Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 4;71(Pt 8):o540–o541. doi: 10.1107/S205698901501230X

Crystal structure of 5-hy­droxy­methyl-2-meth­oxy­phenol

Mubashir Hassan a, Zaman Ashraf a,b, Sung-Yum Seo a, Daeyoung Kim c, Sung Kwon Kang c,*
PMCID: PMC4571386  PMID: 26396786

Abstract

In the title compound, C8H10O3, the hy­droxy­methyl group is twisted by 74.51 (13)° from the plane of the benzene ring to which it is connected. By contrast, the benzene and meth­oxy groups are almost coplanar, making a dihedral angle of 4.0 (2)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Keywords: crystal structure, alcoholic hy­droxy compounds, O—H⋯O hydrogen bonding

Related literature  

For the background to alcoholic hy­droxy compounds and their applications, see: Patrick (2001); Yasohara et al. (2001); Rodríguez-Barrios & Gago (2004); Wu et al. (2008); Matteelli et al. (2010); Coimbra et al. (2010); Hans et al. (2010); Cordova et al. (2006). For the synthesis of derivatives of the title compound, see: Ashraf et al. (2014, 2015).graphic file with name e-71-0o540-scheme1.jpg

Experimental  

Crystal data  

  • C8H10O3

  • M r = 154.16

  • Orthorhombic, Inline graphic

  • a = 15.011 (4) Å

  • b = 6.1354 (18) Å

  • c = 16.543 (5) Å

  • V = 1523.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.23 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • 28952 measured reflections

  • 1900 independent reflections

  • 1530 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.149

  • S = 1.07

  • 1900 reflections

  • 108 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901501230X/tk5370sup1.cif

e-71-0o540-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501230X/tk5370Isup2.hkl

e-71-0o540-Isup2.hkl (104.7KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501230X/tk5370Isup3.cml

. DOI: 10.1107/S205698901501230X/tk5370fig1.tif

The mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.

. DOI: 10.1107/S205698901501230X/tk5370fig2.tif

Part of the crystal structure of the title compound, showing the 3-D network of mol­ecules linked by inter­molecular O—H⋯O hydrogen bonds (dashed lines).

CCDC reference: 1409010

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O9i 0.74(4) 2.11(4) 2.773(2) 150(4)
O1H1O10i 0.74(4) 2.54(4) 3.152(2) 142(4)
O9H9O1ii 0.88(4) 1.78(4) 2.641(2) 163(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

S1. Chemical context

It has been identified that the presence of alcoholic, phenolic hydroxyl and amino groups are particularly important functionalities in biologically active compounds (Patrick, 2001). These important functionalities displayed biological activities because they can facilitate inter­actions with appropriate receptor molecules (Yasohara et al., 2001). A new class of compounds having an alcoholic hydroxyl group showed high enzyme inhibitory potential and excellent permeation through a Caco-2 cell membrane (Rodríguez-Barrios & Gag, 2004). Some tertiary alcohol derivatives showed significant HIV-1 protease inhibitory activity (Wu et al., 2008). Heterocyclic compounds such as di­aryl­quinolines having a quinolinic central nucleus and alcoholic –OH group at the side-chains exhibited anti-mycobacterial activity (Matteelli et al., 2010). β-Amino alcohols are a class of compounds with a wide range of bioactivities, such as anti-plasmodial (Hans et al., 2010), anti-leishmanial (Coimbra et al., 2010) and anti-proliferative (Cordova et al., 2006). The hy­droxy substituted benzoic acids and cinnamic acid analogues have been reported as mushroom tyrosinase inhibitors (Ashraf et al., 2014; Ashraf et al., 2015). Keeping in view the wide range of biological activities of hy­droxy­lated compounds, here we report the synthesis and crystal structure of the title compound, isolated as an inter­mediate. The title alcohol is a valuable starting material for the synthesis of hy­droxy substituted scaffolds.

S2. Synthesis and crystallization

The title compound was synthesized by the reduction of isovanillin in the presence of sodium borohydride and methanol. The sodium borohydride reduction of aldehydes and ketones to the corresponding alcohols is a commonly used method in organic synthesis. Isovanillin was dissolved in methanol and then sodium borohydride was added at a slow rate to keep the reaction temperature below 25 °C. The excess of sodium borohydride was used to assure the completion of the reaction. After the completion of the reaction the product was obtained by acidic workup (86%, m.p. 135-137 °C). The title compound was crystallized as cubic crystals from a solution of ethyl acetate by slow evaporation.

S3. Refinement

H atoms on OH groups were located in a difference Fourier map and refined freely [refined O—H distances = 0.74 (4) – 0.88 (4) Å]. The C-bound H atoms were positioned geometrically and refined using riding model, with d(C—H) = 0.93 – 0.97 Å, and with Uiso(H) = 1.2Ueq(C) for phenyl-H and methyl­ene-H and 1.5Ueq(C) for methyl-H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the 3-D network of molecules linked by intermolecular O—H···O hydrogen bonds (dashed lines).

Crystal data

C8H10O3 F(000) = 656
Mr = 154.16 Dx = 1.344 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7746 reflections
a = 15.011 (4) Å θ = 2.5–28.2°
b = 6.1354 (18) Å µ = 0.10 mm1
c = 16.543 (5) Å T = 296 K
V = 1523.6 (7) Å3 Block, brown
Z = 8 0.28 × 0.25 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.025
Radiation source: fine-focus sealed tube θmax = 28.4°, θmin = 2.5°
φ and ω scans h = −20→19
28952 measured reflections k = −8→8
1900 independent reflections l = −22→20
1530 reflections with I > 2σ(I)

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.6464P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1900 reflections Δρmax = 0.38 e Å3
108 parameters Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.56019 (17) 0.3078 (3) 0.91644 (10) 0.1025 (9)
H1 0.559 (2) 0.268 (6) 0.959 (2) 0.129 (13)*
C2 0.61335 (11) 0.1812 (3) 0.86876 (9) 0.0462 (4)
H2A 0.5895 0.0345 0.8663 0.055*
H2B 0.6727 0.1737 0.8919 0.055*
C3 0.61828 (10) 0.2752 (3) 0.78509 (9) 0.0383 (4)
C4 0.57178 (10) 0.1775 (3) 0.72196 (8) 0.0388 (4)
H4 0.5385 0.0524 0.7316 0.047*
C5 0.57476 (10) 0.2651 (3) 0.64505 (8) 0.0375 (3)
C6 0.62554 (10) 0.4516 (3) 0.62970 (9) 0.0368 (3)
C7 0.67100 (11) 0.5504 (3) 0.69227 (10) 0.0452 (4)
H7 0.7042 0.6757 0.6828 0.054*
C8 0.66682 (11) 0.4616 (3) 0.76955 (9) 0.0454 (4)
H8 0.6973 0.5292 0.8116 0.054*
O9 0.52924 (10) 0.1784 (2) 0.58164 (7) 0.0554 (4)
H9 0.498 (2) 0.060 (6) 0.5924 (18) 0.124 (12)*
O10 0.62581 (8) 0.5189 (2) 0.55089 (7) 0.0472 (3)
C11 0.67256 (15) 0.7139 (3) 0.53259 (12) 0.0588 (5)
H11A 0.6682 0.7433 0.4757 0.088*
H11B 0.7341 0.6976 0.5473 0.088*
H11C 0.647 0.8328 0.5624 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1593 (19) 0.1051 (14) 0.0432 (8) 0.0824 (14) 0.0458 (10) 0.0312 (9)
C2 0.0512 (9) 0.0580 (10) 0.0293 (7) 0.0082 (7) −0.0009 (6) 0.0039 (7)
C3 0.0371 (7) 0.0506 (9) 0.0272 (7) 0.0057 (6) 0.0004 (5) 0.0000 (6)
C4 0.0443 (8) 0.0425 (8) 0.0296 (7) −0.0036 (6) 0.0043 (6) −0.0003 (6)
C5 0.0429 (7) 0.0434 (8) 0.0263 (7) −0.0021 (6) 0.0013 (5) −0.0039 (6)
C6 0.0395 (7) 0.0431 (8) 0.0277 (7) 0.0011 (6) 0.0025 (5) 0.0014 (6)
C7 0.0469 (8) 0.0503 (9) 0.0384 (8) −0.0110 (7) −0.0005 (6) −0.0007 (7)
C8 0.0443 (8) 0.0590 (10) 0.0327 (8) −0.0063 (7) −0.0063 (6) −0.0050 (7)
O9 0.0752 (9) 0.0631 (8) 0.0279 (6) −0.0280 (7) −0.0037 (5) −0.0024 (5)
O10 0.0610 (7) 0.0505 (7) 0.0302 (6) −0.0110 (5) 0.0009 (5) 0.0060 (5)
C11 0.0761 (13) 0.0528 (11) 0.0476 (10) −0.0137 (9) 0.0028 (9) 0.0127 (8)

Geometric parameters (Å, º)

O1—C2 1.365 (2) C6—O10 1.3677 (18)
O1—H1 0.74 (4) C6—C7 1.380 (2)
C2—C3 1.501 (2) C7—C8 1.391 (2)
C2—H2A 0.97 C7—H7 0.93
C2—H2B 0.97 C8—H8 0.93
C3—C8 1.380 (2) O9—H9 0.88 (4)
C3—C4 1.392 (2) O10—C11 1.420 (2)
C4—C5 1.382 (2) C11—H11A 0.96
C4—H4 0.93 C11—H11B 0.96
C5—O9 1.3601 (18) C11—H11C 0.96
C5—C6 1.398 (2)
C2—O1—H1 112 (3) O10—C6—C5 114.96 (13)
O1—C2—C3 110.07 (15) C7—C6—C5 119.54 (14)
O1—C2—H2A 109.6 C6—C7—C8 119.66 (16)
C3—C2—H2A 109.6 C6—C7—H7 120.2
O1—C2—H2B 109.6 C8—C7—H7 120.2
C3—C2—H2B 109.6 C3—C8—C7 121.29 (14)
H2A—C2—H2B 108.2 C3—C8—H8 119.4
C8—C3—C4 118.80 (14) C7—C8—H8 119.4
C8—C3—C2 121.06 (14) C5—O9—H9 116 (2)
C4—C3—C2 120.12 (15) C6—O10—C11 117.34 (13)
C5—C4—C3 120.48 (15) O10—C11—H11A 109.5
C5—C4—H4 119.8 O10—C11—H11B 109.5
C3—C4—H4 119.8 H11A—C11—H11B 109.5
O9—C5—C4 122.81 (14) O10—C11—H11C 109.5
O9—C5—C6 116.99 (13) H11A—C11—H11C 109.5
C4—C5—C6 120.20 (13) H11B—C11—H11C 109.5
O10—C6—C7 125.50 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O9i 0.74 (4) 2.11 (4) 2.773 (2) 150 (4)
O1—H1···O10i 0.74 (4) 2.54 (4) 3.152 (2) 142 (4)
O9—H9···O1ii 0.88 (4) 1.78 (4) 2.641 (2) 163 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5370).

References

  1. Ashraf, Z., Rafiq, M., Seo, S. Y., Babar, M. M. & Zaidi, N. S. S. (2014). J. Enzyme Inhib. Med. Chem. pp. 1–10. [DOI] [PubMed]
  2. Ashraf, Z., Rafiq, M., Seo, S. Y., Kwon, K. S., Babar, M. M. & Zaidi, N. U. S. (2015). Eur. J. Med. Chem. 98, 203–211. [DOI] [PubMed]
  3. Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Coimbra, E. S., de Almeida, M. V., Jðnior, C. O. R., Taveira, A. F., da Costa, C. F., de Almeida, A. C., Reis, E. F. C. & da Silva, A. D. (2010). Chem. Biol. Drug Des. 75, 233–235. [DOI] [PubMed]
  5. Córdova, I., León, L. G., León, F., San Andrés, L., Luis, J. G. & Padrón, J. M. (2006). Eur. J. Med. Chem. 41, 1327–1332. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hans, R. H., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 2234–2237. [DOI] [PubMed]
  8. Matteelli, A., Carvalho, A. C., Dooley, K. E. & Kritski, A. (2010). Future Microbiol. 5, 849–858. [DOI] [PMC free article] [PubMed]
  9. Patrick, G. L. (2001). In An Introduction to Medicinal Chemistry. Oxford: University Press.
  10. Rodríguez-Barrios, F. & Gago, F. (2004). Curr. Top. Med. Chem. 4, 991–1007. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Wu, X., Öhrngren, P., Ekegren, J. K., Unge, J., Unge, T., Wallberg, H., Samuelsson, B., Hallberg, A. & Larhed, M. (2008). J. Med. Chem. 51, 1053–1057. [DOI] [PubMed]
  14. Yasohara, Y., Miyamoto, K., Kizaki, N. & Hasegawa, J. (2001). Tetrahedron Lett. 42, 3331–3333.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901501230X/tk5370sup1.cif

e-71-0o540-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501230X/tk5370Isup2.hkl

e-71-0o540-Isup2.hkl (104.7KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501230X/tk5370Isup3.cml

. DOI: 10.1107/S205698901501230X/tk5370fig1.tif

The mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.

. DOI: 10.1107/S205698901501230X/tk5370fig2.tif

Part of the crystal structure of the title compound, showing the 3-D network of mol­ecules linked by inter­molecular O—H⋯O hydrogen bonds (dashed lines).

CCDC reference: 1409010

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES