Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 22;71(Pt 8):960–964. doi: 10.1107/S2056989015013377

Anomalous halogen bonds in the crystal structures of 1,2,3-tri­bromo-5-nitro­benzene and 1,3-di­bromo-2-iodo-5-nitro­benzene

José A Romero a, Gerardo Aguirre Hernández a, Sylvain Bernès b,*
PMCID: PMC4571367  PMID: 26396766

Two halogenated nitro­benzene derivatives have been characterized. The substitution of a Br substituent by an I atom modifies the network of halogen bonds, and gives rise to the formation of non-classical Brδ+⋯Iδ- bonds.

Keywords: crystal structure, polyhalogenated benzene, halogen bond, bromine, iodine

Abstract

The title trihalogenated nitro­benzene derivatives, C6H2Br3NO2 and C6H2Br2INO2, crystallize in triclinic and monoclinic cells, respectively, with two mol­ecules per asymmetric unit in each case. The asymmetric unit of the tri­bromo compound features a polarized Brδ+⋯Brδ- inter­molecular halogen bond. After substitution of the Br atom in the para position with respect to the nitro group, the network of XX halogen contacts is reorganized. Two inter­molecular polarized halogen bonds are then observed, which present the uncommon polarization Brδ+⋯Iδ-: the more electronegative site (Br) behaves as a donor and the less electronegative site (I) as an acceptor for the charge transfer.

Chemical context  

Within the large class of non-covalent inter­actions studied in chemical crystallography, halogen bonds are of special inter­est in crystal engineering. The stabilizing inter­action between a halogen atom and a Lewis base, X⋯B, shares many aspects with classical hydrogen bonds, but is more directional. On the other hand, halogen contacts XX are more difficult to conceptualize (Wang et al., 2014), for instance because the charge transfer in the Br⋯Br contact is not as obvious as in hydrogen bonds. Evidence supporting the importance of this topic is the recent organization of an inter­national meeting dedicated to halogen bonding (Erdelyi, 2014).graphic file with name e-71-00960-scheme1.jpg

In this context, we are engaged in the synthesis and structural characterization of a series of halogen-substituted nitro­benzenes. The present communication describes two closely related compounds in the series, which differ only by the halogen atom substituting at the ring position para to the nitro group. Despite the small chemical modification, the resulting crystal structures are very different, as a consequence of a different network of halogen bonds.

Structural commentary  

Both compounds crystallize with two mol­ecules in the asymmetric unit, but in different space groups. The tri­bromo derivative, (I, Fig. 1), is a P Inline graphic crystal isomorphous to the chloro analogue (Bhar et al., 1995), although the unit-cell parameters are significantly larger for (I) compared to the chloro compound: the cell volume is increased by more than 7%. In the present work, we retained the Niggli reduced triclinic cell (a < b < c), while Bhar et al. used a non-reduced cell. Moreover, the asymmetric unit content was defined in order to emphasize the strongest Br⋯Br bond in (I). The bromo-iodo derivative (II, Fig. 2) crystallizes in the monoclinic system and, in that case, the standard setting was used for space group P21/c.

Figure 1.

Figure 1

The asymmetric unit of (I), with displacement ellipsoids at the 30% probability level. The dashed bond connecting the independent mol­ecules is a type-II halogen bond.

Figure 2.

Figure 2

The asymmetric unit of (II), with displacement ellipsoids at the 30% probability level. The dashed bonds connecting the independent mol­ecules are halogen contacts.

The C—halogen bond lengths are as expected. In (I), C—Br distances are in the range 1.821 (12)–1.886 (11) Å, slightly shorter than C—Br bond lengths observed in hexa­bromo­benzene, 1.881 Å (T = 100 K; Reddy et al., 2006) or 1.871 Å (synchrotron study, T = 100 K; Brezgunova et al., 2012). In (II), C—Br bond lengths are longer, 1.875 (13) to 1.895 (14) Å, while the C—I bond lengths, 2.088 (12) and 2.074 (14) Å, may be compared to bonds in hexa­iodo­benzene, 2.109 Å (T = 100 K; Ghosh et al., 2007) or 1,2,3-tri­iodo­benzene, 2.090 Å (T = 223 K, Novak & Li, 2007). Indeed, differences in bond lengths between perhalogenated and trihalogenated derivatives are within experimental errors, and the substitution of the 5-position by the nitro electron-withdrawing group in (I) and (II) has probably little influence on these bonds.

The important feature in these halogenated mol­ecules is rather the possibility of steric repulsion between vicinal halogen atoms, which is related to the reduction of endocyclic angles. Regarding this point, it is worth reading the Acta E article about 1,2,3-tri­iodo­benzene (Novak & Li, 2007). As in polyiodo derivatives, intra­molecular steric crowding between the halogen atoms in (I) and (II) is offset by benzene ring distortion. As a consequence, the C1—C2—C3 and equivalent C11—C12—C13 angles are systematically less than 120°: 116.2 (11) and 118.8 (13)° in (I); 118.1 (12) and 117.3 (13)° in (II). Again, the nitro group has little influence on intra­molecular halogen⋯halogen contacts. For instance, in 1,3-di­bromo-2-iodo­benzene, the C1—C2—C3 angle is 118.0° (Schmidbaur et al., 2004), very close to that observed in (II), which presents the same halogen substitution.

