.126*
C54 0.2017 (6) 0.6948 (9) 0.0098 (7) 0.059 (3)
C55 0.3156 (8) 0.4400 (11) 0.4141 (8) 0.079 (4)
H55A 0.3164 0.4092 0.3676 0.118*
H55B 0.3409 0.4955 0.4184 0.118*
H55C 0.2732 0.4565 0.4152 0.118*
C56 0.3386 (7) 0.3822 (11) 0.4716 (8) 0.057 (4)
F1 0.5218 (5) 0.5503 (8) 0.3177 (7) 0.107 (4)
F2 0.4542 (7) 0.6128 (10) 0.4395 (6) 0.140 (5)
F3 0.4492 (7) 0.6520 (8) 0.3254 (6) 0.158 (6)
F4 0.5169 (5) 0.5071 (8) 0.4329 (5) 0.095 (4)
F5 0.5426 (7) 0.6515 (8) 0.4094 (6) 0.129 (5)
F6 0.4350 (4) 0.5105 (8) 0.3415 (5) 0.101 (3)
F7 0.2000 (3) 0.6676 (4) 0.5720 (3) 0.0510 (16)
F8 0.2549 (3) 0.5503 (5) 0.5384 (4) 0.062 (2)
F9 0.2081 (4) 0.5770 (5) 0.4199 (4) 0.068 (2)
F10 0.1541 (4) 0.6900 (7) 0.4542 (5) 0.063 (2)
F11 0.2579 (3) 0.6905 (5) 0.4913 (4) 0.066 (2)
F12 0.1508 (3) 0.5525 (5) 0.5020 (5) 0.068 (2)
F13 −0.0032 (5) 0.6054 (9) 0.1681 (5) 0.109 (4)
F14 0.0776 (3) 0.5921 (8) 0.1137 (5) 0.079 (3)
F15 0.0179 (4) 0.6271 (6) 0.0040 (5) 0.072 (2)
F16 −0.0633 (3) 0.6303 (5) 0.0573 (4) 0.062 (2)
F17 0.0169 (3) 0.7190 (5) 0.0984 (4) 0.065 (2)
F18 −0.0041 (4) 0.5076 (5) 0.0676 (7) 0.102 (4)
Ir1 0.25717 (3) 0.07100 (2) 0.22916 (3) 0.01852 (8)
N1 0.1991 (5) 0.1828 (8) 0.2413 (6) 0.018 (2)
N2 0.0540 (7) 0.5722 (7) 0.3447 (8) 0.028 (3)
N3 −0.0202 (5) 0.6343 (8) 0.4028 (6) 0.041 (3)
N4 0.0357 (6) 0.7290 (9) 0.3376 (8) 0.041 (3)
N5 0.3110 (5) 0.1880 (8) 0.2146 (7) 0.024 (3)
N6 0.4664 (6) 0.5746 (6) 0.1255 (8) 0.025 (3)
N7 0.4839 (6) 0.7316 (8) 0.1344 (7) 0.036 (3)
N8 0.5457 (5) 0.6371 (7) 0.0792 (6) 0.032 (2)
N9 0.2980 (6) 0.0656 (6) 0.3415 (7) 0.020 (3)
N10 0.2188 (6) 0.0582 (7) 0.1215 (7) 0.023 (3)
N11 0.2633 (5) 0.5614 (6) 0.2520 (5) 0.047 (3)
N12 0.1991 (8) 0.7186 (11) −0.0486 (7) 0.109 (6)
N13 0.3612 (8) 0.3294 (13) 0.5157 (10) 0.093 (6)
P1 0.4866 (2) 0.5830 (3) 0.3762 (3) 0.0604 (11)
P2 0.20527 (14) 0.6201 (2) 0.49735 (18) 0.0384 (7)
P3 0.00657 (16) 0.6120 (3) 0.0852 (2) 0.0445 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.019 (4) 0.016 (5) 0.009 (5) −0.002 (4) 0.000 (3) 0.002 (4)
C2 0.027 (5) 0.019 (5) 0.021 (6) −0.001 (4) 0.004 (4) −0.001 (4)
C3 0.025 (5) 0.023 (5) 0.018 (6) −0.001 (4) 0.006 (4) −0.001 (4)
C4 0.017 (5) 0.024 (5) 0.020 (6) −0.003 (4) 0.003 (4) −0.001 (4)
C5 0.023 (5) 0.015 (5) 0.032 (8) −0.005 (4) 0.012 (5) −0.005 (5)
C6 0.026 (7) 0.022 (5) 0.026 (7) −0.004 (4) 0.006 (6) −0.001 (4)
C7 0.031 (6) 0.033 (5) 0.027 (6) 0.001 (4) 0.013 (5) 0.003 (4)
C8 0.025 (6) 0.031 (6) 0.027 (5) 0.002 (4) 0.007 (4) 0.003 (4)
C9 0.025 (5) 0.031 (5) 0.032 (5) −0.002 (4) 0.010 (4) −0.002 (4)
C10 0.024 (5) 0.019 (5) 0.024 (5) 0.003 (4) 0.005 (4) 0.002 (4)
C11 0.018 (5) 0.029 (5) 0.025 (6) −0.001 (3) 0.003 (4) −0.004 (4)
C12 0.035 (7) 0.031 (5) 0.082 (10) 0.005 (4) 0.038 (7) 0.003 (5)
C13 0.043 (6) 0.028 (5) 0.050 (7) 0.000 (4) 0.020 (6) −0.006 (5)
C14 0.042 (7) 0.021 (5) 0.080 (10) 0.009 (4) 0.031 (7) 0.015 (5)
C15 0.029 (5) 0.028 (5) 0.034 (8) 0.000 (4) 0.014 (5) −0.001 (5)
C16 0.016 (5) 0.027 (6) 0.030 (7) 0.001 (4) 0.013 (4) −0.001 (5)
C17 0.019 (5) 0.026 (5) 0.032 (8) 0.000 (4) 0.010 (5) −0.001 (4)
C18 0.019 (6) 0.028 (6) 0.043 (9) 0.001 (4) 0.015 (5) −0.001 (5)
C19 0.022 (5) 0.035 (6) 0.024 (7) −0.003 (4) 0.005 (5) −0.001 (5)
C20 0.022 (7) 0.026 (6) 0.034 (8) −0.005 (4) 0.008 (6) 0.000 (4)
C21 0.044 (8) 0.029 (6) 0.085 (11) −0.007 (5) 0.043 (8) −0.011 (6)
C22 0.060 (10) 0.029 (7) 0.093 (13) −0.012 (6) 0.059 (10) −0.017 (6)
C23 0.028 (6) 0.021 (5) 0.054 (8) 0.005 (4) 0.022 (6) 0.002 (4)
C24 0.041 (8) 0.024 (6) 0.072 (10) 0.004 (5) 0.032 (7) 0.006 (5)
C25 0.018 (5) 0.027 (4) 0.024 (6) −0.001 (3) 0.001 (4) 0.002 (4)
C26 0.047 (6) 0.020 (5) 0.052 (7) −0.015 (4) 0.017 (5) −0.003 (5)
C27 0.045 (7) 0.025 (5) 0.056 (8) −0.011 (4) 0.022 (6) 0.002 (5)
C28 0.021 (5) 0.042 (5) 0.057 (8) −0.007 (4) 0.012 (5) 0.008 (5)
C29 0.024 (5) 0.015 (5) 0.021 (4) −0.004 (4) 0.002 (3) 0.000 (3)
C30 0.032 (6) 0.033 (6) 0.020 (5) 0.002 (4) −0.001 (4) −0.002 (4)
C31 0.034 (7) 0.036 (6) 0.016 (5) 0.000 (5) 0.002 (4) 0.003 (4)
C32 0.036 (7) 0.040 (7) 0.017 (6) 0.002 (6) 0.001 (5) −0.003 (5)
C33 0.020 (6) 0.033 (7) 0.020 (5) −0.004 (5) 0.005 (4) 0.003 (4)
C34 0.024 (6) 0.027 (5) 0.021 (5) −0.001 (5) 0.000 (4) −0.001 (4)
C35 0.021 (6) 0.023 (7) 0.027 (5) −0.002 (5) 0.003 (4) −0.003 (5)
C36 0.030 (7) 0.020 (7) 0.025 (6) 0.005 (5) 0.003 (5) 0.003 (4)
C37 0.026 (5) 0.021 (6) 0.032 (6) 0.003 (4) 0.014 (4) 0.003 (5)
C38 0.025 (5) 0.020 (6) 0.032 (5) 0.006 (4) 0.003 (4) −0.001 (4)
C39 0.024 (5) 0.029 (5) 0.027 (5) 0.001 (4) 0.007 (4) −0.001 (4)
C40 0.025 (5) 0.019 (5) 0.033 (5) −0.003 (4) 0.010 (4) 0.001 (4)
C41 0.031 (6) 0.032 (6) 0.029 (5) −0.009 (5) 0.007 (4) 0.005 (4)
C42 0.042 (7) 0.044 (7) 0.024 (6) −0.008 (6) 0.008 (5) −0.001 (5)
C43 0.027 (6) 0.028 (6) 0.025 (6) 0.006 (5) 0.010 (5) 0.003 (5)
C44 0.039 (8) 0.022 (6) 0.027 (6) −0.004 (6) 0.010 (5) 0.006 (5)
C45 0.026 (6) 0.020 (6) 0.021 (6) −0.001 (4) 0.009 (5) 0.005 (4)
C46 0.022 (7) 0.020 (7) 0.021 (6) 0.003 (5) 0.011 (5) −0.002 (5)
C47 0.020 (6) 0.036 (9) 0.023 (7) −0.004 (5) 0.005 (5) 0.007 (5)
C48 0.036 (7) 0.042 (9) 0.021 (6) −0.003 (6) 0.006 (5) 0.006 (6)
C49 0.040 (7) 0.017 (6) 0.041 (7) −0.009 (5) 0.011 (5) 0.004 (5)
C50 0.042 (7) 0.030 (7) 0.024 (6) −0.018 (5) 0.003 (5) −0.008 (5)
C51 0.105 (12) 0.045 (8) 0.122 (13) −0.019 (8) 0.076 (11) −0.025 (8)
C52 0.058 (7) 0.033 (6) 0.073 (8) 0.000 (5) 0.044 (6) −0.001 (6)
C53 0.110 (12) 0.086 (11) 0.066 (7) 0.013 (9) 0.041 (7) 0.010 (7)
C54 0.064 (8) 0.058 (8) 0.061 (6) −0.007 (6) 0.023 (6) 0.010 (6)
C55 0.079 (11) 0.088 (10) 0.076 (9) 0.018 (8) 0.032 (8) 0.003 (7)
C56 0.071 (10) 0.060 (8) 0.041 (7) 0.001 (8) 0.016 (7) −0.019 (5)
F1 0.093 (7) 0.144 (10) 0.097 (9) −0.042 (7) 0.048 (7) −0.016 (7)
F2 0.207 (14) 0.163 (11) 0.066 (7) 0.032 (12) 0.062 (8) 0.009 (7)
F3 0.286 (17) 0.090 (8) 0.071 (7) 0.108 (10) −0.018 (8) 0.007 (6)
F4 0.101 (7) 0.099 (8) 0.069 (6) −0.028 (6) −0.018 (5) 0.019 (5)
F5 0.200 (13) 0.091 (8) 0.085 (7) −0.057 (9) 0.009 (9) −0.017 (6)
F6 0.073 (6) 0.112 (8) 0.098 (7) −0.013 (6) −0.024 (5) 0.024 (6)
F7 0.038 (3) 0.067 (4) 0.046 (3) 0.011 (3) 0.005 (3) −0.020 (3)
F8 0.058 (4) 0.057 (4) 0.060 (4) 0.024 (3) −0.010 (3) −0.011 (3)
F9 0.082 (5) 0.077 (5) 0.046 (4) 0.021 (4) 0.014 (4) −0.023 (3)
F10 0.056 (5) 0.064 (5) 0.065 (5) 0.025 (4) 0.003 (4) 0.000 (4)
F11 0.043 (4) 0.068 (5) 0.096 (6) −0.005 (3) 0.031 (4) −0.009 (4)
F12 0.055 (5) 0.070 (5) 0.076 (5) −0.022 (4) 0.009 (4) −0.011 (4)
F13 0.083 (6) 0.194 (11) 0.063 (6) 0.087 (8) 0.045 (5) 0.054 (7)
F14 0.030 (4) 0.139 (9) 0.067 (5) 0.016 (4) 0.010 (4) −0.012 (5)
F15 0.090 (6) 0.071 (5) 0.062 (5) 0.023 (5) 0.033 (4) −0.004 (4)
F16 0.054 (4) 0.065 (5) 0.068 (5) −0.011 (4) 0.014 (4) −0.039 (4)
F17 0.053 (4) 0.058 (4) 0.094 (5) −0.021 (3) 0.036 (4) −0.041 (4)
F18 0.080 (6) 0.024 (4) 0.202 (13) 0.002 (4) 0.031 (8) 0.002 (6)
Ir1 0.01925 (12) 0.01816 (12) 0.01878 (12) 0.0000 (3) 0.00550 (8) 0.0008 (3)
N1 0.019 (4) 0.017 (5) 0.015 (5) −0.005 (3) −0.002 (4) 0.003 (4)
N2 0.027 (5) 0.030 (5) 0.030 (5) 0.008 (4) 0.013 (4) 0.004 (3)
N3 0.049 (6) 0.029 (5) 0.060 (7) 0.001 (4) 0.041 (5) 0.001 (4)
N4 0.030 (5) 0.034 (5) 0.062 (7) 0.002 (4) 0.021 (5) 0.004 (4)
N5 0.029 (5) 0.020 (5) 0.027 (6) −0.005 (4) 0.013 (5) 0.003 (4)
N6 0.021 (5) 0.021 (4) 0.034 (6) 0.003 (3) 0.010 (4) −0.002 (3)
N7 0.043 (6) 0.021 (4) 0.053 (6) −0.006 (4) 0.028 (5) −0.005 (4)
N8 0.029 (4) 0.030 (5) 0.042 (6) −0.001 (3) 0.019 (4) 0.005 (4)
N9 0.018 (5) 0.020 (5) 0.020 (5) −0.007 (3) 0.002 (4) 0.002 (4)
N10 0.027 (6) 0.019 (5) 0.024 (5) −0.001 (4) 0.007 (4) 0.005 (4)
N11 0.054 (6) 0.036 (5) 0.056 (7) 0.004 (4) 0.026 (6) −0.006 (4)
N12 0.136 (13) 0.121 (12) 0.063 (7) −0.068 (11) 0.008 (7) 0.025 (7)
N13 0.078 (11) 0.098 (11) 0.095 (11) 0.003 (8) 0.000 (9) 0.015 (9)
P1 0.059 (3) 0.055 (3) 0.065 (2) 0.0109 (19) 0.010 (2) 0.0109 (19)
P2 0.0353 (17) 0.0401 (17) 0.0383 (16) 0.0025 (14) 0.0047 (13) −0.0089 (13)
P3 0.0349 (19) 0.051 (2) 0.0489 (19) −0.0018 (15) 0.0122 (15) −0.0149 (17)

Geometric parameters (Å, º)

C1—N1 1.375 (16) C33—H33 0.9500
C1—C2 1.421 (18) C34—C35 1.40 (2)
C1—C15 1.489 (9) C34—C39 1.39 (2)
C2—C3 1.382 (17) C35—C36 1.41 (2)
C2—H2 0.9500 C35—Ir1 2.021 (16)
C3—C4 1.392 (18) C36—C37 1.408 (19)
C3—C6 1.452 (19) C36—H36 0.9500
C4—C5 1.394 (17) C37—C38 1.367 (19)
C4—H4 0.9500 C37—H37 0.9500
C5—N1 1.317 (15) C38—C39 1.352 (18)
C5—H5 0.9500 C38—H38 0.9500
C6—C10 1.39 (2) C39—H39 0.9500
C6—C7 1.397 (18) C40—C41 1.370 (18)
C7—C8 1.383 (19) C40—N10 1.418 (16)
C7—H7 0.9500 C40—C45 1.459 (17)
C8—N2 1.37 (2) C41—C42 1.414 (19)
C8—H8 0.9500 C41—H41 0.9500
C9—N2 1.341 (16) C42—C43 1.44 (2)
C9—C10 1.400 (17) C42—H42 0.9500
C9—H9 0.9500 C43—C44 1.357 (19)
C10—H10 0.9500 C43—H43 0.9500
C11—N4 1.273 (17) C44—N10 1.409 (18)
C11—N3 1.334 (14) C44—H44 0.9500
C11—N2 1.466 (16) C45—C50 1.396 (18)
C12—N3 1.335 (15) C45—C46 1.42 (2)
C12—C13 1.362 (18) C46—C47 1.39 (2)
C12—H12 0.9500 C46—Ir1 2.000 (15)
C13—C14 1.372 (18) C47—C48 1.361 (19)
C13—H13 0.9500 C47—H47 0.9500
C14—N4 1.294 (18) C48—C49 1.388 (19)
C14—H14 0.9500 C48—H48 0.9500
C15—N5 1.336 (18) C49—C50 1.401 (17)
C15—C16 1.343 (19) C49—H49 0.9500
C16—C17 1.400 (16) C50—H50 0.9500
C16—H16 0.9500 C51—C52 1.470 (17)
C17—C18 1.392 (19) C51—H51A 0.9800
C17—C20 1.509 (19) C51—H51B 0.9800
C18—C19 1.347 (19) C51—H51C 0.9800
C18—H18 0.9500 C52—N11 1.140 (13)
C19—N5 1.379 (16) C53—C54 1.390 (18)
C19—H19 0.9500 C53—H53A 0.9800
C20—C21 1.362 (19) C53—H53B 0.9800
C20—C24 1.42 (2) C53—H53C 0.9800
C21—C22 1.32 (2) C54—N12 1.132 (16)
C21—H21 0.9500 C55—C56 1.37 (2)
C22—N6 1.33 (2) C55—H55A 0.9800
C22—H22 0.9500 C55—H55B 0.9800
C23—C24 1.330 (19) C55—H55C 0.9800
C23—N6 1.349 (15) C56—N13 1.16 (2)
C23—H23 0.9500 F1—P1 1.549 (12)
C24—H24 0.9500 F2—P1 1.571 (12)
C25—N8 1.256 (14) F3—P1 1.505 (10)
C25—N7 1.331 (16) F4—P1 1.579 (11)
C25—N6 1.453 (16) F5—P1 1.614 (12)
C26—C27 1.336 (17) F6—P1 1.594 (10)
C26—N7 1.402 (16) F7—P2 1.581 (6)
C26—H26 0.9500 F8—P2 1.577 (7)
C27—C28 1.352 (19) F9—P2 1.589 (7)
C27—H27 0.9500 F10—P2 1.611 (9)
C28—N8 1.388 (15) F11—P2 1.582 (8)
C28—H28 0.9500 F12—P2 1.582 (8)
C29—N9 1.311 (16) F13—P3 1.608 (9)
C29—C30 1.400 (16) F14—P3 1.582 (8)
C29—C34 1.453 (19) F15—P3 1.602 (9)
C30—C31 1.343 (18) F16—P3 1.553 (8)
C30—H30 0.9500 F17—P3 1.592 (8)
C31—C32 1.33 (2) F18—P3 1.568 (9)
C31—H31 0.9500 Ir1—N10 2.011 (14)
C32—C33 1.388 (18) Ir1—N9 2.095 (13)
C32—H32 0.9500 Ir1—N1 2.125 (11)
C33—N9 1.280 (18) Ir1—N5 2.139 (11)
N1—C1—C2 118.6 (12) C44—C43—H43 121.5
N1—C1—C15 117.9 (14) C42—C43—H43 121.5
C2—C1—C15 123.5 (15) C43—C44—N10 124.9 (14)
C3—C2—C1 120.5 (12) C43—C44—H44 117.6
C3—C2—H2 119.7 N10—C44—H44 117.6
C1—C2—H2 119.7 C50—C45—C46 123.3 (12)
C4—C3—C2 119.0 (13) C50—C45—C40 121.2 (12)
C4—C3—C6 122.4 (12) C46—C45—C40 115.4 (12)
C2—C3—C6 118.5 (13) C47—C46—C45 116.3 (14)
C3—C4—C5 118.1 (12) C47—C46—Ir1 128.7 (12)
C3—C4—H4 120.9 C45—C46—Ir1 115.0 (10)
C5—C4—H4 120.9 C46—C47—C48 120.2 (15)
N1—C5—C4 123.5 (12) C46—C47—H47 119.9
N1—C5—H5 118.3 C48—C47—H47 119.9
C4—C5—H5 118.3 C47—C48—C49 124.6 (15)
C10—C6—C7 117.0 (14) C47—C48—H48 117.7
C10—C6—C3 121.2 (12) C49—C48—H48 117.7
C7—C6—C3 121.8 (16) C48—C49—C50 117.0 (12)
C8—C7—C6 122.3 (14) C48—C49—H49 121.5
C8—C7—H7 118.8 C50—C49—H49 121.5
C6—C7—H7 118.8 C49—C50—C45 118.6 (12)
N2—C8—C7 118.4 (13) C49—C50—H50 120.7
N2—C8—H8 120.8 C45—C50—H50 120.7
C7—C8—H8 120.8 C52—C51—H51A 109.5
N2—C9—C10 120.8 (13) C52—C51—H51B 109.5
N2—C9—H9 119.6 H51A—C51—H51B 109.5
C10—C9—H9 119.6 C52—C51—H51C 109.5
C6—C10—C9 120.1 (13) H51A—C51—H51C 109.5
C6—C10—H10 119.9 H51B—C51—H51C 109.5
C9—C10—H10 119.9 N11—C52—C51 177.7 (15)
N4—C11—N3 130.1 (13) C54—C53—H53A 109.5
N4—C11—N2 116.1 (12) C54—C53—H53B 109.5
N3—C11—N2 113.6 (12) H53A—C53—H53B 109.5
N3—C12—C13 125.7 (13) C54—C53—H53C 109.5
N3—C12—H12 117.2 H53A—C53—H53C 109.5
C13—C12—H12 117.2 H53B—C53—H53C 109.5
C12—C13—C14 113.3 (14) N12—C54—C53 176.4 (18)
C12—C13—H13 123.4 C56—C55—H55A 109.5
C14—C13—H13 123.4 C56—C55—H55B 109.5
N4—C14—C13 124.4 (14) H55A—C55—H55B 109.5
N4—C14—H14 117.8 C56—C55—H55C 109.5
C13—C14—H14 117.8 H55A—C55—H55C 109.5
N5—C15—C16 123.5 (14) H55B—C55—H55C 109.5
N5—C15—C1 112.1 (15) N13—C56—C55 173.4 (18)
C16—C15—C1 124.4 (16) C46—Ir1—N10 80.8 (5)
C15—C16—C17 119.4 (13) C46—Ir1—C35 86.0 (3)
C15—C16—H16 120.3 N10—Ir1—C35 94.2 (6)
C17—C16—H16 120.3 C46—Ir1—N9 93.9 (5)
C16—C17—C18 117.7 (13) N10—Ir1—N9 172.5 (2)
C16—C17—C20 123.3 (13) C35—Ir1—N9 80.1 (6)
C18—C17—C20 119.0 (12) C46—Ir1—N1 98.4 (6)
C19—C18—C17 119.9 (13) N10—Ir1—N1 92.3 (5)
C19—C18—H18 120.0 C35—Ir1—N1 172.7 (6)
C17—C18—H18 120.0 N9—Ir1—N1 93.8 (4)
C18—C19—N5 121.9 (14) C46—Ir1—N5 173.1 (6)
C18—C19—H19 119.1 N10—Ir1—N5 94.4 (5)
N5—C19—H19 119.1 C35—Ir1—N5 99.4 (6)
C21—C20—C24 116.8 (14) N9—Ir1—N5 91.3 (4)
C21—C20—C17 121.7 (16) N1—Ir1—N5 76.6 (2)
C24—C20—C17 121.5 (13) C5—N1—C1 120.2 (12)
C22—C21—C20 119.9 (16) C5—N1—Ir1 124.8 (9)
C22—C21—H21 120.0 C1—N1—Ir1 114.1 (8)
C20—C21—H21 120.0 C9—N2—C8 121.2 (12)
C21—C22—N6 123.4 (15) C9—N2—C11 120.4 (13)
C21—C22—H22 118.3 C8—N2—C11 118.5 (11)
N6—C22—H22 118.3 C12—N3—C11 111.1 (11)
C24—C23—N6 120.5 (14) C11—N4—C14 115.3 (13)
C24—C23—H23 119.7 C15—N5—C19 117.5 (12)
N6—C23—H23 119.7 C15—N5—Ir1 118.5 (10)
C23—C24—C20 120.4 (14) C19—N5—Ir1 123.8 (10)
C23—C24—H24 119.8 C22—N6—C23 118.7 (12)
C20—C24—H24 119.8 C22—N6—C25 122.1 (11)
N8—C25—N7 129.5 (12) C23—N6—C25 119.2 (13)
N8—C25—N6 117.2 (12) C25—N7—C26 113.6 (12)
N7—C25—N6 113.3 (11) C25—N8—C28 116.6 (12)
C27—C26—N7 120.5 (14) C33—N9—C29 122.0 (13)
C27—C26—H26 119.7 C33—N9—Ir1 124.1 (10)
N7—C26—H26 119.7 C29—N9—Ir1 113.8 (10)
C26—C27—C28 120.3 (14) C44—N10—C40 117.2 (12)
C26—C27—H27 119.8 C44—N10—Ir1 126.2 (10)
C28—C27—H27 119.8 C40—N10—Ir1 116.6 (9)
C27—C28—N8 119.3 (12) F3—P1—F1 93.4 (8)
C27—C28—H28 120.4 F3—P1—F2 90.3 (8)
N8—C28—H28 120.4 F1—P1—F2 176.2 (8)
N9—C29—C30 118.8 (13) F3—P1—F4 171.8 (9)
N9—C29—C34 116.9 (12) F1—P1—F4 92.6 (7)
C30—C29—C34 124.2 (12) F2—P1—F4 83.8 (7)
C31—C30—C29 120.2 (13) F3—P1—F6 86.4 (7)
C31—C30—H30 119.9 F1—P1—F6 86.5 (6)
C29—C30—H30 119.9 F2—P1—F6 94.7 (8)
C32—C31—C30 118.3 (13) F4—P1—F6 88.4 (5)
C32—C31—H31 120.8 F3—P1—F5 95.9 (8)
C30—C31—H31 120.8 F1—P1—F5 89.7 (7)
C31—C32—C33 120.3 (15) F2—P1—F5 88.9 (8)
C31—C32—H32 119.9 F4—P1—F5 89.7 (6)
C33—C32—H32 119.9 F6—P1—F5 175.7 (7)
N9—C33—C32 120.4 (14) F8—P2—F12 91.9 (4)
N9—C33—H33 119.8 F8—P2—F7 92.0 (4)
C32—C33—H33 119.8 F12—P2—F7 91.3 (4)
C35—C34—C39 118.3 (14) F8—P2—F11 90.2 (4)
C35—C34—C29 115.3 (13) F12—P2—F11 177.9 (5)
C39—C34—C29 126.4 (13) F7—P2—F11 88.5 (4)
C34—C35—C36 118.8 (15) F8—P2—F9 91.3 (4)
C34—C35—Ir1 113.8 (12) F12—P2—F9 89.0 (5)
C36—C35—Ir1 127.4 (12) F7—P2—F9 176.7 (4)
C37—C36—C35 121.5 (16) F11—P2—F9 91.0 (4)
C37—C36—H36 119.2 F8—P2—F10 178.9 (5)
C35—C36—H36 119.2 F12—P2—F10 87.5 (5)
C38—C37—C36 117.0 (14) F7—P2—F10 89.0 (4)
C38—C37—H37 121.5 F11—P2—F10 90.4 (5)
C36—C37—H37 121.5 F9—P2—F10 87.7 (5)
C39—C38—C37 122.5 (13) F16—P3—F18 90.1 (5)
C39—C38—H38 118.7 F16—P3—F14 179.3 (6)
C37—C38—H38 118.7 F18—P3—F14 89.2 (6)
C38—C39—C34 121.8 (13) F16—P3—F17 89.0 (4)
C38—C39—H39 119.1 F18—P3—F17 176.9 (6)
C34—C39—H39 119.1 F14—P3—F17 91.7 (5)
C41—C40—N10 120.1 (12) F16—P3—F15 90.6 (5)
C41—C40—C45 127.9 (12) F18—P3—F15 89.1 (6)
N10—C40—C45 112.0 (12) F14—P3—F15 89.6 (5)
C40—C41—C42 121.6 (13) F17—P3—F15 87.9 (5)
C40—C41—H41 119.2 F16—P3—F13 89.9 (5)
C42—C41—H41 119.2 F18—P3—F13 95.6 (7)
C41—C42—C43 119.1 (13) F14—P3—F13 90.0 (5)
C41—C42—H42 120.4 F17—P3—F13 87.4 (6)
C43—C42—H42 120.4 F15—P3—F13 175.3 (7)
C44—C43—C42 117.1 (14)
N1—C1—C2—C3 2.6 (18) C41—C40—C45—C50 1 (2)
C15—C1—C2—C3 −176.6 (10) N10—C40—C45—C50 −180.0 (13)
C1—C2—C3—C4 −2.1 (19) C41—C40—C45—C46 177.1 (14)
C1—C2—C3—C6 175.2 (13) N10—C40—C45—C46 −3.4 (18)
C2—C3—C4—C5 −0.2 (19) C50—C45—C46—C47 0 (2)
C6—C3—C4—C5 −177.3 (14) C40—C45—C46—C47 −176.5 (13)
C3—C4—C5—N1 2 (2) C50—C45—C46—Ir1 178.8 (12)
C4—C3—C6—C10 28 (2) C40—C45—C46—Ir1 2.3 (17)
C2—C3—C6—C10 −149.1 (15) C45—C46—C47—C48 −2 (2)
C4—C3—C6—C7 −149.6 (14) Ir1—C46—C47—C48 179.1 (12)
C2—C3—C6—C7 33 (2) C46—C47—C48—C49 3 (2)
C10—C6—C7—C8 −2 (2) C47—C48—C49—C50 −1 (2)
C3—C6—C7—C8 176.1 (14) C48—C49—C50—C45 −2 (2)
C6—C7—C8—N2 1 (2) C46—C45—C50—C49 2 (2)
C7—C6—C10—C9 1 (2) C40—C45—C50—C49 178.3 (13)
C3—C6—C10—C9 −176.9 (14) C4—C5—N1—C1 −2 (2)
N2—C9—C10—C6 1 (2) C4—C5—N1—Ir1 167.1 (10)
N3—C12—C13—C14 −3 (2) C2—C1—N1—C5 −0.7 (18)
C12—C13—C14—N4 3 (3) C15—C1—N1—C5 178.5 (10)
N1—C1—C15—N5 −9.7 (9) C2—C1—N1—Ir1 −170.6 (9)
C2—C1—C15—N5 169.5 (15) C15—C1—N1—Ir1 8.7 (10)
N1—C1—C15—C16 167.5 (16) C10—C9—N2—C8 −2 (2)
C2—C1—C15—C16 −13.3 (11) C10—C9—N2—C11 177.7 (13)
N5—C15—C16—C17 −1 (2) C7—C8—N2—C9 1 (2)
C1—C15—C16—C17 −177.7 (10) C7—C8—N2—C11 −178.5 (12)
C15—C16—C17—C18 −3 (2) N4—C11—N2—C9 171.0 (14)
C15—C16—C17—C20 180.0 (15) N3—C11—N2—C9 −12.9 (19)
C16—C17—C18—C19 4 (2) N4—C11—N2—C8 −10 (2)
C20—C17—C18—C19 −179.1 (14) N3—C11—N2—C8 166.6 (13)
C17—C18—C19—N5 −1 (2) C13—C12—N3—C11 3 (2)
C16—C17—C20—C21 22 (3) N4—C11—N3—C12 −3 (2)
C18—C17—C20—C21 −154.8 (16) N2—C11—N3—C12 −178.8 (12)
C16—C17—C20—C24 −157.4 (17) N3—C11—N4—C14 3 (2)
C18—C17—C20—C24 26 (2) N2—C11—N4—C14 178.6 (14)
C24—C20—C21—C22 −3 (3) C13—C14—N4—C11 −3 (3)
C17—C20—C21—C22 177.5 (18) C16—C15—N5—C19 4 (2)
C20—C21—C22—N6 −1 (3) C1—C15—N5—C19 −179.1 (9)
N6—C23—C24—C20 1 (3) C16—C15—N5—Ir1 −171.3 (12)
C21—C20—C24—C23 3 (3) C1—C15—N5—Ir1 6.0 (13)
C17—C20—C24—C23 −177.2 (15) C18—C19—N5—C15 −3 (2)
N7—C26—C27—C28 −4 (2) C18—C19—N5—Ir1 171.8 (11)
C26—C27—C28—N8 6 (2) C21—C22—N6—C23 6 (3)
N9—C29—C30—C31 −1 (2) C21—C22—N6—C25 −176.5 (18)
C34—C29—C30—C31 −179.4 (14) C24—C23—N6—C22 −5 (2)
C29—C30—C31—C32 −1 (2) C24—C23—N6—C25 176.9 (14)
C30—C31—C32—C33 2 (3) N8—C25—N6—C22 174.8 (17)
C31—C32—C33—N9 −1 (2) N7—C25—N6—C22 −5 (2)
N9—C29—C34—C35 −3 (2) N8—C25—N6—C23 −7.3 (19)
C30—C29—C34—C35 175.5 (13) N7—C25—N6—C23 172.4 (13)
N9—C29—C34—C39 177.9 (14) N8—C25—N7—C26 2 (2)
C30—C29—C34—C39 −4 (2) N6—C25—N7—C26 −177.5 (12)
C39—C34—C35—C36 1 (2) C27—C26—N7—C25 0 (2)
C29—C34—C35—C36 −178.2 (13) N7—C25—N8—C28 0 (2)
C39—C34—C35—Ir1 −178.7 (12) N6—C25—N8—C28 179.7 (12)
C29—C34—C35—Ir1 2.1 (18) C27—C28—N8—C25 −4.2 (19)
C34—C35—C36—C37 −1 (2) C32—C33—N9—C29 0 (2)
Ir1—C35—C36—C37 179.0 (11) C32—C33—N9—Ir1 177.0 (11)
C35—C36—C37—C38 −1 (2) C30—C29—N9—C33 1 (2)
C36—C37—C38—C39 3 (2) C34—C29—N9—C33 179.8 (13)
C37—C38—C39—C34 −3 (2) C30—C29—N9—Ir1 −176.2 (10)
C35—C34—C39—C38 1 (2) C34—C29—N9—Ir1 2.4 (16)
C29—C34—C39—C38 179.8 (13) C43—C44—N10—C40 −2 (2)
N10—C40—C41—C42 −2 (2) C43—C44—N10—Ir1 177.9 (12)
C45—C40—C41—C42 177.4 (15) C41—C40—N10—C44 2 (2)
C40—C41—C42—C43 1 (2) C45—C40—N10—C44 −177.3 (12)
C41—C42—C43—C44 −1 (2) C41—C40—N10—Ir1 −177.4 (10)
C42—C43—C44—N10 1 (2) C45—C40—N10—Ir1 3.0 (15)

References

  1. Ahmad, H., Wragg, A., Cullen, W., Wombwell, C., Meijer, A. J. H. M. & Thomas, J. A. (2014). Chem. Eur. J. 20, 3089–3096. [DOI] [PubMed]
  2. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Coe, B. J. & Glenwright, S. J. (2000). Coord. Chem. Rev. 203, 5–80.
  5. Coe, B. J., Harper, E. C., Helliwell, M. & Ta, Y. T. (2011). Polyhedron, 30, 1830–1841.
  6. Coe, B. J., Harris, J. A., Jones, L. A., Brunschwig, B. S., Song, K., Clays, K., Garín, J., Orduna, J., Coles, S. J. & Hursthouse, M. B. (2005). J. Am. Chem. Soc. 127, 4845–4859. [DOI] [PubMed]
  7. Constable, E. C., Housecroft, C. E., Kopecky, P., Martin, C. J., Wright, I. A., Zampese, J. A., Bolink, H. J. & Pertegás, A. (2013). Dalton Trans. 42, 8086–8103. [DOI] [PubMed]
  8. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. (2007). Top. Curr. Chem. 281, 143–203.
  9. Ladouceur, S., Fortin, D. & Zysman-Colman, E. (2010). Inorg. Chem. 49, 5625–5641. [DOI] [PubMed]
  10. Ladouceur, S. & Zysman-Colman, E. (2013). Eur. J. Inorg. Chem. pp. 2985–3007.
  11. Peers, M. K. (2012). PhD thesis, The University of Manchester, England.
  12. Schneider, G. E., Pertegás, A., Constable, E. C., Housecroft, C. E., Hostettler, N., Morris, C. D., Zampese, J. A., Bolink, H. J., Junquera-Hernández, J. M., Ortí, E. & Sessolo, M. (2014). J. Mater. Chem. C. 2, 7047–7055.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. You, Y.-M. & Nam, W.-W. (2012). Chem. Soc. Rev. 41, 7061–7084.
  16. Zhao, N., Wu, Y.-H., Shi, L.-X., Lin, Q.-P. & Chen, Z.-N. (2010). Dalton Trans. 39, 8288–8295. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012463/zl2625sup1.cif

e-71-00879-sup1.cif (883.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012463/zl2625Isup2.hkl

CCDC reference: 1409461

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES