Abstract
In the title compound, C8H10O3, the hydroxymethyl group is twisted by 74.51 (13)° from the plane of the benzene ring to which it is connected. By contrast, the benzene and methoxy groups are almost coplanar, making a dihedral angle of 4.0 (2)°. In the crystal, O—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Keywords: crystal structure, alcoholic hydroxy compounds, O—H⋯O hydrogen bonding
Related literature
For the background to alcoholic hydroxy compounds and their applications, see: Patrick (2001 ▸); Yasohara et al. (2001 ▸); Rodríguez-Barrios & Gago (2004 ▸); Wu et al. (2008 ▸); Matteelli et al. (2010 ▸); Coimbra et al. (2010 ▸); Hans et al. (2010 ▸); Cordova et al. (2006 ▸). For the synthesis of derivatives of the title compound, see: Ashraf et al. (2014 ▸, 2015 ▸).
Experimental
Crystal data
C8H10O3
M r = 154.16
Orthorhombic,
a = 15.011 (4) Å
b = 6.1354 (18) Å
c = 16.543 (5) Å
V = 1523.6 (7) Å3
Z = 8
Mo Kα radiation
μ = 0.10 mm−1
T = 296 K
0.28 × 0.25 × 0.23 mm
Data collection
Bruker SMART CCD area-detector diffractometer
28952 measured reflections
1900 independent reflections
1530 reflections with I > 2σ(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.051
wR(F 2) = 0.149
S = 1.07
1900 reflections
108 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.38 e Å−3
Δρmin = −0.42 e Å−3
Data collection: SMART (Bruker, 2002 ▸); cell refinement: SAINT (Bruker, 2002 ▸); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015 ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸); software used to prepare material for publication: WinGX (Farrugia, 2012 ▸).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901501230X/tk5370sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501230X/tk5370Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901501230X/tk5370Isup3.cml
. DOI: 10.1107/S205698901501230X/tk5370fig1.tif
The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
. DOI: 10.1107/S205698901501230X/tk5370fig2.tif
Part of the crystal structure of the title compound, showing the 3-D network of molecules linked by intermolecular O—H⋯O hydrogen bonds (dashed lines).
CCDC reference: 1409010
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| O1H1O9i | 0.74(4) | 2.11(4) | 2.773(2) | 150(4) |
| O1H1O10i | 0.74(4) | 2.54(4) | 3.152(2) | 142(4) |
| O9H9O1ii | 0.88(4) | 1.78(4) | 2.641(2) | 163(3) |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
S1. Chemical context
It has been identified that the presence of alcoholic, phenolic hydroxyl and amino groups are particularly important functionalities in biologically active compounds (Patrick, 2001). These important functionalities displayed biological activities because they can facilitate interactions with appropriate receptor molecules (Yasohara et al., 2001). A new class of compounds having an alcoholic hydroxyl group showed high enzyme inhibitory potential and excellent permeation through a Caco-2 cell membrane (Rodríguez-Barrios & Gag, 2004). Some tertiary alcohol derivatives showed significant HIV-1 protease inhibitory activity (Wu et al., 2008). Heterocyclic compounds such as diarylquinolines having a quinolinic central nucleus and alcoholic –OH group at the side-chains exhibited anti-mycobacterial activity (Matteelli et al., 2010). β-Amino alcohols are a class of compounds with a wide range of bioactivities, such as anti-plasmodial (Hans et al., 2010), anti-leishmanial (Coimbra et al., 2010) and anti-proliferative (Cordova et al., 2006). The hydroxy substituted benzoic acids and cinnamic acid analogues have been reported as mushroom tyrosinase inhibitors (Ashraf et al., 2014; Ashraf et al., 2015). Keeping in view the wide range of biological activities of hydroxylated compounds, here we report the synthesis and crystal structure of the title compound, isolated as an intermediate. The title alcohol is a valuable starting material for the synthesis of hydroxy substituted scaffolds.
S2. Synthesis and crystallization
The title compound was synthesized by the reduction of isovanillin in the presence of sodium borohydride and methanol. The sodium borohydride reduction of aldehydes and ketones to the corresponding alcohols is a commonly used method in organic synthesis. Isovanillin was dissolved in methanol and then sodium borohydride was added at a slow rate to keep the reaction temperature below 25 °C. The excess of sodium borohydride was used to assure the completion of the reaction. After the completion of the reaction the product was obtained by acidic workup (86%, m.p. 135-137 °C). The title compound was crystallized as cubic crystals from a solution of ethyl acetate by slow evaporation.
S3. Refinement
H atoms on OH groups were located in a difference Fourier map and refined freely [refined O—H distances = 0.74 (4) – 0.88 (4) Å]. The C-bound H atoms were positioned geometrically and refined using riding model, with d(C—H) = 0.93 – 0.97 Å, and with Uiso(H) = 1.2Ueq(C) for phenyl-H and methylene-H and 1.5Ueq(C) for methyl-H atoms.
Figures
Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
Fig. 2.

Part of the crystal structure of the title compound, showing the 3-D network of molecules linked by intermolecular O—H···O hydrogen bonds (dashed lines).
Crystal data
| C8H10O3 | F(000) = 656 |
| Mr = 154.16 | Dx = 1.344 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 7746 reflections |
| a = 15.011 (4) Å | θ = 2.5–28.2° |
| b = 6.1354 (18) Å | µ = 0.10 mm−1 |
| c = 16.543 (5) Å | T = 296 K |
| V = 1523.6 (7) Å3 | Block, brown |
| Z = 8 | 0.28 × 0.25 × 0.23 mm |
Data collection
| Bruker SMART CCD area-detector diffractometer | Rint = 0.025 |
| Radiation source: fine-focus sealed tube | θmax = 28.4°, θmin = 2.5° |
| φ and ω scans | h = −20→19 |
| 28952 measured reflections | k = −8→8 |
| 1900 independent reflections | l = −22→20 |
| 1530 reflections with I > 2σ(I) |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.0668P)2 + 0.6464P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max < 0.001 |
| 1900 reflections | Δρmax = 0.38 e Å−3 |
| 108 parameters | Δρmin = −0.42 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.56019 (17) | 0.3078 (3) | 0.91644 (10) | 0.1025 (9) | |
| H1 | 0.559 (2) | 0.268 (6) | 0.959 (2) | 0.129 (13)* | |
| C2 | 0.61335 (11) | 0.1812 (3) | 0.86876 (9) | 0.0462 (4) | |
| H2A | 0.5895 | 0.0345 | 0.8663 | 0.055* | |
| H2B | 0.6727 | 0.1737 | 0.8919 | 0.055* | |
| C3 | 0.61828 (10) | 0.2752 (3) | 0.78509 (9) | 0.0383 (4) | |
| C4 | 0.57178 (10) | 0.1775 (3) | 0.72196 (8) | 0.0388 (4) | |
| H4 | 0.5385 | 0.0524 | 0.7316 | 0.047* | |
| C5 | 0.57476 (10) | 0.2651 (3) | 0.64505 (8) | 0.0375 (3) | |
| C6 | 0.62554 (10) | 0.4516 (3) | 0.62970 (9) | 0.0368 (3) | |
| C7 | 0.67100 (11) | 0.5504 (3) | 0.69227 (10) | 0.0452 (4) | |
| H7 | 0.7042 | 0.6757 | 0.6828 | 0.054* | |
| C8 | 0.66682 (11) | 0.4616 (3) | 0.76955 (9) | 0.0454 (4) | |
| H8 | 0.6973 | 0.5292 | 0.8116 | 0.054* | |
| O9 | 0.52924 (10) | 0.1784 (2) | 0.58164 (7) | 0.0554 (4) | |
| H9 | 0.498 (2) | 0.060 (6) | 0.5924 (18) | 0.124 (12)* | |
| O10 | 0.62581 (8) | 0.5189 (2) | 0.55089 (7) | 0.0472 (3) | |
| C11 | 0.67256 (15) | 0.7139 (3) | 0.53259 (12) | 0.0588 (5) | |
| H11A | 0.6682 | 0.7433 | 0.4757 | 0.088* | |
| H11B | 0.7341 | 0.6976 | 0.5473 | 0.088* | |
| H11C | 0.647 | 0.8328 | 0.5624 | 0.088* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.1593 (19) | 0.1051 (14) | 0.0432 (8) | 0.0824 (14) | 0.0458 (10) | 0.0312 (9) |
| C2 | 0.0512 (9) | 0.0580 (10) | 0.0293 (7) | 0.0082 (7) | −0.0009 (6) | 0.0039 (7) |
| C3 | 0.0371 (7) | 0.0506 (9) | 0.0272 (7) | 0.0057 (6) | 0.0004 (5) | 0.0000 (6) |
| C4 | 0.0443 (8) | 0.0425 (8) | 0.0296 (7) | −0.0036 (6) | 0.0043 (6) | −0.0003 (6) |
| C5 | 0.0429 (7) | 0.0434 (8) | 0.0263 (7) | −0.0021 (6) | 0.0013 (5) | −0.0039 (6) |
| C6 | 0.0395 (7) | 0.0431 (8) | 0.0277 (7) | 0.0011 (6) | 0.0025 (5) | 0.0014 (6) |
| C7 | 0.0469 (8) | 0.0503 (9) | 0.0384 (8) | −0.0110 (7) | −0.0005 (6) | −0.0007 (7) |
| C8 | 0.0443 (8) | 0.0590 (10) | 0.0327 (8) | −0.0063 (7) | −0.0063 (6) | −0.0050 (7) |
| O9 | 0.0752 (9) | 0.0631 (8) | 0.0279 (6) | −0.0280 (7) | −0.0037 (5) | −0.0024 (5) |
| O10 | 0.0610 (7) | 0.0505 (7) | 0.0302 (6) | −0.0110 (5) | 0.0009 (5) | 0.0060 (5) |
| C11 | 0.0761 (13) | 0.0528 (11) | 0.0476 (10) | −0.0137 (9) | 0.0028 (9) | 0.0127 (8) |
Geometric parameters (Å, º)
| O1—C2 | 1.365 (2) | C6—O10 | 1.3677 (18) |
| O1—H1 | 0.74 (4) | C6—C7 | 1.380 (2) |
| C2—C3 | 1.501 (2) | C7—C8 | 1.391 (2) |
| C2—H2A | 0.97 | C7—H7 | 0.93 |
| C2—H2B | 0.97 | C8—H8 | 0.93 |
| C3—C8 | 1.380 (2) | O9—H9 | 0.88 (4) |
| C3—C4 | 1.392 (2) | O10—C11 | 1.420 (2) |
| C4—C5 | 1.382 (2) | C11—H11A | 0.96 |
| C4—H4 | 0.93 | C11—H11B | 0.96 |
| C5—O9 | 1.3601 (18) | C11—H11C | 0.96 |
| C5—C6 | 1.398 (2) | ||
| C2—O1—H1 | 112 (3) | O10—C6—C5 | 114.96 (13) |
| O1—C2—C3 | 110.07 (15) | C7—C6—C5 | 119.54 (14) |
| O1—C2—H2A | 109.6 | C6—C7—C8 | 119.66 (16) |
| C3—C2—H2A | 109.6 | C6—C7—H7 | 120.2 |
| O1—C2—H2B | 109.6 | C8—C7—H7 | 120.2 |
| C3—C2—H2B | 109.6 | C3—C8—C7 | 121.29 (14) |
| H2A—C2—H2B | 108.2 | C3—C8—H8 | 119.4 |
| C8—C3—C4 | 118.80 (14) | C7—C8—H8 | 119.4 |
| C8—C3—C2 | 121.06 (14) | C5—O9—H9 | 116 (2) |
| C4—C3—C2 | 120.12 (15) | C6—O10—C11 | 117.34 (13) |
| C5—C4—C3 | 120.48 (15) | O10—C11—H11A | 109.5 |
| C5—C4—H4 | 119.8 | O10—C11—H11B | 109.5 |
| C3—C4—H4 | 119.8 | H11A—C11—H11B | 109.5 |
| O9—C5—C4 | 122.81 (14) | O10—C11—H11C | 109.5 |
| O9—C5—C6 | 116.99 (13) | H11A—C11—H11C | 109.5 |
| C4—C5—C6 | 120.20 (13) | H11B—C11—H11C | 109.5 |
| O10—C6—C7 | 125.50 (15) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O9i | 0.74 (4) | 2.11 (4) | 2.773 (2) | 150 (4) |
| O1—H1···O10i | 0.74 (4) | 2.54 (4) | 3.152 (2) | 142 (4) |
| O9—H9···O1ii | 0.88 (4) | 1.78 (4) | 2.641 (2) | 163 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5370).
References
- Ashraf, Z., Rafiq, M., Seo, S. Y., Babar, M. M. & Zaidi, N. S. S. (2014). J. Enzyme Inhib. Med. Chem. pp. 1–10. [DOI] [PubMed]
- Ashraf, Z., Rafiq, M., Seo, S. Y., Kwon, K. S., Babar, M. M. & Zaidi, N. U. S. (2015). Eur. J. Med. Chem. 98, 203–211. [DOI] [PubMed]
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coimbra, E. S., de Almeida, M. V., Jðnior, C. O. R., Taveira, A. F., da Costa, C. F., de Almeida, A. C., Reis, E. F. C. & da Silva, A. D. (2010). Chem. Biol. Drug Des. 75, 233–235. [DOI] [PubMed]
- Córdova, I., León, L. G., León, F., San Andrés, L., Luis, J. G. & Padrón, J. M. (2006). Eur. J. Med. Chem. 41, 1327–1332. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Hans, R. H., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 2234–2237. [DOI] [PubMed]
- Matteelli, A., Carvalho, A. C., Dooley, K. E. & Kritski, A. (2010). Future Microbiol. 5, 849–858. [DOI] [PMC free article] [PubMed]
- Patrick, G. L. (2001). In An Introduction to Medicinal Chemistry. Oxford: University Press.
- Rodríguez-Barrios, F. & Gago, F. (2004). Curr. Top. Med. Chem. 4, 991–1007. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Wu, X., Öhrngren, P., Ekegren, J. K., Unge, J., Unge, T., Wallberg, H., Samuelsson, B., Hallberg, A. & Larhed, M. (2008). J. Med. Chem. 51, 1053–1057. [DOI] [PubMed]
- Yasohara, Y., Miyamoto, K., Kizaki, N. & Hasegawa, J. (2001). Tetrahedron Lett. 42, 3331–3333.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901501230X/tk5370sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501230X/tk5370Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901501230X/tk5370Isup3.cml
. DOI: 10.1107/S205698901501230X/tk5370fig1.tif
The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
. DOI: 10.1107/S205698901501230X/tk5370fig2.tif
Part of the crystal structure of the title compound, showing the 3-D network of molecules linked by intermolecular O—H⋯O hydrogen bonds (dashed lines).
CCDC reference: 1409010
Additional supporting information: crystallographic information; 3D view; checkCIF report