The 5-nitro substituent is almost conjugated with the benzene nucleus in (I): the dihedral angle between the NO2 plane and the benzene ring is 6(2) and 1(2)° for each independent mol­ecule. For (II), twisting of the NO2 groups is more significant, with dihedral angles of 10 (1) and 7(1)°. This near planar conformation is identical to that observed for 1,2,3-tri­chloro-5-nitro­benzene (Bhar et al., 1995), but contrasts with the twisted conformation observed in perhalogenated nitro­benzene derivatives: penta­chloro­nitro­benzene (twist angle of NO2: 62°; Tanaka et al., 1974) and 1-bromo-2,3,5,6-tetra­fluoro-4-nitro­benzene (twist angle of NO2: 41.7 (3)°; Stein et al., 2011). It thus seems clear that twisting of the nitro group with respect to the benzene ring in nitro­benzene derivatives is a direct consequence of intra­molecular crowding with ortho substituents. For 1,2,3-halogenated-5-nitro­benzenes such as (I) and (II), a planar conformation should be expected as a rule.

Supra­molecular features  

The crystal structures are directed by inter­molecular weak halogen bonds, also known as type-II inter­actions in the Desiraju classification scheme (Reddy et al., 2006). Such a bond is present in the asymmetric unit of (I), between Br2 and Br11 (Fig. 3). The type-II arrangement is characterized by angles θ 1 = C2—Br2⋯Br11 and θ 2 = C11—Br11⋯Br2, which should be close to 180 and 90°, respectively. For (I), observed angles are θ 1 = 165.2 (5)° and θ 2 = 82.3 (5)°. The crystal packing thus polarizes the involved halogen atoms, forming the halogen bond Br2δ+⋯Br11δ-. This dimolecular polar unit is connected via inversion centers to neighboring units in the cell, forming C—H⋯Br hydrogen bonds, and O⋯Br contacts. This packing motif induces secondary halogen⋯halogen contacts, which are clearly unpolarized. These type-I inter­actions are characterized by angles θ 1θ 2 (Table 1, entries 2 and 3) and display larger Br⋯Br separations compared to the polarized halogen bond (entry 1), in which electrostatic forces bring the atoms into close contact.

Figure 3.

Figure 3

Part of the crystal structure of (I), emphasizing the halogen bonds (dashed lines). The green mol­ecules correspond to the asymmetric unit.

Table 1. Halogen-bond geometry (Å, °) for (I).

X 1X 2 d θ1 θ2 bond type
Br2⋯Br11 3.642 (3) 165.2 (5) 82.3 (5) II-polarized
Br1⋯Br1i 3.731 (4) 133.3 (4) 133.3 (4) I-unpolarized
Br2⋯Br13ii 3.781 (3) 126.8 (4) 129.6 (4) I-unpolarized

Notes: d = separation X 1X 2; θ1 = angle C—X 1X 2; θ2 = angle X 1X 2—C. For halogen bond types, see: Reddy et al. (2006). Symmetry codes: (i) −x, 1 − y, −z; (ii) −x, −y, 1 − z.

The substitution of one Br atom by I, to form crystal (II), changes dramatically the packing structure, affording a more complex network of halogen contacts (Fig. 4 and Table 2). Within the asymmetric unit, the type-II polarized contact is Br1⋯I12 (Table 2, entry 1). However, θ angles for this bond deviate from ideal values, and, surprisingly, the bond is polarized in the wrong way, Brδ+⋯Iδ-. The opposite polarization was expected for this bond, due to the lower electronegativity and higher polarizability of iodine compared to bromine. The other significant contact observed in the asymmetric unit is a Br⋯Br unpolarized contact. The network of halogen bonds is expanded in the [100] direction by Br11, which gives a bifurcated contact with I2 and Br3 (Table 2, entries 2 and 4). One contact is polarized, with the polarization, once again, oriented in the unexpected way, I2δ-⋯Br11δ+. These anomalous halogen bonds are not present in other mixed halogen derivatives. Indeed, in 1,3-di­bromo-2-iodo­benzene (Schmidbaur et al., 2004), the iodine atom is not engaged in halogen bonding.

Figure 4.

Figure 4

Part of the crystal structure of (II), emphasizing the halogen bonds (dashed lines). The green mol­ecules correspond to the asymmetric unit.

Table 2. Halogen-bond geometry (Å, °) for (II).

X 1X 2 d θ1 θ2 bond type
Br1⋯I12 3.813 (2) 161.2 (4) 117.2 (4) II-polarized
I2⋯Br11i 3.893 (2) 116.6 (4) 161.8 (4) II-polarized
Br1⋯Br13 3.787 (2) 142.8 (4) 122.9 (4) I-unpolarized
Br11⋯Br3ii 3.858 (2) 143.9 (4) 124.4 (4) I-unpolarized

Notes: d = separation X 1X 2; θ1 = angle C—X 1X 2; θ2 = angle X 1X 2—C. For halogen bond types, see: Reddy et al. (2006). Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z.

Database survey  

The current release of the CSD (Version 5.36 with all updates; Groom & Allen, 2014), contains many structures of halogen-substituted nitro­benzene, with Cl (e.g. Bhar et al., 1995; Tanaka et al., 1974), Br (e.g. Olaru et al., 2014), and I (Thalladi et al., 1996). This series is completed with nitro­phenol deriv­atives, for example 2,3-di­fluoro-4-iodo-6-nitro­phenol (Francke et al., 2010). Structures of penta­chloro­phenol (Brezgunova et al., 2012) and penta­bromo­phenol (Betz et al., 2008; Brezgunova et al., 2012) are also available.

Regarding poly- and per-halogenated benzene structures, an impressive series of 23 compounds has been described, including Cl, Br, I and Me as substituents, generating a variety of mol­ecular symmetries (Reddy et al., 2006). The structure of D 6h-perhalogenated benzene has been reported with F (Shorafa et al., 2009), Cl (Brown & Strydom, 1974; Reddy et al., 2006), Br (Baharie & Pawley, 1979; Reddy et al., 2006; Brezgunova et al., 2012) and I (Ghosh et al., 2007). The former is a Z′ = 2 crystal, while others are Z′=1 crystals.

Synthesis and crystallization  

Compounds (I) and (II) were synthesized from 2,6-di­bromo-4-nitro­aniline (Bryant et al., 1998), as depicted in Fig. 5.

Figure 5.

Figure 5

Synthetic scheme for (I) and (II).

Synthesis of (I). A solution of 2,6-di­bromo-4-nitro­aniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K, and concentrated H2SO4 (7 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO2 (0.708 g, 10.26 mmol) was added in one batch. The reaction was stirred at this temperature for 2 h to afford the diazo­nium salt. An aqueous solution (17.67 ml) of CuBr (4.95 g, 34.54 mmol) and 47% HBr (17.67 ml) was warmed to 343 K, and the diazo­tization solution previously prepared was added in one batch with stirring. The mixture was kept at 343 K for 1 h, and then left to cool overnight. The reaction was neutralized with NaOH and extracted with CH2Cl2 (3 × 30 ml). The resulting solution was concentrated under vacuum and the crude material was purified by flash chromatography (petroleum ether/CH2Cl2 8/2, R f = 0.49) to give (I). Crystals were obtained by slow evaporation of a methanol/ethyl ether solution (yield: 0.952 g, 2.65 mmol, 78%). m.p. 380–382 K. IR (KBr, cm−1): 3090 (Ar—H); 1583 (C=C); 1526, 1342 (N=O); 738 (C—Br). 1H-NMR (600 MHz, CDCl3): δ 8.43 (s, H-4, H-6). 13C-NMR (150 MHz, CDCl3): δ 146.8, 135.7, 127.0, 126.9, 126.8. EIMS m/z: [M +] 357 (34), [M ++2] 359 (7), [M ++4] 361 (100), [M ++6] 363 (36) [M +-NO2] 311 (12).

Synthesis of (II). A solution of 2,6-di­bromo-4-nitro­aniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K in an ice-salt bath, and concentrated H2SO4 (3 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO2 (0.242 g, 3.516 mmol) was added in one batch. The reaction was stirred at this temperature for 30 min to afford the diazo­nium salt. An aqueous solution (10 ml) of KI (5.635 g, 33.95 mmol) was prepared, and the diazo­tization solution previously prepared was added in one batch. The mixture was then further stirred for 1 h. The reaction was neutralized with NaOH, extracted with CH2Cl2 (3 × 30 ml), and concentrated under vacuum. The crude material was purified by flash chromatography (petroleum ether/CH2Cl2 4/1, R f = 0.31) to give (II). Crystals were obtained by slow evaporation of an acetone/methanol/CH2Cl2 solution (yield: 1.21 g, 2.98 mmol, 88%). m.p. 415–417 K. IR (KBr, cm−1): 3010 (Ar—H); 1620, 1516 (C=C); 1336 (N=O). 1H-NMR (600 MHz, CDCl3): δ 8.38 (s, H-4, H-6). 13C-NMR (150 MHz, CDCl3): δ 146.1, 142.4, 127.4, 124.1. EIMS m/z: [M +] 405 (42), [M ++2] 407 (100), [M ++4] 409 (48).

Refinement  

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 3. The absorption correction for (I) was challenging, and eventually carried out by applying DIFABS on the complete isotropic model (Walker & Stuart, 1983). In the case of (II), measured ψ-scans were used. H atoms were refined as riding to their carrier C atoms, with C—H bond lengths fixed at 0.93 Å and with U iso(H) = 1.2U eq(carrier atom).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C6H2Br3NO2 C6H2Br2INO2
M r 359.82 406.81
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 298 298
a, b, c (Å) 7.641 (5), 8.040 (5), 14.917 (6) 13.548 (3), 20.037 (3), 9.123 (2)
α, β, γ (°) 83.91 (3), 79.86 (4), 81.49 (4) 90, 130.37 (2), 90
V3) 889.2 (8) 1886.8 (8)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 13.57 11.82
Crystal size (mm) 0.42 × 0.40 × 0.30 0.50 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker P4 Bruker P4
Absorption correction Part of the refinement model (ΔF) (Walker & Stuart, 1983) ψ scan (XSCANS; Bruker, 1997)
T min, T max 0.0002, 0.001 0.429, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 6070, 3141, 1503 5716, 5407, 1968
R int 0.120 0.058
(sin θ/λ)max−1) 0.596 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.196, 1.47 0.061, 0.153, 0.95
No. of reflections 3141 5407
No. of parameters 218 218
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −1.00 0.84, −0.84

Computer programs: XSCANS (Bruker, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015013377/hb7459sup1.cif

e-71-00960-sup1.cif (400.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015013377/hb7459Isup2.hkl

e-71-00960-Isup2.hkl (250.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015013377/hb7459IIsup3.hkl

e-71-00960-IIsup3.hkl (430.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015013377/hb7459Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015013377/hb7459IIsup5.cml

CCDC references: 1412444, 1412445

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the contribution of Angélica Navarrete to the synthesis of the reported compounds.

supplementary crystallographic information

(I) 1,2,3-Tribromo-5-nitrobenzene. Crystal data

C6H2Br3NO2 F(000) = 664
Mr = 359.82 Dx = 2.688 Mg m3
Triclinic, P1 Melting point: 380 K
a = 7.641 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.040 (5) Å Cell parameters from 48 reflections
c = 14.917 (6) Å θ = 4.8–12.4°
α = 83.91 (3)° µ = 13.57 mm1
β = 79.86 (4)° T = 298 K
γ = 81.49 (4)° Irregular, colourless
V = 889.2 (8) Å3 0.42 × 0.40 × 0.30 mm
Z = 4

(I) 1,2,3-Tribromo-5-nitrobenzene. Data collection

Bruker P4 diffractometer 1503 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.120
Graphite monochromator θmax = 25.1°, θmin = 2.6°
ω scans h = −8→9
Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) k = −9→9
Tmin = 0.0002, Tmax = 0.001 l = 0→17
6070 measured reflections 3 standard reflections every 97 reflections
3141 independent reflections intensity decay: 1%

(I) 1,2,3-Tribromo-5-nitrobenzene. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 1.47 (Δ/σ)max < 0.001
3141 reflections Δρmax = 0.79 e Å3
218 parameters Δρmin = −1.00 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0063 (12)
Primary atom site location: structure-invariant direct methods

(I) 1,2,3-Tribromo-5-nitrobenzene. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.1438 (2) 0.3194 (2) 0.05082 (13) 0.0863 (6)
Br2 0.2958 (2) 0.0254 (2) 0.20089 (11) 0.0855 (6)
Br3 0.4312 (2) −0.3604 (2) 0.13778 (10) 0.0791 (5)
C1 0.2177 (18) 0.1018 (19) 0.0215 (9) 0.070 (4)
C2 0.2831 (17) −0.0235 (17) 0.0860 (9) 0.063 (3)
C3 0.3360 (14) −0.1910 (16) 0.0555 (8) 0.056 (3)
C4 0.3227 (18) −0.2259 (19) −0.0296 (9) 0.069 (4)
H4 0.3573 −0.3355 −0.0465 0.083*
C5 0.2615 (17) −0.1072 (16) −0.0895 (10) 0.064 (3)
C6 0.2067 (16) 0.0562 (16) −0.0661 (9) 0.059 (3)
H6 0.1619 0.1373 −0.1085 0.071*
N1 0.2502 (16) −0.1453 (18) −0.1809 (8) 0.075 (3)
O1 0.2967 (16) −0.2925 (16) −0.2012 (7) 0.094 (3)
O2 0.1923 (18) −0.0342 (15) −0.2318 (8) 0.105 (4)
Br11 0.3943 (2) 0.2012 (2) 0.39885 (13) 0.0891 (6)
Br12 0.1013 (2) 0.1170 (2) 0.58586 (10) 0.0795 (6)
Br13 −0.3231 (2) 0.2845 (2) 0.59130 (11) 0.0865 (6)
C11 0.151 (2) 0.2912 (18) 0.4092 (12) 0.077 (4)
C12 0.0303 (18) 0.2505 (18) 0.4860 (10) 0.064 (3)
C13 −0.150 (2) 0.323 (2) 0.4913 (9) 0.073 (4)
C14 −0.2002 (19) 0.4188 (19) 0.4208 (9) 0.070 (4)
H14 −0.3207 0.4619 0.4232 0.084*
C15 −0.079 (2) 0.4583 (18) 0.3427 (8) 0.068 (4)
C16 0.0943 (19) 0.3923 (18) 0.3375 (9) 0.068 (4)
H16 0.1756 0.4155 0.2850 0.082*
N11 −0.1327 (18) 0.5801 (16) 0.2644 (10) 0.076 (3)
O11 −0.2882 (14) 0.6432 (13) 0.2757 (7) 0.083 (3)
O12 −0.0224 (17) 0.5952 (18) 0.1956 (8) 0.110 (4)

(I) 1,2,3-Tribromo-5-nitrobenzene. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0776 (11) 0.0671 (10) 0.1094 (12) −0.0047 (8) −0.0022 (9) −0.0140 (8)
Br2 0.0876 (11) 0.0974 (13) 0.0716 (9) −0.0124 (9) −0.0075 (8) −0.0164 (8)
Br3 0.0765 (10) 0.0789 (11) 0.0793 (10) −0.0043 (8) −0.0186 (8) 0.0070 (8)
C1 0.062 (8) 0.078 (10) 0.072 (9) −0.013 (7) −0.022 (7) 0.001 (7)
C2 0.058 (8) 0.068 (9) 0.062 (8) −0.006 (7) 0.004 (6) −0.026 (7)
C3 0.034 (6) 0.064 (8) 0.060 (7) −0.001 (6) 0.001 (6) 0.012 (6)
C4 0.063 (8) 0.072 (9) 0.071 (9) 0.022 (7) −0.018 (7) −0.030 (7)
C5 0.056 (8) 0.051 (8) 0.087 (10) −0.015 (6) −0.021 (7) 0.009 (7)
C6 0.062 (8) 0.052 (8) 0.073 (8) −0.019 (6) −0.033 (7) 0.003 (6)
N1 0.079 (8) 0.081 (9) 0.080 (8) −0.016 (7) −0.036 (7) −0.026 (7)
O1 0.119 (9) 0.095 (9) 0.071 (6) −0.005 (7) −0.017 (6) −0.032 (6)
O2 0.151 (11) 0.087 (9) 0.089 (7) −0.010 (8) −0.061 (8) 0.004 (6)
Br11 0.0644 (10) 0.0993 (13) 0.1026 (12) 0.0018 (9) −0.0185 (9) −0.0137 (10)
Br12 0.0955 (12) 0.0701 (10) 0.0769 (9) −0.0090 (8) −0.0294 (9) −0.0017 (7)
Br13 0.0785 (11) 0.0945 (13) 0.0808 (10) −0.0202 (9) 0.0012 (8) 0.0067 (9)
C11 0.084 (10) 0.050 (8) 0.102 (11) −0.013 (7) −0.021 (9) −0.015 (8)
C12 0.060 (8) 0.062 (8) 0.073 (9) −0.018 (7) −0.012 (8) −0.008 (7)
C13 0.081 (10) 0.082 (10) 0.060 (8) −0.020 (8) −0.024 (7) 0.009 (7)
C14 0.056 (8) 0.080 (10) 0.065 (8) −0.010 (7) 0.011 (7) −0.007 (7)
C15 0.088 (10) 0.077 (10) 0.040 (6) 0.019 (8) −0.034 (7) −0.004 (6)
C16 0.070 (9) 0.072 (9) 0.062 (8) −0.028 (8) 0.006 (7) −0.003 (7)
N11 0.067 (8) 0.065 (8) 0.093 (10) −0.005 (6) −0.017 (7) 0.011 (7)
O11 0.074 (7) 0.079 (7) 0.099 (7) 0.003 (6) −0.032 (6) −0.014 (6)
O12 0.097 (8) 0.144 (12) 0.077 (7) −0.012 (8) −0.011 (7) 0.028 (7)

(I) 1,2,3-Tribromo-5-nitrobenzene. Geometric parameters (Å, º)

Br1—C1 1.831 (15) Br11—C11 1.877 (15)
Br2—C2 1.821 (12) Br12—C12 1.854 (14)
Br3—C3 1.886 (11) Br13—C13 1.842 (15)
C1—C6 1.415 (18) C11—C16 1.368 (19)
C1—C2 1.416 (18) C11—C12 1.38 (2)
C2—C3 1.445 (18) C12—C13 1.410 (19)
C3—C4 1.353 (17) C13—C14 1.313 (18)
C4—C5 1.328 (17) C14—C15 1.39 (2)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.381 (19) C15—C16 1.347 (19)
C5—N1 1.448 (18) C15—N11 1.515 (16)
C6—H6 0.9300 C16—H16 0.9300
N1—O2 1.194 (15) N11—O11 1.211 (15)
N1—O1 1.238 (16) N11—O12 1.216 (16)
C6—C1—C2 119.0 (13) C16—C11—C12 120.4 (14)
C6—C1—Br1 119.9 (9) C16—C11—Br11 118.6 (13)
C2—C1—Br1 121.0 (10) C12—C11—Br11 120.9 (11)
C1—C2—C3 116.2 (11) C11—C12—C13 118.8 (13)
C1—C2—Br2 121.3 (10) C11—C12—Br12 122.1 (10)
C3—C2—Br2 122.5 (9) C13—C12—Br12 118.9 (10)
C4—C3—C2 121.8 (11) C14—C13—C12 118.8 (14)
C4—C3—Br3 120.6 (10) C14—C13—Br13 118.0 (11)
C2—C3—Br3 117.6 (9) C12—C13—Br13 123.1 (10)
C5—C4—C3 121.5 (13) C13—C14—C15 122.5 (13)
C5—C4—H4 119.3 C13—C14—H14 118.8
C3—C4—H4 119.3 C15—C14—H14 118.8
C4—C5—C6 120.7 (13) C16—C15—C14 119.2 (11)
C4—C5—N1 121.1 (13) C16—C15—N11 117.9 (13)
C6—C5—N1 118.2 (11) C14—C15—N11 122.8 (12)
C5—C6—C1 120.8 (11) C15—C16—C11 120.0 (14)
C5—C6—H6 119.6 C15—C16—H16 120.0
C1—C6—H6 119.6 C11—C16—H16 120.0
O2—N1—O1 123.6 (12) O11—N11—O12 127.0 (13)
O2—N1—C5 118.3 (13) O11—N11—C15 114.7 (13)
O1—N1—C5 118.1 (12) O12—N11—C15 118.1 (12)
C6—C1—C2—C3 0.6 (19) C16—C11—C12—C13 −4 (2)
Br1—C1—C2—C3 179.5 (9) Br11—C11—C12—C13 179.1 (11)
C6—C1—C2—Br2 −178.5 (10) C16—C11—C12—Br12 −178.9 (11)
Br1—C1—C2—Br2 0.3 (16) Br11—C11—C12—Br12 4.0 (17)
C1—C2—C3—C4 −0.3 (19) C11—C12—C13—C14 4 (2)
Br2—C2—C3—C4 178.8 (11) Br12—C12—C13—C14 179.4 (12)
C1—C2—C3—Br3 178.0 (9) C11—C12—C13—Br13 −178.0 (11)
Br2—C2—C3—Br3 −2.8 (14) Br12—C12—C13—Br13 −2.7 (18)
C2—C3—C4—C5 1 (2) C12—C13—C14—C15 −3 (2)
Br3—C3—C4—C5 −177.8 (11) Br13—C13—C14—C15 178.7 (12)
C3—C4—C5—C6 −1 (2) C13—C14—C15—C16 2 (2)
C3—C4—C5—N1 179.1 (13) C13—C14—C15—N11 −174.8 (15)
C4—C5—C6—C1 1 (2) C14—C15—C16—C11 −2 (2)
N1—C5—C6—C1 −178.8 (12) N11—C15—C16—C11 175.4 (13)
C2—C1—C6—C5 −1 (2) C12—C11—C16—C15 3 (2)
Br1—C1—C6—C5 −180.0 (10) Br11—C11—C16—C15 179.8 (11)
C4—C5—N1—O2 179.2 (14) C16—C15—N11—O11 −175.5 (13)
C6—C5—N1—O2 −1 (2) C14—C15—N11—O11 1 (2)
C4—C5—N1—O1 1 (2) C16—C15—N11—O12 10 (2)
C6—C5—N1—O1 −178.8 (13) C14—C15—N11—O12 −173.5 (15)

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene. Crystal data

C6H2Br2INO2 Dx = 2.864 Mg m3
Mr = 406.81 Melting point: 415 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.548 (3) Å Cell parameters from 43 reflections
b = 20.037 (3) Å θ = 5.7–12.5°
c = 9.123 (2) Å µ = 11.82 mm1
β = 130.37 (2)° T = 298 K
V = 1886.8 (8) Å3 Prism, brown
Z = 8 0.50 × 0.22 × 0.12 mm
F(000) = 1472

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene. Data collection

Bruker P4 diffractometer 1968 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.058
Graphite monochromator θmax = 30.0°, θmin = 2.2°
2θ/ω scans h = −14→19
Absorption correction: ψ scan (XSCANS; Bruker, 1997) k = 0→28
Tmin = 0.429, Tmax = 0.988 l = −12→0
5716 measured reflections 3 standard reflections every 97 reflections
5407 independent reflections intensity decay: 1%

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max < 0.001
5407 reflections Δρmax = 0.84 e Å3
218 parameters Δρmin = −0.84 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.00093 (11)
Primary atom site location: structure-invariant direct methods

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.30362 (13) 0.43988 (8) 0.2401 (2) 0.0615 (4)
I2 0.54556 (10) 0.36925 (4) 0.26460 (13) 0.0583 (3)
Br3 0.73278 (12) 0.49074 (7) 0.26614 (18) 0.0561 (4)
C1 0.4175 (11) 0.4967 (7) 0.2453 (16) 0.035 (3)
C2 0.5191 (11) 0.4723 (6) 0.2535 (13) 0.033 (3)
C3 0.5960 (11) 0.5182 (6) 0.2557 (17) 0.038 (3)
C4 0.5754 (12) 0.5862 (6) 0.2478 (17) 0.040 (3)
H4A 0.6264 0.6171 0.2474 0.048*
C5 0.4763 (13) 0.6050 (7) 0.2405 (15) 0.046 (4)
C6 0.3965 (12) 0.5642 (7) 0.2397 (18) 0.048 (4)
H6A 0.3307 0.5809 0.2355 0.057*
N1 0.4555 (13) 0.6807 (6) 0.2380 (17) 0.065 (3)
O1 0.5145 (11) 0.7161 (5) 0.2088 (17) 0.085 (4)
O2 0.3795 (15) 0.6989 (5) 0.2557 (18) 0.105 (4)
Br11 −0.18918 (13) 0.30721 (8) 0.2488 (2) 0.0620 (4)
I12 0.04866 (10) 0.37922 (4) 0.26639 (13) 0.0593 (3)
Br13 0.24427 (12) 0.25893 (8) 0.2825 (2) 0.0588 (4)
C11 −0.0736 (11) 0.2509 (7) 0.2562 (17) 0.039 (3)
C12 0.0237 (12) 0.2769 (7) 0.2619 (14) 0.035 (3)
C13 0.1046 (11) 0.2312 (6) 0.2672 (18) 0.039 (3)
C14 0.0869 (13) 0.1639 (6) 0.2665 (18) 0.045 (4)
H14A 0.1429 0.1344 0.2736 0.054*
C15 −0.0137 (13) 0.1391 (8) 0.2553 (16) 0.045 (4)
C16 −0.0922 (13) 0.1829 (6) 0.2507 (18) 0.043 (4)
H16A −0.1596 0.1668 0.2437 0.052*
N11 −0.0302 (15) 0.0681 (6) 0.2483 (17) 0.066 (4)
O11 0.0350 (12) 0.0323 (6) 0.2418 (18) 0.099 (4)
O12 −0.1106 (14) 0.0493 (6) 0.2609 (17) 0.099 (4)

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0558 (8) 0.0680 (9) 0.0684 (9) −0.0167 (7) 0.0437 (7) −0.0035 (7)
I2 0.0737 (6) 0.0268 (4) 0.0723 (7) 0.0048 (5) 0.0464 (5) 0.0017 (4)
Br3 0.0484 (7) 0.0636 (9) 0.0654 (9) 0.0047 (7) 0.0409 (7) 0.0002 (7)
C1 0.041 (7) 0.035 (7) 0.033 (6) −0.012 (6) 0.027 (5) −0.007 (5)
C2 0.043 (7) 0.017 (6) 0.035 (8) 0.002 (5) 0.024 (6) 0.000 (4)
C3 0.042 (6) 0.033 (7) 0.041 (7) 0.003 (5) 0.028 (6) −0.004 (5)
C4 0.037 (7) 0.036 (8) 0.048 (8) −0.005 (6) 0.027 (6) −0.003 (6)
C5 0.046 (7) 0.023 (7) 0.040 (8) 0.005 (6) 0.015 (6) −0.002 (5)
C6 0.036 (7) 0.064 (10) 0.045 (8) −0.003 (7) 0.027 (6) −0.016 (7)
N1 0.066 (8) 0.031 (7) 0.075 (9) 0.010 (7) 0.036 (7) −0.001 (6)
O1 0.091 (8) 0.030 (6) 0.108 (9) −0.003 (6) 0.053 (7) 0.003 (6)
O2 0.163 (12) 0.050 (7) 0.137 (11) 0.050 (8) 0.112 (10) 0.016 (6)
Br11 0.0522 (8) 0.0681 (9) 0.0685 (9) 0.0108 (7) 0.0404 (7) −0.0033 (7)
I12 0.0755 (6) 0.0283 (4) 0.0735 (7) −0.0069 (5) 0.0479 (5) −0.0038 (4)
Br13 0.0488 (7) 0.0631 (9) 0.0703 (9) −0.0088 (7) 0.0412 (7) −0.0014 (7)
C11 0.043 (7) 0.035 (7) 0.041 (7) −0.002 (6) 0.028 (6) 0.002 (6)
C12 0.041 (7) 0.033 (8) 0.039 (8) 0.007 (6) 0.030 (6) 0.004 (4)
C13 0.033 (6) 0.037 (8) 0.042 (7) −0.005 (5) 0.022 (6) −0.005 (6)
C14 0.051 (8) 0.029 (7) 0.044 (8) 0.008 (6) 0.025 (6) 0.000 (6)
C15 0.063 (9) 0.028 (7) 0.056 (9) −0.015 (6) 0.045 (8) −0.006 (5)
C16 0.046 (7) 0.031 (7) 0.042 (7) −0.021 (6) 0.024 (6) −0.015 (5)
N11 0.096 (10) 0.034 (7) 0.073 (9) −0.018 (7) 0.057 (8) −0.006 (6)
O11 0.101 (9) 0.029 (6) 0.147 (11) −0.010 (6) 0.072 (8) −0.005 (7)
O12 0.144 (11) 0.061 (7) 0.130 (10) −0.042 (8) 0.106 (9) −0.012 (6)

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene. Geometric parameters (Å, º)

Br1—C1 1.894 (12) Br11—C11 1.895 (14)
I2—C2 2.088 (12) I12—C12 2.074 (14)
Br3—C3 1.875 (13) Br13—C13 1.888 (13)
C1—C6 1.375 (18) C11—C12 1.387 (17)
C1—C2 1.416 (17) C11—C16 1.381 (18)
C2—C3 1.380 (17) C12—C13 1.405 (17)
C3—C4 1.384 (16) C13—C14 1.370 (16)
C4—C5 1.353 (18) C14—C15 1.390 (19)
C4—H4A 0.9300 C14—H14A 0.9300
C5—C6 1.35 (2) C15—C16 1.359 (19)
C5—N1 1.539 (18) C15—N11 1.435 (19)
C6—H6A 0.9300 C16—H16A 0.9300
N1—O2 1.199 (17) N11—O11 1.168 (19)
N1—O1 1.221 (19) N11—O12 1.226 (18)
C6—C1—C2 120.8 (13) C12—C11—C16 121.2 (14)
C6—C1—Br1 116.4 (11) C12—C11—Br11 121.4 (11)
C2—C1—Br1 122.8 (10) C16—C11—Br11 117.3 (11)
C3—C2—C1 118.1 (12) C11—C12—C13 117.3 (13)
C3—C2—I2 123.6 (10) C11—C12—I12 120.7 (11)
C1—C2—I2 118.4 (10) C13—C12—I12 122.0 (10)
C2—C3—C4 122.0 (13) C14—C13—C12 120.8 (13)
C2—C3—Br3 121.2 (10) C14—C13—Br13 117.0 (11)
C4—C3—Br3 116.8 (11) C12—C13—Br13 122.2 (10)
C5—C4—C3 115.9 (13) C13—C14—C15 120.8 (14)
C5—C4—H4A 122.0 C13—C14—H14A 119.6
C3—C4—H4A 122.0 C15—C14—H14A 119.6
C4—C5—C6 126.6 (14) C16—C15—C14 118.8 (14)
C4—C5—N1 116.2 (15) C16—C15—N11 122.8 (14)
C6—C5—N1 117.2 (15) C14—C15—N11 118.3 (15)
C5—C6—C1 116.7 (13) C15—C16—C11 121.0 (14)
C5—C6—H6A 121.7 C15—C16—H16A 119.5
C1—C6—H6A 121.7 C11—C16—H16A 119.5
O2—N1—O1 126.4 (14) O11—N11—O12 124.2 (16)
O2—N1—C5 117.6 (14) O11—N11—C15 120.6 (18)
O1—N1—C5 115.9 (17) O12—N11—C15 115.0 (15)
C6—C1—C2—C3 0.0 (16) C16—C11—C12—C13 −1.7 (16)
Br1—C1—C2—C3 179.7 (9) Br11—C11—C12—C13 180.0 (9)
C6—C1—C2—I2 179.4 (9) C16—C11—C12—I12 179.2 (9)
Br1—C1—C2—I2 −1.0 (12) Br11—C11—C12—I12 0.8 (13)
C1—C2—C3—C4 −0.8 (17) C11—C12—C13—C14 0.1 (17)
I2—C2—C3—C4 179.9 (9) I12—C12—C13—C14 179.2 (9)
C1—C2—C3—Br3 −179.9 (9) C11—C12—C13—Br13 −178.2 (9)
I2—C2—C3—Br3 0.7 (14) I12—C12—C13—Br13 0.9 (14)
C2—C3—C4—C5 0.9 (18) C12—C13—C14—C15 1.7 (19)
Br3—C3—C4—C5 −179.9 (9) Br13—C13—C14—C15 −179.9 (10)
C3—C4—C5—C6 −0.2 (18) C13—C14—C15—C16 −1.9 (18)
C3—C4—C5—N1 178.2 (11) C13—C14—C15—N11 177.8 (12)
C4—C5—C6—C1 −0.5 (19) C14—C15—C16—C11 0.3 (18)
N1—C5—C6—C1 −178.9 (10) N11—C15—C16—C11 −179.5 (12)
C2—C1—C6—C5 0.6 (17) C12—C11—C16—C15 1.6 (19)
Br1—C1—C6—C5 −179.1 (9) Br11—C11—C16—C15 180.0 (10)
C4—C5—N1—O2 −171.0 (13) C16—C15—N11—O11 175.7 (14)
C6—C5—N1—O2 7.6 (18) C14—C15—N11—O11 −4 (2)
C4—C5—N1—O1 12.4 (17) C16—C15—N11—O12 −8.3 (19)
C6—C5—N1—O1 −169.1 (12) C14—C15—N11—O12 171.9 (13)

References

  1. Baharie, E. & Pawley, G. S. (1979). Acta Cryst. A35, 233–235.
  2. Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o1921. [DOI] [PMC free article] [PubMed]
  3. Bhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C51, 256–260.
  4. Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373–5386.
  5. Brown, G. M. & Strydom, O. A. W. (1974). Acta Cryst. B30, 801–804.
  6. Bruker (1997). XSCANS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Bryant, R., James, S. C., Norman, N. C. & Orpen, A. G. (1998). Acta Cryst. C54, 1113–1115.
  8. Erdelyi, M. (2014). Nat. Chem. 6, 762–764. [DOI] [PubMed]
  9. Francke, R., Schnakenburg, G. & Waldvogel, S. R. (2010). Eur. J. Org. Chem. pp. 2357–2362.
  10. Ghosh, S., Reddy, C. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o910–o911.
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Novak, I. & Li, D. (2007). Acta Cryst. E63, o438–o439.
  14. Olaru, M., Beckmann, J. & Raţ, C. I. (2014). Organometallics, 33, 3012–3020.
  15. Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234. [DOI] [PubMed]
  16. Schmidbaur, H., Minge, O. & Nogai, S. (2004). Z. Naturforsch. Teil B, 59, 264–268.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Shorafa, H., Mollenhauer, D., Paulus, B. & Seppelt, K. (2009). Angew. Chem. Int. Ed. 48, 5845–5847. [DOI] [PubMed]
  20. Stein, M., Schwarzer, A., Hulliger, J. & Weber, E. (2011). Acta Cryst. E67, o1655. [DOI] [PMC free article] [PubMed]
  21. Tanaka, I., Iwasaki, F. & Aihara, A. (1974). Acta Cryst. B30, 1546–1549.
  22. Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.
  23. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.
  24. Wang, C., Danovich, D., Mo, Y. & Shaik, S. (2014). J. Chem. Theory Comput. 10, 3726–3737. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015013377/hb7459sup1.cif

e-71-00960-sup1.cif (400.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015013377/hb7459Isup2.hkl

e-71-00960-Isup2.hkl (250.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015013377/hb7459IIsup3.hkl

e-71-00960-IIsup3.hkl (430.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015013377/hb7459Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015013377/hb7459IIsup5.cml

CCDC references: 1412444, 1412445

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES