Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 8;71(Pt 8):o562–o563. doi: 10.1107/S2056989015012797

Crystal structure of 2-(2-methyl­phen­yl)-1,3-thia­zolo[4,5-b]pyridine

Gamal A El-Hiti a,*, Keith Smith b, Amany S Hegazy b, Saud A Alanazi a, Benson M Kariuki b,*
PMCID: PMC4571397  PMID: 26396797

Abstract

In the title mol­ecule, C13H10N2S, the dihedral angle between the planes through the non-H atoms of the methylbenzene and thi­azo­lopyridine groups is 36.61 (5)°. In the crystal, the thi­azo­lopyridine groups of inversion-related mol­ecules overlap, with a minimum ring-centroid separation of 3.6721 (9) Å. Furthermore, the methylbenzene groups from neighbouring mol­ecules inter­act edge-to-face at an angle of 71.66 (5)°. In addition, weak C—H⋯ N hydrogen bonds form chains exending along [100].

Keywords: crystal structure, thi­azo­lopyridine, hydrogen bonding

Related literature  

Various thia­zolo­pyridine derivatives have been synthesised using different synthetic methods, see: Luo et al. (2015); Chaban et al. (2013); Leysen et al. (1984); Lee et al. (2010); Rao et al. (2009); Johnson et al. (2006); El-Hiti (2003); Smith et al. (1994, 1995). For the X-ray crystal structures of related compounds, see: El-Hiti et al. (2014; 2015); Yu et al. (2007).graphic file with name e-71-0o562-scheme1.jpg

Experimental  

Crystal data  

  • C13H10N2S

  • M r = 226.29

  • Orthorhombic, Inline graphic

  • a = 7.6702 (1) Å

  • b = 12.6492 (3) Å

  • c = 22.9821 (5) Å

  • V = 2229.77 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.33 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual Source diffractometer with an Atlas CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.960, T max = 0.989

  • 7263 measured reflections

  • 2234 independent reflections

  • 1959 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.106

  • S = 1.03

  • 2234 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015012797/zs2340sup1.cif

e-71-0o562-sup1.cif (274.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012797/zs2340Isup2.hkl

e-71-0o562-Isup2.hkl (123KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012797/zs2340Isup3.cml

13 10 2 . DOI: 10.1107/S2056989015012797/zs2340fig1.tif

The asymmetric unit of C13H10N2O with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

a . DOI: 10.1107/S2056989015012797/zs2340fig2.tif

The crystal packing viewed along the a axis of the unit cell.

CCDC reference: 1410117

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4N2i 0.93 2.63 3.371(2) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

supplementary crystallographic information

S1. Introduction

Various thia­zolo­pyridine derivatives have been synthesised using different synthetic methods (Luo et al., 2015; Chaban et al., 2013; Leysen et al., 1984; Lee et al., 2010; Rao et al., 2009; Johnson et al., 2006; El-Hiti, 2003; Smith et al., 1994, 1995). We have synthesized 2-(2-methyl­phenyl)-1,3-thia­zolo[4,5-b]pyridine in high yield (El-Hiti, 2003; Smith et al., 1995) as a continuation of our research directed towards the development of novel synthetic routes towards heterocyclic derivatives. The X-ray structures for related compounds have been reported previously (El-Hiti et al., 2014, 2015; Yu et al., 2007).

S2. Experimental

S2.1. Synthesis and crystallization

2-(2-Methyl­phenyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 89% yield from acid hydrolysis of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(2-methyl­benzoyl­amino)­pyridine under reflux (Smith et al., 1995) or in 61% yield from the reaction of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-amino­pyridine with 2-methyl­benzoic acid in the presence of phospho­rus oxychloride under reflux (El-Hiti, 2003). Crystallization from di­ethyl ether gave colourless crystals of the title compound. The NMR and mass spectral data for this compound were consistent with those reported (Smith et al., 1995).

S2.2. Refinement

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

S3. Comment

The asymmetric unit consists of one molecule of C13H10N2S (Fig. 1). In the molecule, the angle between the least squares planes through the nonhydrogen atoms of the methyl­phenyl and thia­zolo­pyridine groups is 36.61 (5)°. In the crystal (Fig 2), the thia­zolo­pyridine groups of adjacent inversion-related molecules are parallel and overlap fully with a minimum ring centroid separation of 3.6721 (9) Å between the 5-membered and 6-membered components of the groups (related by -x, -y +1.-z +1) . Methyl­phenyl groups from neighbouring molecules inter­act in an edge-to-face fashion with a dihedral angle between the rings of 71.66 (5)°. A weak inter­molecular C4—H···N2i contact (Table 1) forms chains of molecules extending along [100].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of C13H10N2O with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

Fig. 2.

Fig. 2.

The crystal packing viewed along the a axis of the unit cell.

Crystal data

C13H10N2S Dx = 1.348 Mg m3
Mr = 226.29 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pbca Cell parameters from 3613 reflections
a = 7.6702 (1) Å θ = 3.8–74.0°
b = 12.6492 (3) Å µ = 2.33 mm1
c = 22.9821 (5) Å T = 293 K
V = 2229.77 (8) Å3 Block, colourless
Z = 8 0.26 × 0.17 × 0.05 mm
F(000) = 944

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas CCD detector 1959 reflections with I > 2σ(I)
ω scans Rint = 0.019
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) θmax = 74.0°, θmin = 3.9°
Tmin = 0.960, Tmax = 0.989 h = −9→6
7263 measured reflections k = −12→15
2234 independent reflections l = −28→27

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2234 reflections Δρmax = 0.17 e Å3
146 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.21789 (18) 0.50224 (11) 0.38130 (6) 0.0457 (3)
C2 0.03446 (19) 0.40362 (11) 0.43105 (6) 0.0496 (3)
C3 −0.07616 (19) 0.48902 (12) 0.42082 (6) 0.0527 (3)
C4 −0.1768 (3) 0.31679 (15) 0.48019 (8) 0.0706 (5)
H4 −0.2140 0.2579 0.5010 0.085*
C5 −0.2954 (2) 0.39752 (16) 0.47141 (8) 0.0705 (5)
H5 −0.4082 0.3917 0.4859 0.085*
C6 −0.2461 (2) 0.48645 (16) 0.44130 (8) 0.0670 (4)
H6 −0.3229 0.5422 0.4350 0.080*
C7 0.37539 (18) 0.54080 (11) 0.35116 (6) 0.0470 (3)
C8 0.48582 (19) 0.47301 (13) 0.31980 (6) 0.0527 (3)
C9 0.6265 (2) 0.51824 (15) 0.29070 (7) 0.0644 (4)
H9 0.6997 0.4749 0.2690 0.077*
C10 0.6608 (2) 0.62498 (15) 0.29292 (8) 0.0675 (4)
H10 0.7555 0.6528 0.2728 0.081*
C11 0.5547 (2) 0.69041 (14) 0.32501 (8) 0.0664 (4)
H11 0.5787 0.7623 0.3274 0.080*
C12 0.4124 (2) 0.64853 (12) 0.35362 (7) 0.0563 (4)
H12 0.3399 0.6930 0.3749 0.068*
C13 0.4583 (3) 0.35571 (14) 0.31637 (9) 0.0730 (5)
H13A 0.5337 0.3264 0.2872 0.109*
H13B 0.3391 0.3414 0.3064 0.109*
H13C 0.4845 0.3243 0.3534 0.109*
N1 0.20074 (17) 0.41287 (9) 0.40814 (5) 0.0514 (3)
N2 −0.0128 (2) 0.31754 (12) 0.46089 (7) 0.0659 (4)
S1 0.03278 (5) 0.58334 (3) 0.38069 (2) 0.06317 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0444 (7) 0.0476 (7) 0.0451 (7) 0.0040 (5) −0.0043 (5) −0.0027 (5)
C2 0.0486 (8) 0.0529 (8) 0.0471 (7) 0.0024 (6) 0.0008 (6) −0.0006 (6)
C3 0.0452 (7) 0.0625 (8) 0.0502 (7) 0.0045 (6) −0.0035 (6) 0.0007 (6)
C4 0.0698 (10) 0.0746 (11) 0.0673 (10) −0.0082 (8) 0.0169 (8) 0.0047 (8)
C5 0.0526 (9) 0.0951 (13) 0.0637 (9) −0.0068 (8) 0.0099 (7) −0.0010 (9)
C6 0.0474 (8) 0.0870 (12) 0.0667 (9) 0.0106 (8) 0.0017 (7) 0.0036 (8)
C7 0.0441 (7) 0.0502 (7) 0.0468 (7) 0.0005 (6) −0.0055 (5) 0.0007 (5)
C8 0.0497 (7) 0.0567 (8) 0.0517 (8) 0.0026 (6) −0.0004 (6) −0.0013 (6)
C9 0.0562 (9) 0.0778 (11) 0.0591 (9) 0.0018 (8) 0.0097 (7) −0.0019 (8)
C10 0.0600 (9) 0.0795 (11) 0.0630 (9) −0.0143 (8) 0.0057 (7) 0.0089 (8)
C11 0.0685 (10) 0.0609 (9) 0.0700 (10) −0.0140 (8) −0.0009 (8) 0.0052 (8)
C12 0.0555 (8) 0.0530 (8) 0.0605 (8) −0.0010 (7) −0.0038 (7) −0.0009 (6)
C13 0.0769 (12) 0.0564 (9) 0.0856 (12) 0.0054 (8) 0.0211 (9) −0.0104 (9)
N1 0.0490 (7) 0.0508 (7) 0.0544 (7) 0.0062 (5) 0.0033 (5) 0.0039 (5)
N2 0.0665 (8) 0.0622 (8) 0.0691 (8) 0.0026 (6) 0.0133 (7) 0.0116 (7)
S1 0.0491 (3) 0.0616 (3) 0.0789 (3) 0.01227 (16) 0.00281 (17) 0.01779 (18)

Geometric parameters (Å, º)

C1—N1 1.2944 (18) C7—C12 1.393 (2)
C1—C7 1.476 (2) C7—C8 1.404 (2)
C1—S1 1.7518 (14) C8—C9 1.392 (2)
C2—N2 1.337 (2) C8—C13 1.501 (2)
C2—N1 1.3848 (19) C9—C10 1.377 (3)
C2—C3 1.394 (2) C9—H9 0.9300
C3—C6 1.386 (2) C10—C11 1.375 (3)
C3—S1 1.7240 (16) C10—H10 0.9300
C4—N2 1.334 (2) C11—C12 1.380 (2)
C4—C5 1.382 (3) C11—H11 0.9300
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.374 (3) C13—H13A 0.9600
C5—H5 0.9300 C13—H13B 0.9600
C6—H6 0.9300 C13—H13C 0.9600
N1—C1—C7 126.56 (13) C7—C8—C13 123.08 (14)
N1—C1—S1 115.65 (11) C10—C9—C8 122.24 (16)
C7—C1—S1 117.79 (10) C10—C9—H9 118.9
N2—C2—N1 120.92 (13) C8—C9—H9 118.9
N2—C2—C3 123.54 (14) C11—C10—C9 119.80 (15)
N1—C2—C3 115.54 (13) C11—C10—H10 120.1
C6—C3—C2 119.80 (15) C9—C10—H10 120.1
C6—C3—S1 130.81 (13) C10—C11—C12 119.51 (16)
C2—C3—S1 109.37 (11) C10—C11—H11 120.2
N2—C4—C5 124.51 (17) C12—C11—H11 120.2
N2—C4—H4 117.7 C11—C12—C7 121.16 (16)
C5—C4—H4 117.7 C11—C12—H12 119.4
C6—C5—C4 119.85 (16) C7—C12—H12 119.4
C6—C5—H5 120.1 C8—C13—H13A 109.5
C4—C5—H5 120.1 C8—C13—H13B 109.5
C5—C6—C3 116.67 (17) H13A—C13—H13B 109.5
C5—C6—H6 121.7 C8—C13—H13C 109.5
C3—C6—H6 121.7 H13A—C13—H13C 109.5
C12—C7—C8 119.67 (14) H13B—C13—H13C 109.5
C12—C7—C1 118.11 (13) C1—N1—C2 110.40 (12)
C8—C7—C1 122.21 (13) C4—N2—C2 115.61 (15)
C9—C8—C7 117.58 (15) C3—S1—C1 89.04 (7)
C9—C8—C13 119.33 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···N2i 0.93 2.63 3.371 (2) 137

Symmetry code: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2340).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  3. Chaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611–1620.
  4. El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.
  5. El-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015). Acta Cryst. E71, o272–o273. [DOI] [PMC free article] [PubMed]
  6. El-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, o932. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853–4856.
  9. Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95–99. [DOI] [PubMed]
  10. Leysen, D. C., Haemers, A. & Bollaert, W. (1984). J. Heterocycl. Chem. 21, 1361–1366.
  11. Luo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631–637.
  12. Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176–6180. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.
  16. Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.
  17. Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968–o969.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015012797/zs2340sup1.cif

e-71-0o562-sup1.cif (274.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012797/zs2340Isup2.hkl

e-71-0o562-Isup2.hkl (123KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012797/zs2340Isup3.cml

13 10 2 . DOI: 10.1107/S2056989015012797/zs2340fig1.tif

The asymmetric unit of C13H10N2O with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

a . DOI: 10.1107/S2056989015012797/zs2340fig2.tif

The crystal packing viewed along the a axis of the unit cell.

CCDC reference: 1410117

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES