Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 4;71(Pt 8):o534–o535. doi: 10.1107/S2056989015012153

Crystal structure of 1-(4-fluoro­phen­yl)-4-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole

Balbir Kumar a, Madhvi Bhardwaj b, Satya Paul b, Rajni Kant a, Vivek K Gupta a,*
PMCID: PMC4571383  PMID: 26396783

Abstract

In the title compound, C15H12FN3O, the triazole ring forms dihedral angles of 30.57 (8) and 21.81 (9)° with the fluoro-substituted and meth­oxy-substituted benzene rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. In the crystal, π–π inter­actions between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010].

Keywords: crystal structure; 1,2,3-triazole; π–π inter­actions

Related literature  

For related literature on 1,2,3-triazoles, see: Aher et al. (2009); Jordao et al. (2009); Vijaya Raghava Reddy et al. (2010); Soltis et al. (1996). For applications of 1,2,3-triazoles, see: Pérez-Balderas et al. (2003); Wu et al. (2004); Kumar & Pandey (2008); Haridas et al. (2008); Turner et al., (2007); Angell & Burgess (2007); For the synthesis of 1,2,3-triazoles, see: Huisgen et al. (1965); Wang et al. (2010). For related structures, see: Abdel-Wahab et al. (2012); Zhang et al. (2004).graphic file with name e-71-0o534-scheme1.jpg

Experimental  

Crystal data  

  • C15H12FN3O

  • M r = 269.28

  • Triclinic, Inline graphic

  • a = 5.6572 (5) Å

  • b = 7.3692 (8) Å

  • c = 15.5711 (15) Å

  • α = 79.202 (9)°

  • β = 81.159 (8)°

  • γ = 89.442 (8)°

  • V = 629.95 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.806, T max = 1.000

  • 4369 measured reflections

  • 2461 independent reflections

  • 1575 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.179

  • S = 1.04

  • 2461 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015012153/lh5772sup1.cif

e-71-0o534-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012153/lh5772Isup2.hkl

e-71-0o534-Isup2.hkl (118.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012153/lh5772Isup3.cml

. DOI: 10.1107/S2056989015012153/lh5772fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

a . DOI: 10.1107/S2056989015012153/lh5772fig2.tif

The packing arrangement of mol­ecules viewed along the a axis.

CCDC reference: 1408544

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

S1. Comment

1,2,3-Triazoles are an important class of organic compounds which have become prominent in recent years as superbly versatile five membered nitrogen heterocycles. The 1,2,3-triazole family exhibit a broad spectrum of bioactivities such as antifungal (Aher et al., 2009) antiviral (Jordao et al., 2009), antibacterial (Vijaya Raghava Reddy et al., 2010) and anticancer (Soltis et al., 1996) activities. Furthermore 1,4-disubstituted 1,2,3-triazoles have also been used as a ligation tool for the synthesis of neoglyco-conjugates (Perez-Balderas et al., 2003), multivalent dendrimeric peptides (Wu et al., 2004), ionic receptors (Kumar et al., 2008), triazolophanes (Haridas et al., 2008), cyclic peptides (Turner et al., 2007) and peptidomimetics (Angell et al., 2007). 1,2,3-Triazoles are traditionally obtained using the thermal 1,3-dipolar cycloaddition of organic azides with alkynes (Huisgen et al., 1965) that has been known for nearly five decades. Recently, copper based catalysis was found to dramatically accelerate the reaction under mild conditions while achieving a high regioselectivity towards the 1,4-regioisomer of the triazole product (Wang et al., 2010). This powerful, highly reliable, and selective reaction is the paradigm of a click reaction, which placed it in a class of its own and has enabled many novel applications.

The molecular structure of the title compound is shown in Fig. 1. The triazole ring forms dihedral angles of 30.57 (8)° and 21.81 (9)° with the fluoro-substituted and methoxy-substituted benzen rings, respectively. The dihedral angle between the benzene rings is 51.53 (7)°. All bond lengths and angles are normal and correspond to those observed in the related structures (Zhang et al., 2004; Abdel-Wahab et al., 2012). The C15—F1 bond length [1.357 (4) Å] agrees well with the accepted value of 1.340 Å for the F-Caromatic length and is in good agreement with a structure of this type (Abdel-Wahab et al., 2012). In the crystal, π–π interactions observed between the triazole rings [centroid–centroid seperations = 3.774 (2) and 3.841 (2) Å] form chains along [010] (Fig. 2).

S2. Experimental

Synthesis of 1-(4-flourophenyl)-4-(4-methoxyphenyl) -1H-1,2,3-triazole: To 4-fluoroaniline (0.22 g, 2 mmol) in a round bottomed flask maintained at 273-278 K, mixture of conc. HCl: H2O (1.5 ml, 1:1) was added and stirred for 5 min. Then solution of NaNO2 (0.17 g, 2.5 mmol in 1 ml water) was added dropwise over a period of 5 min. After stirring for another 5 min, sodium azide (0.19 g, 3 mmol) was added and the reaction mixture was further stirred for another 10 min. Finally, 4-methoxyphenylacetylene (0.19 g, 1.5 mmol) and catalyst [Cu(0)-Fe3O4@SiO2/NH2Cel] (0.05 g) were added to the reaction mixture followed by stirring at room temperature for 6 h. The reaction was then stopped and the catalyst was separated using an external magnet. The reaction mixture was extracted with EtOAc, washed with water and dried over Na2SO4. Finally, the product was obtained after removal of the solvent under reduced pressure followed by crystallization with EtOAc: pet ether. The product, 1-(4-flourophenyl)-4-(4-methoxyphenyl) -1H-1,2,3-triazole was obtained as shiny white crystals.

S3. Refinement

All H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.96 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed along the a axis.

Crystal data

C15H12FN3O Z = 2
Mr = 269.28 F(000) = 280
Triclinic, P1 Dx = 1.420 Mg m3Dm = 1.42 Mg m3Dm measured by not measured
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6572 (5) Å Cell parameters from 1205 reflections
b = 7.3692 (8) Å θ = 4.0–28.0°
c = 15.5711 (15) Å µ = 0.10 mm1
α = 79.202 (9)° T = 293 K
β = 81.159 (8)° Block, white
γ = 89.442 (8)° 0.30 × 0.20 × 0.20 mm
V = 629.95 (11) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2461 independent reflections
Radiation source: fine-focus sealed tube 1575 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.7°
ω scans h = −4→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −7→9
Tmin = 0.806, Tmax = 1.000 l = −18→19
4369 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.0652P] where P = (Fo2 + 2Fc2)/3
2461 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.2052 (4) −0.1487 (2) 0.41281 (12) 0.0782 (6)
N1 0.1232 (4) 0.1852 (3) 0.07275 (13) 0.0404 (5)
N2 −0.0970 (4) 0.1982 (3) 0.04842 (15) 0.0505 (6)
N3 −0.0714 (4) 0.2743 (3) −0.03467 (15) 0.0489 (6)
C4 0.1657 (4) 0.3132 (3) −0.06593 (16) 0.0367 (6)
C5 0.2893 (4) 0.2552 (3) 0.00235 (15) 0.0395 (6)
H5 0.4540 0.2623 0.0009 0.047*
C6 0.2436 (4) 0.3971 (3) −0.15737 (16) 0.0371 (6)
C7 0.1015 (5) 0.3849 (3) −0.22101 (17) 0.0426 (6)
H7 −0.0454 0.3228 −0.2040 0.051*
C8 0.1707 (5) 0.4613 (4) −0.30769 (18) 0.0483 (7)
H8 0.0717 0.4501 −0.3490 0.058*
C9 0.3880 (5) 0.5558 (3) −0.33479 (17) 0.0457 (7)
O9 0.4360 (4) 0.6328 (3) −0.42195 (14) 0.0718 (7)
C10 0.5341 (5) 0.5698 (3) −0.27319 (17) 0.0452 (6)
H10 0.6804 0.6327 −0.2906 0.054*
C11 0.4626 (5) 0.4900 (3) −0.18530 (16) 0.0414 (6)
H11 0.5629 0.4987 −0.1441 0.050*
C12 0.1484 (4) 0.1035 (3) 0.16056 (16) 0.0371 (6)
C13 −0.0340 (5) 0.1177 (3) 0.22842 (16) 0.0430 (6)
H13 −0.1694 0.1844 0.2166 0.052*
C14 −0.0162 (5) 0.0338 (4) 0.31322 (18) 0.0518 (7)
H14 −0.1391 0.0417 0.3594 0.062*
C15 0.1878 (5) −0.0630 (3) 0.32897 (18) 0.0500 (7)
C16 0.3719 (5) −0.0751 (3) 0.26282 (19) 0.0503 (7)
H16 0.5088 −0.1392 0.2752 0.060*
C17 0.3531 (5) 0.0081 (3) 0.17797 (17) 0.0425 (6)
H17 0.4773 0.0007 0.1322 0.051*
C18 0.6617 (8) 0.6997 (5) −0.4596 (2) 0.0918 (12)
H18A 0.7031 0.7988 −0.4321 0.138*
H18B 0.6648 0.7446 −0.5218 0.138*
H18C 0.7749 0.6025 −0.4512 0.138*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0830 (15) 0.0859 (12) 0.0607 (12) 0.0042 (11) −0.0198 (10) 0.0062 (9)
N1 0.0268 (11) 0.0459 (12) 0.0481 (13) 0.0005 (9) −0.0039 (9) −0.0096 (9)
N2 0.0252 (11) 0.0691 (14) 0.0558 (15) −0.0006 (10) −0.0048 (10) −0.0098 (11)
N3 0.0260 (12) 0.0675 (15) 0.0508 (14) −0.0006 (11) −0.0033 (10) −0.0069 (11)
C4 0.0268 (13) 0.0389 (12) 0.0455 (15) 0.0003 (10) −0.0056 (10) −0.0105 (10)
C5 0.0224 (12) 0.0470 (14) 0.0483 (15) −0.0018 (11) −0.0025 (10) −0.0090 (11)
C6 0.0279 (13) 0.0391 (12) 0.0458 (15) 0.0054 (10) −0.0075 (11) −0.0108 (10)
C7 0.0303 (13) 0.0450 (13) 0.0536 (16) −0.0001 (11) −0.0086 (11) −0.0107 (11)
C8 0.0393 (15) 0.0583 (16) 0.0513 (17) 0.0049 (13) −0.0158 (13) −0.0136 (12)
C9 0.0450 (16) 0.0499 (14) 0.0404 (15) 0.0101 (13) −0.0063 (12) −0.0049 (11)
O9 0.0608 (14) 0.0911 (15) 0.0542 (13) −0.0043 (12) −0.0021 (11) 0.0045 (11)
C10 0.0321 (14) 0.0458 (14) 0.0553 (17) −0.0029 (12) 0.0001 (12) −0.0083 (12)
C11 0.0331 (14) 0.0447 (13) 0.0484 (15) 0.0003 (11) −0.0088 (11) −0.0120 (11)
C12 0.0293 (13) 0.0358 (12) 0.0458 (15) −0.0034 (10) −0.0048 (11) −0.0070 (10)
C13 0.0316 (13) 0.0452 (14) 0.0497 (16) 0.0032 (11) −0.0020 (11) −0.0063 (11)
C14 0.0441 (16) 0.0556 (16) 0.0522 (18) 0.0000 (14) 0.0027 (13) −0.0092 (12)
C15 0.0532 (18) 0.0471 (15) 0.0493 (17) −0.0049 (13) −0.0165 (14) −0.0011 (12)
C16 0.0401 (15) 0.0457 (14) 0.0657 (19) 0.0059 (12) −0.0131 (14) −0.0079 (13)
C17 0.0317 (13) 0.0425 (13) 0.0535 (16) 0.0001 (11) −0.0038 (11) −0.0121 (11)
C18 0.091 (3) 0.109 (3) 0.068 (2) −0.032 (2) 0.000 (2) −0.0060 (19)

Geometric parameters (Å, º)

F1—C15 1.357 (3) O9—C18 1.376 (4)
N1—C5 1.354 (3) C10—C11 1.384 (3)
N1—N2 1.354 (3) C10—H10 0.9300
N1—C12 1.415 (3) C11—H11 0.9300
N2—N3 1.297 (3) C12—C13 1.377 (3)
N3—C4 1.368 (3) C12—C17 1.385 (3)
C4—C5 1.362 (3) C13—C14 1.367 (3)
C4—C6 1.444 (3) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.381 (4)
C6—C7 1.384 (3) C14—H14 0.9300
C6—C11 1.390 (3) C15—C16 1.363 (4)
C7—C8 1.360 (3) C16—C17 1.368 (3)
C7—H7 0.9300 C16—H16 0.9300
C8—C9 1.387 (4) C17—H17 0.9300
C8—H8 0.9300 C18—H18A 0.9600
C9—O9 1.356 (3) C18—H18B 0.9600
C9—C10 1.377 (4) C18—H18C 0.9600
C5—N1—N2 109.5 (2) C10—C11—C6 121.3 (2)
C5—N1—C12 130.8 (2) C10—C11—H11 119.4
N2—N1—C12 119.7 (2) C6—C11—H11 119.4
N3—N2—N1 107.7 (2) C13—C12—C17 120.3 (2)
N2—N3—C4 109.6 (2) C13—C12—N1 119.3 (2)
C5—C4—N3 107.4 (2) C17—C12—N1 120.4 (2)
C5—C4—C6 131.8 (2) C14—C13—C12 120.1 (2)
N3—C4—C6 120.8 (2) C14—C13—H13 120.0
N1—C5—C4 105.8 (2) C12—C13—H13 120.0
N1—C5—H5 127.1 C13—C14—C15 118.7 (2)
C4—C5—H5 127.1 C13—C14—H14 120.7
C7—C6—C11 117.5 (2) C15—C14—H14 120.7
C7—C6—C4 120.5 (2) F1—C15—C16 119.1 (2)
C11—C6—C4 122.0 (2) F1—C15—C14 119.0 (3)
C8—C7—C6 121.9 (3) C16—C15—C14 121.9 (3)
C8—C7—H7 119.1 C15—C16—C17 119.2 (2)
C6—C7—H7 119.1 C15—C16—H16 120.4
C7—C8—C9 120.3 (2) C17—C16—H16 120.4
C7—C8—H8 119.9 C16—C17—C12 119.7 (2)
C9—C8—H8 119.9 C16—C17—H17 120.1
O9—C9—C10 125.0 (3) C12—C17—H17 120.1
O9—C9—C8 115.6 (3) O9—C18—H18A 109.5
C10—C9—C8 119.3 (2) O9—C18—H18B 109.5
C9—O9—C18 120.7 (3) H18A—C18—H18B 109.5
C9—C10—C11 119.8 (3) O9—C18—H18C 109.5
C9—C10—H10 120.1 H18A—C18—H18C 109.5
C11—C10—H10 120.1 H18B—C18—H18C 109.5
C5—N1—N2—N3 −0.1 (3) O9—C9—C10—C11 178.0 (2)
C12—N1—N2—N3 −178.86 (19) C8—C9—C10—C11 −0.1 (4)
N1—N2—N3—C4 −0.3 (3) C9—C10—C11—C6 −0.7 (4)
N2—N3—C4—C5 0.6 (3) C7—C6—C11—C10 1.0 (3)
N2—N3—C4—C6 179.3 (2) C4—C6—C11—C10 −179.9 (2)
N2—N1—C5—C4 0.5 (2) C5—N1—C12—C13 150.9 (2)
C12—N1—C5—C4 179.1 (2) N2—N1—C12—C13 −30.7 (3)
N3—C4—C5—N1 −0.7 (2) C5—N1—C12—C17 −30.0 (3)
C6—C4—C5—N1 −179.1 (2) N2—N1—C12—C17 148.5 (2)
C5—C4—C6—C7 156.9 (2) C17—C12—C13—C14 −1.6 (4)
N3—C4—C6—C7 −21.4 (3) N1—C12—C13—C14 177.6 (2)
C5—C4—C6—C11 −22.2 (4) C12—C13—C14—C15 0.6 (4)
N3—C4—C6—C11 159.5 (2) C13—C14—C15—F1 −179.1 (2)
C11—C6—C7—C8 −0.4 (3) C13—C14—C15—C16 0.8 (4)
C4—C6—C7—C8 −179.5 (2) F1—C15—C16—C17 178.8 (2)
C6—C7—C8—C9 −0.4 (4) C14—C15—C16—C17 −1.2 (4)
C7—C8—C9—O9 −177.6 (2) C15—C16—C17—C12 0.1 (4)
C7—C8—C9—C10 0.7 (4) C13—C12—C17—C16 1.2 (4)
C10—C9—O9—C18 14.0 (4) N1—C12—C17—C16 −177.9 (2)
C8—C9—O9—C18 −167.9 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5772).

References

  1. Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1956–o1957. [DOI] [PMC free article] [PubMed]
  2. Aher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A. & Bhat, M. K. (2009). Bioorg. Med. Chem. Lett. 19, 759–763. [DOI] [PubMed]
  3. Angell, Y. & Burgess, K. (2007). Chem. Soc. Rev. 36, 1674–1689. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Haridas, V., Lal, K., Sharma, Y. K. & Upreti, S. (2008). Org. Lett. 10, 1645–1647. [DOI] [PubMed]
  6. Huisgen, R., Knorr, R., Möbius, L. & Szeimies, G. (1965). Chem. Ber. 98, 4014–4021.
  7. Jordão, A. K., Ferreira, V. F., Lima, E. S., de Souza, M. C. B. V., Carlos, E. C. L., Castro, H. C., Geraldo, R. B., Rodrigues, C. R., Almeida, M. C. B. & Cunha, A. C. (2009). Bioorg. Med. Chem. 17, 3713–3719. [DOI] [PubMed]
  8. Kumar, A. & Pandey, P. S. (2008). Org. Lett. 10, 165–168. [DOI] [PubMed]
  9. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  10. Pérez-Balderas, F., Ortega-Muñoz, M., Morales-Sanfrutos, J., Hernández-Mateo, F., Calvo-Flores, F. G., Calvo-Asín, J. A., Isac-García, J. & Santoyo-González, F. (2003). Org. Lett. 5, 1951–1954. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soltis, M. J., Yeh, H. J., Cole, K. A., Whittaker, N., Wersto, R. P. & Kohn, E. C. (1996). Drug Metab. Dispos. 24, 799–806. [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Turner, R. A., Oliver, A. G. & Lokey, R. S. (2007). Org. Lett. 9, 5011–5014. [DOI] [PubMed]
  15. Vijaya Raghava Reddy, L., Venkat Reddy, P., Mishra, N. N., Shukla, P. K., Yadav, G., Srivastava, R. & Shaw, A. K. (2010). Carbohydr. Res. 345, 1515–1521. [DOI] [PubMed]
  16. Wang, D., Li, N., Zhao, M., Shi, W., Ma, C. & Chen, B. (2010). Green Chem. 12, 2120.
  17. Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932. [DOI] [PubMed]
  18. Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015012153/lh5772sup1.cif

e-71-0o534-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012153/lh5772Isup2.hkl

e-71-0o534-Isup2.hkl (118.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012153/lh5772Isup3.cml

. DOI: 10.1107/S2056989015012153/lh5772fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

a . DOI: 10.1107/S2056989015012153/lh5772fig2.tif

The packing arrangement of mol­ecules viewed along the a axis.

CCDC reference: 1408544

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES